Review Article

天然产物的抗菌作用:对抗病原细菌的潜在目标

卷 22, 期 5, 2021

发表于: 24 September, 2020

页: [555 - 572] 页: 18

弟呕挨: 10.2174/1389450121666200924113740

价格: $65

摘要

病原微生物应被视为人类的头号敌人,最近的冠状病毒病(COVID-19)爆发以及细菌对现有抗生素不再敏感的事实证明了这一点。病原细菌的抵抗力和可归因于细菌感染的死亡正在成倍增加。细菌使用不同的机制来反击现有抗生素,即(i)酶促抑制,(ii)青霉素结合蛋白修饰,(iii)孔蛋白突变,(iv)外排泵和(v)抗生素靶标的分子修饰。开发新的抗生素来解决这种情况将是耗时的,因此,有希望的方法之一是增强现有的抗生素。植物利用协同作用自然防御和保护自己免受微生物侵害。使用相同的策略,一些研究表明,天然产物和抗生素的组合可以有效地延长现有抗生素的寿命,并最大程度地减少对抗生素耐药性的影响和出现。事实证明,将香精油成分(丁香酚,铁氨酚,法尼醇和香芹酚)与抗生素结合使用是有效的外排泵抑制剂。植物来源的化合物(例如没食子酸和鞣酸)是各种抗生素的有效增强剂,包括新霉素,绿霉素,香豆素,夫西地酸和利福平,导致这些抗生素的效价提高了4倍。这篇综述中讨论的几项研究证明了天然产物在增强现有抗生素方面的有效性。因此,寻求更有效的组合应该是一个持续的过程,目的是延长我们拥有的生命,并可能为即将到来的生命保留生命。

