摘要
病原微生物应被视为人类的头号敌人,最近的冠状病毒病(COVID-19)爆发以及细菌对现有抗生素不再敏感的事实证明了这一点。病原细菌的抵抗力和可归因于细菌感染的死亡正在成倍增加。细菌使用不同的机制来反击现有抗生素,即(i)酶促抑制,(ii)青霉素结合蛋白修饰,(iii)孔蛋白突变,(iv)外排泵和(v)抗生素靶标的分子修饰。开发新的抗生素来解决这种情况将是耗时的,因此,有希望的方法之一是增强现有的抗生素。植物利用协同作用自然防御和保护自己免受微生物侵害。使用相同的策略,一些研究表明,天然产物和抗生素的组合可以有效地延长现有抗生素的寿命,并最大程度地减少对抗生素耐药性的影响和出现。事实证明,将香精油成分(丁香酚,铁氨酚,法尼醇和香芹酚)与抗生素结合使用是有效的外排泵抑制剂。植物来源的化合物(例如没食子酸和鞣酸)是各种抗生素的有效增强剂,包括新霉素,绿霉素,香豆素,夫西地酸和利福平,导致这些抗生素的效价提高了4倍。这篇综述中讨论的几项研究证明了天然产物在增强现有抗生素方面的有效性。因此,寻求更有效的组合应该是一个持续的过程,目的是延长我们拥有的生命,并可能为即将到来的生命保留生命。
关键词: 抗生素,抗菌耐药性,药用植物,精油,细菌生物膜,协同作用,微生物。
图形摘要
[http://dx.doi.org/10.3399/bjgp14X682561] [PMID: 25452508]
[http://dx.doi.org/10.3389/fmolb.2018.00057] [PMID: 29971236]
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[http://dx.doi.org/10.1016/j.coph.2012.07.005] [PMID: 22835931]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00013-7]
[PMID: 27917275]
[http://dx.doi.org/10.1038/s41598-017-03716-7] [PMID: 28630440]
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16000]
[http://dx.doi.org/10.1016/j.indcrop.2019.111948]
[PMID: 25859123]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00002-2]
[http://dx.doi.org/10.1038/nrmicro1994] [PMID: 18997824]
[http://dx.doi.org/10.2174/138920312804871120] [PMID: 23305369]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00014-9]
[http://dx.doi.org/10.1093/cid/ciu392] [PMID: 25151481]
[http://dx.doi.org/10.1093/emph/eou024] [PMID: 25355275]
[http://dx.doi.org/10.1186/s13054-014-0480-6] [PMID: 25405992]
[http://dx.doi.org/10.4161/gmic.28027] [PMID: 24637595]
[http://dx.doi.org/10.4161/viru.22507] [PMID: 23302792]
[http://dx.doi.org/10.3390/ijerph10094274] [PMID: 24036486]
[http://dx.doi.org/10.3109/07853890.2016.1161232] [PMID: 27092975]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00006-X]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00015-0]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00016-2]
[http://dx.doi.org/10.1016/j.ejmech.2019.111708] [PMID: 31550659]
[http://dx.doi.org/10.1155/2019/1895340]
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[http://dx.doi.org/10.1089/jmf.2009.0158] [PMID: 20482280]
[http://dx.doi.org/10.1016/j.micpath.2019.03.012] [PMID: 30876871]
[http://dx.doi.org/10.1155/2018/4020294] [PMID: 30275799]
[http://dx.doi.org/10.1016/j.sjbs.2016.01.019] [PMID: 29379354]
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00011-3]
[http://dx.doi.org/10.1016/j.micpath.2017.10.054] [PMID: 29101062]
[http://dx.doi.org/10.1016/j.micpath.2017.12.032] [PMID: 29241769]
[http://dx.doi.org/10.1155/2020/5679408] [PMID: 32089724]
[http://dx.doi.org/10.1080/14786419.2020.1729150] [PMID: 32081039]
[http://dx.doi.org/10.1016/j.indcrop.2017.09.028]
[http://dx.doi.org/10.1016/j.jiph.2017.01.008] [PMID: 28162962]
[http://dx.doi.org/10.1016/j.indcrop.2019.05.032]
[http://dx.doi.org/10.1016/j.hermed.2016.02.002]
[http://dx.doi.org/10.1016/j.jtcme.2015.09.002] [PMID: 27774426]
[http://dx.doi.org/10.1016/j.hermed.2017.03.005]
[http://dx.doi.org/10.1016/j.sajb.2017.03.034]
[http://dx.doi.org/10.1016/j.indcrop.2015.03.058]
[http://dx.doi.org/10.1016/j.sajb.2016.01.006]
[http://dx.doi.org/10.1016/j.micpath.2019.103700] [PMID: 31472258]
[http://dx.doi.org/10.1016/j.sajb.2019.04.008]
[http://dx.doi.org/10.1016/j.fct.2019.110946] [PMID: 31712106]
[http://dx.doi.org/10.1155/2013/164215] [PMID: 23818919]
[http://dx.doi.org/10.1186/1472-6882-14-258] [PMID: 25047005]
[http://dx.doi.org/10.1186/1472-6882-9-13] [PMID: 19426487]
[http://dx.doi.org/10.1186/1756-0500-5-299] [PMID: 22709668]
[http://dx.doi.org/10.1186/1472-6882-13-190] [PMID: 23885762]
[http://dx.doi.org/10.1016/j.eujim.2014.10.005]
[http://dx.doi.org/10.1016/j.indcrop.2020.112106]
[http://dx.doi.org/10.3390/antibiotics8010028] [PMID: 30884871]
[http://dx.doi.org/10.3390/pathogens7040098] [PMID: 30544654]
[http://dx.doi.org/10.3390/separations7010010]
[http://dx.doi.org/10.1016/j.jpha.2019.11.002]
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[http://dx.doi.org/10.3390/molecules16129819] [PMID: 22117171]
[http://dx.doi.org/10.1016/j.phymed.2011.12.003] [PMID: 22257599]
[http://dx.doi.org/10.1016/j.micpath.2018.11.033] [PMID: 30476577]
[http://dx.doi.org/10.1016/j.micpath.2018.12.012] [PMID: 30540925]
[http://dx.doi.org/10.1016/j.cmrp.2017.10.004]
[http://dx.doi.org/10.3390/molecules21020244] [PMID: 26907238]
[http://dx.doi.org/10.1016/j.bmc.2019.06.025] [PMID: 31307763]
[http://dx.doi.org/10.1016/j.archoralbio.2016.01.014] [PMID: 26849416]
[http://dx.doi.org/10.1016/j.resmic.2012.10.007] [PMID: 23089256]
[http://dx.doi.org/10.1016/j.bmcl.2018.01.028] [PMID: 29402738]
[http://dx.doi.org/10.1016/j.mib.2016.05.005] [PMID: 27232956]
[http://dx.doi.org/10.1016/j.micpath.2016.03.009] [PMID: 27033000]
[http://dx.doi.org/10.1016/j.ejmech.2019.05.075] [PMID: 31173969]
[http://dx.doi.org/10.1016/j.bmc.2019.04.004] [PMID: 30975502]
[http://dx.doi.org/10.1016/j.chembiol.2019.07.009] [PMID: 31402316]
[http://dx.doi.org/10.1002/advs.201802333] [PMID: 31406662]
[http://dx.doi.org/10.1128/AAC.00200-17] [PMID: 28533232]