关键词: 抗生素,抗菌耐药性,药用植物,精油,细菌生物膜,协同作用,微生物。

图形摘要

[1]
Shallcross LJ, Davies DS. Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract 2014; 64(629): 604-5.
[http://dx.doi.org/10.3399/bjgp14X682561] [PMID: 25452508]
[2]
Housseini B Issa K, Phan G, Broutin I, Broutin I. Functional mechanism of the efflux pumps transcription regulators From Pseudomonas aeruginosa based on 3D structures. Front Mol Biosci 2018; 5(57): 57.
[http://dx.doi.org/10.3389/fmolb.2018.00057] [PMID: 29971236]
[3]
[4]
Egorov AM, Ulyashova MM, Rubtsova MY. Bacterial enzymes and antibiotic resistance. Acta Naturae 2018; 10(4): 33-48.
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[5]
Pieren M, Tigges M. Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Curr Opin Pharmacol 2012; 12(5): 551-5.
[http://dx.doi.org/10.1016/j.coph.2012.07.005] [PMID: 22835931]
[6]
Aumeerruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally M. Antimicrobial and antibiotic potentiating activity of essential oils from tropical medicinal herbs and spices.Antibiotic resistance. London, United Kingdom: Academic Press 2016; pp. 271-85.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00013-7]
[7]
Haroun MF, Al-Kayali RS. Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iran J Basic Med Sci 2016; 19(11): 1193-200.
[PMID: 27917275]
[8]
Abreu AC, Coqueiro A, Sultan AR, et al. Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep 2017; 7(1): 3777.
[http://dx.doi.org/10.1038/s41598-017-03716-7] [PMID: 28630440]
[9]
Singh BP. Advances in endophytic fungal research: Present status and future challenges. 1st Edition ed. Switzerland: Springer 2019.
[10]
Stefanović OD. Synergistic activity of antibiotics and bioactive plant extracts: a study against gram-positive and gram-negative bacteria.Bacterial pathogenesis and antibacterial control. London: IntechOpen 2017.
[11]
Rafiq Z, Narasimhan S, Haridoss M, Vennila R, Vaidyanathan R. Punica granatum rind extract: antibiotic potentiator and efflux pump inhibitor of multidrug resistant Klebsiella pneumoniae clinical isolates Asian J Pharm Clin Res 2017; 10(3)
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16000]
[12]
Mahomoodally MF, Ugurlu A, Llorent-Martínez EJ, Nagamootoo M, Picot-Allain MCN, Baloglu MC, et al. Syzgium coriaceum Bosser & J. Guého—An endemic plant potentiates conventional antibiotics, inhibits clinical enzymes and induces apoptosis in breast cancer cells. Ind Crops Prod 2020; 143: 111948.
[http://dx.doi.org/10.1016/j.indcrop.2019.111948]
[13]
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[14]
Oliveira K, Lima L, Cobacho N, Dias S, Franco O. Mechanisms of antibacterial resistance: shedding some light on these obscure processes.Antibiotic resistance. London, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00002-2]
[15]
McKenzie HC. Chapter 20 - Disorders of FoalsReed SM, Bayly WM, Sellon DC, editors Equine Internal Medicine 4th Edition ed: WB Saunders. 2018; pp. 1365-459.
[16]
Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6(12): 893-903.
[http://dx.doi.org/10.1038/nrmicro1994] [PMID: 18997824]
[17]
Novikova OD, Solovyeva TF. Nonspecific porins of the outer membrane of Gram-negative bacteria: Structure and functions. Biochem (Mosc) Suppl Ser. Membr Cell Biol 2009; 3(1): 3-15.
[18]
Galdiero S, Falanga A, Cantisani M, et al. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 2012; 13(8): 843-54.
[http://dx.doi.org/10.2174/138920312804871120] [PMID: 23305369]
[19]
Beolotto V, Oliva M, Marioli J, Carezzano M, Demo M. Antimicrobial natural products against bacterial biofilms.Antibiotic resistance. London, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00014-9]
[20]
Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis 2014; 59(Suppl. 2): S71-5.
[http://dx.doi.org/10.1093/cid/ciu392] [PMID: 25151481]
[21]
Read AF, Woods RJ. Antibiotic resistance management. Evol Med Public Health 2014; 2014(1): 147.
[http://dx.doi.org/10.1093/emph/eou024] [PMID: 25355275]
[22]
Luyt CE, Bréchot N, Trouillet JL, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care 2014; 18(5): 480.
[http://dx.doi.org/10.1186/s13054-014-0480-6] [PMID: 25405992]
[23]
Viswanathan VK. Off-label abuse of antibiotics by bacteria. Gut Microbes 2014; 5(1): 3-4.
[http://dx.doi.org/10.4161/gmic.28027] [PMID: 24637595]
[24]
Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 2013; 4(2): 185-91.
[http://dx.doi.org/10.4161/viru.22507] [PMID: 23302792]
[25]
Lee C-R, Cho IH, Jeong BC, Lee SH. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health 2013; 10(9): 4274-305.
[http://dx.doi.org/10.3390/ijerph10094274] [PMID: 24036486]
[26]
Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med 2016; 48(4): 246-55.
[http://dx.doi.org/10.3109/07853890.2016.1161232] [PMID: 27092975]
[27]
Rai M, Kon K, Gade A, Ingle A, Nagaonkar D, Paralikar P, et al. Antibiotic resistance: can nanoparticles tackle the problem?Antibiotic resistance. London, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00006-X]
[28]
Bragg R, Boucher C, Westhuizen W, Lee J, Coetsee E, Theron C, et al. The potential use of bacteriophage therapy as a treatment option in a post-antibiotic era.Antibiotic resistance. London, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00015-0]
[29]
Preciado G, Michel M, Morales S, Gallegos A, Joya J, Chavez J, et al. Bacteriocins and its use for multidrug-resistant bacteria control.Antibiotic resistance. LOndon, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00016-2]
[30]
Muir WW, Sams RA. Pharmacologic principles and pain: pharmacokinetics and pharmacodynamicsGaynor JS, Muir WW, editors Handbook of veterinary pain management 2nd Edition ed Saint Louis: Mosby. 2009; pp. 113-40.
[31]
Cadelis MM, Pike EIW, Kang W, et al. Exploration of the antibiotic potentiating activity of indolglyoxylpolyamines. Eur J Med Chem 2019; 183: 111708.
[http://dx.doi.org/10.1016/j.ejmech.2019.111708] [PMID: 31550659]
[32]
Marzoog TR. Synergistic Effect of Rosmarinus Officinalis extract with antibiotics against different bacterial isolates J Eng Technol 2013; 31(B): 678-86.
[33]
Manandhar S, Luitel S. In Vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 2019; 1-5.
[http://dx.doi.org/10.1155/2019/1895340]
[34]
Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 2000; 97(4): 1433-7.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[35]
Coutinho HD, Costa JG, Falcão-Silva VS, Siqueira-Júnior JP, Lima EO. Potentiation of antibiotic activity by Eugenia uniflora and Eugenia jambolanum. J Med Food 2010; 13(4): 1024-6.
[http://dx.doi.org/10.1089/jmf.2009.0158] [PMID: 20482280]
[36]
Braga Ribeiro AM, Sousa JN, Costa LM, et al. Antimicrobial activity of Phyllanthus amarus Schumach. & Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin. Microb Pathog 2019; 130: 242-6.
[http://dx.doi.org/10.1016/j.micpath.2019.03.012] [PMID: 30876871]
[37]
Nayim P, Mbaveng AT, Wamba BEN, Fankam AG, Dzotam JK, Kuete V. Antibacterial and antibiotic-potentiating activities of thirteen Cameroonian edible plants against gram-negative resistant phenotypes. ScientificWorldJournal 2018; 2018: 4020294.
[http://dx.doi.org/10.1155/2018/4020294] [PMID: 30275799]
[38]
Siebra ALA, Oliveira LR, Martins AOBPB, et al. Potentiation of antibiotic activity by Passiflora cincinnata Mast. front of strains Staphylococcus aureus and Escherichia coli. Saudi J Biol Sci 2018; 25(1): 37-43.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.019] [PMID: 29379354]
[39]
Chavez M, Herrera R, Aguilar C. Essential oils: a natural alternative to combat antibiotics.Antibiotic resistance. London, United Kingdom: Academic Press 2016.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00011-3]
[40]
Aumeerruddy-Elalfi Z, Mahomoodally M. Essential oils and nanoemulsions: alternative tool to biofilm eradication.Essential oils and nanotechnology treatment of microbila diseases. Boca Raton, United States: CRC Press 2018.
[41]
Rai M, Zacchino S, Derita M. Essential oils and nanotechnology for treatment of microbial diseases. Boca Raton, United States: CRC Press 2018.
[42]
Jafri H, Ansari FA, Ahmad I. Chapter 9 - Prospects of essential oils in controlling pathogenic biofilmAhmad Khan MS, Ahmad I, Chattopadhyay D, editors New look to phytomedicine: Academic Press. 2019; pp. 203-36.
[43]
Zhang Y, Wang Y, Zhu X, Cao P, Wei S, Lu Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb Pathog 2017; 113: 396-402.
[http://dx.doi.org/10.1016/j.micpath.2017.10.054] [PMID: 29101062]
[44]
Huang J, Qian C, Xu H, Huang Y. Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microb Pathog 2018; 114: 470-5.
[http://dx.doi.org/10.1016/j.micpath.2017.12.032] [PMID: 29241769]
[45]
Ali-Shtayeh MS, Abu-Zaitoun SY, Dudai N, Jamous RM. Downy Lavender Oil: A promising source of antimicrobial, antiobesity, and anti-Alzheimer’s Disease agents. Evid Based Complement Alternat Med 2020; 2020: 5679408.
[http://dx.doi.org/10.1155/2020/5679408] [PMID: 32089724]
[46]
da Silva GC, de Veras BO, de Assis CRD, et al. Chemical composition, antimicrobial activity and synergistic effects with conventional antibiotics under clinical isolates by essential oil of Hymenaea rubriflora Ducke (FABACEAE). Nat Prod Res 2020; 1-5.
[http://dx.doi.org/10.1080/14786419.2020.1729150] [PMID: 32081039]
[47]
Ait Dra L, Ait Sidi Brahim M, Boualy B, Aghraz A, Barakate M, Oubaassine S, et al. Chemical composition, antioxidant and evidence antimicrobial synergistic effects of Periploca laevigata essential oil with conventional antibiotics. Ind Crops Prod 2017; 109: 746-52.
[http://dx.doi.org/10.1016/j.indcrop.2017.09.028]
[48]
Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In Vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health 2017; 10(5): 586-92.
[http://dx.doi.org/10.1016/j.jiph.2017.01.008] [PMID: 28162962]
[49]
Nafis A, Kasrati A, Jamali CA, Mezrioui N, Setzer W, Abbad A, et al. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind Crops Prod 2019; 137: 396-400.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.032]
[50]
Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally MF. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J Herb Med 2016; 6(2): 88-95.
[http://dx.doi.org/10.1016/j.hermed.2016.02.002]
[51]
Mahomoodally MF, Dilmohamed S. Antibacterial and antibiotic potentiating activity of Vangueria madagascariensis leaves and ripe fruit pericarp against human pathogenic clinical bacterial isolates. J Tradit Complement Med 2015; 6(4): 399-403.
[http://dx.doi.org/10.1016/j.jtcme.2015.09.002] [PMID: 27774426]
[52]
Seebaluck-Sandoram R, Lall N, Fibrich B, van Staden AB, Mahomoodally F. Antibiotic-potentiating activity, phytochemical profile, and cytotoxicity of Acalypha integrifolia Willd. (Euphorbiaceae). J Herb Med 2018; 11: 53-9.
[http://dx.doi.org/10.1016/j.hermed.2017.03.005]
[53]
Seebaluck-Sandoram R, Lall N, Fibrich B, Blom van Staden A, Mahomoodally F. Antibiotic-potentiation, antioxidant, cytotoxic, anti-inflammatory and anti-acetylcholinesterase potential of Antidesma madagascariense Lam. (Euphorbiaceae). S Afr J Bot 2017; 111: 194-201.
[http://dx.doi.org/10.1016/j.sajb.2017.03.034]
[54]
Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind Crops Prod 2015; 71: 197-204.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.058]
[55]
Taukoorah U, Lall N, Mahomoodally F. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics. S Afr J Bot 2016; 105: 133-40.
[http://dx.doi.org/10.1016/j.sajb.2016.01.006]
[56]
Pereira Carneiro JN, da Cruz RP, da Silva JCP, et al. Piper diospyrifolium Kunth.: Chemical analysis and antimicrobial (intrinsic and combined) activities. Microb Pathog 2019; 136: 103700.
[http://dx.doi.org/10.1016/j.micpath.2019.103700] [PMID: 31472258]
[57]
Ilanko P, McDonnell PA, van Vuuren S, Cock IE. Interactive antibacterial profile of Moringa oleifera Lam. extracts and conventional antibiotics against bacterial triggers of some autoimmune inflammatory diseases. S Afr J Bot 2019; 124: 420-35.
[http://dx.doi.org/10.1016/j.sajb.2019.04.008]
[58]
Oliveira MTA, Moura GMM, da Cruz JIO, et al. Serine protease inhibition and modulatory-antibiotic activity of the proteic extract and fractions from Amburana cearensis. Food Chem Toxicol 2020; 135: 110946.
[http://dx.doi.org/10.1016/j.fct.2019.110946] [PMID: 31712106]
[59]
Matias EFF, Alves EF, Santos BS, et al. Biological activities and chemical characterization of Cordia verbenacea DC. as tool to validate the ethnobiological usage. Evid Based Complement Alternat Med 2013; 2013: 164215.
[http://dx.doi.org/10.1155/2013/164215] [PMID: 23818919]
[60]
Touani FK, Seukep AJ, Djeussi DE, Fankam AG, Noumedem JAK, Kuete V. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern Med 2014; 14(1): 258.
[http://dx.doi.org/10.1186/1472-6882-14-258] [PMID: 25047005]
[61]
Coutinho HDM, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira JP Jr. Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin--resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement Altern Med 2009; 9(1): 13.
[http://dx.doi.org/10.1186/1472-6882-9-13] [PMID: 19426487]
[62]
Voukeng IK, Kuete V, Dzoyem JP, et al. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes. BMC Res Notes 2012; 5(1): 299.
[http://dx.doi.org/10.1186/1756-0500-5-299] [PMID: 22709668]
[63]
Noumedem JAK, Mihasan M, Kuiate JR, et al. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complement Altern Med 2013; 13(1): 190.
[http://dx.doi.org/10.1186/1472-6882-13-190] [PMID: 23885762]
[64]
Aguiar JJS, Sousa CPB, Araruna MKA, Silva MKN, Portelo AC, Lopes JC, et al. Antibacterial and modifying-antibiotic activities of the essential oils of Ocimum gratissimum L. and Plectranthus amboinicus L. Eur J Integr Med 2015; 7(2): 151-6.
[http://dx.doi.org/10.1016/j.eujim.2014.10.005]
[65]
Freitas PR, de Araújo ACJ, dos Santos Barbosa CR, Muniz DF, da Silva ACA, Rocha JE, et al. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of Baccharis reticulata (ruiz & pav.) pers. and α-pinene. Ind Crops Prod 2020; 145: 112106.
[http://dx.doi.org/10.1016/j.indcrop.2020.112106]
[66]
Machado JF, do Socorro Costa M, Tintino SR, et al. Antibiotic activity potentiation and physicochemical characterization of the fixed Orbignya speciosa almond oil against MDR Staphylococcus aureus and other bacteria. Antibiotics (Basel) 2019; 8(1): 28.
[http://dx.doi.org/10.3390/antibiotics8010028] [PMID: 30884871]
[67]
Faustino Pereira Y, do Socorro Costa M, Relison Tintino S, et al. Modulation of the antibiotic activity by the Mauritia flexuosa (Buriti) fixed oil against methicillin-resistant Staphylococcus Aureus (MRSA) and other multidrug-resistant (MDR) bacterial strains. Pathogens 2018; 7(4): 98.
[http://dx.doi.org/10.3390/pathogens7040098] [PMID: 30544654]
[68]
Costa MdS. GC-FID analysis and antibacterial activity of the Calyptranthes concinna essential oil Against MDR bacterial strains. Separations 2020; 7(1): 10.
[http://dx.doi.org/10.3390/separations7010010]
[69]
Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2019; 10(4): 277-90.
[http://dx.doi.org/10.1016/j.jpha.2019.11.002]
[70]
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 2017; 11(22): 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[71]
Zuo G-Y, Li Y, Wang T, et al. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2011; 16(12): 9819-26.
[http://dx.doi.org/10.3390/molecules16129819] [PMID: 22117171]
[72]
Fadli M, Saad A, Sayadi S, et al. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection - bacteria and their synergistic potential with antibiotics. Phytomedicine 2012; 19(5): 464-71.
[http://dx.doi.org/10.1016/j.phymed.2011.12.003] [PMID: 22257599]
[73]
Ibitoye OB, Ajiboye TO. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Microb Pathog 2019; 126: 393-8.
[http://dx.doi.org/10.1016/j.micpath.2018.11.033] [PMID: 30476577]
[74]
Ibitoye OB, Ajiboye TO. (+)-Catechin potentiates the oxidative response of Acinetobacter baumannii to quinolone-based antibiotics. Microb Pathog 2019; 127: 239-45.
[http://dx.doi.org/10.1016/j.micpath.2018.12.012] [PMID: 30540925]
[75]
Singhal D, Saxena S. Catechin gallate a promising resistance modifying candidate to potentiate β-lactam antibiotics to overcome resistance in Staphylococcus aureus. CMRP 2017; 7(6): 224-8.
[http://dx.doi.org/10.1016/j.cmrp.2017.10.004]
[76]
Miklasińska M, Kępa M, Wojtyczka RD, Idzik D, Dziedzic A, Wąsik TJ. Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules 2016; 21(2): 244.
[http://dx.doi.org/10.3390/molecules21020244] [PMID: 26907238]
[77]
Lim CSQ, Ha KP, Clarke RS, et al. Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2019; 27(20): 114962.
[http://dx.doi.org/10.1016/j.bmc.2019.06.025] [PMID: 31307763]
[78]
Fournier-Larente J, Morin M-P, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol 2016; 65: 35-43.
[http://dx.doi.org/10.1016/j.archoralbio.2016.01.014] [PMID: 26849416]
[79]
Poulsen MØ, Jacobsen K, Thorsing M, et al. Thioridazine potentiates the effect of a beta-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res Microbiol 2013; 164(2): 181-8.
[http://dx.doi.org/10.1016/j.resmic.2012.10.007] [PMID: 23089256]
[80]
Kim C, Hesek D, Lee M, Mobashery S. Potentiation of the activity of β-lactam antibiotics by farnesol and its derivatives. Bioorg Med Chem Lett 2018; 28(4): 642-5.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.028] [PMID: 29402738]
[81]
Zabawa TP, Pucci MJ, Parr TR Jr, Lister T. Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 2016; 33: 7-12.
[http://dx.doi.org/10.1016/j.mib.2016.05.005] [PMID: 27232956]
[82]
Matias EFF, Alves EF, Silva MKN, et al. Potentiation of antibiotic activity of aminoglycosides by natural products from Cordia verbenacea DC. Microb Pathog 2016; 95: 111-6.
[http://dx.doi.org/10.1016/j.micpath.2016.03.009] [PMID: 27033000]
[83]
Blankson G, Parhi AK, Kaul M, Pilch DS, LaVoie EJ. Structure-activity relationships of potentiators of the antibiotic activity of clarithromycin against Escherichia coli. Eur J Med Chem 2019; 178: 30-8.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.075] [PMID: 31173969]
[84]
Li SA, Cadelis MM, Sue K, et al. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg Med Chem 2019; 27(10): 2090-9.
[http://dx.doi.org/10.1016/j.bmc.2019.04.004] [PMID: 30975502]
[85]
Radlinski LC, Rowe SE, Brzozowski R, et al. Chemical Induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem Biol 2019; 26(10): 1355-1364.e4.
[http://dx.doi.org/10.1016/j.chembiol.2019.07.009] [PMID: 31402316]
[86]
Maisuria VB, Okshevsky M, Déziel E, Tufenkji N. Proanthocyanidin interferes with Intrinsic antibiotic resistance mechanisms of gram-negative bacteria. Adv Sci (Weinh) 2019; 6(15): 1802333.
[http://dx.doi.org/10.1002/advs.201802333] [PMID: 31406662]
[87]
Corbett D, Wise A, Langley T, et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother 2017; 61(8): e00200-17.
[http://dx.doi.org/10.1128/AAC.00200-17] [PMID: 28533232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy