Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Activated Carbon/MoO3: Efficient Catalyst for Green Synthesis of Chromeno[d]pyrimidinediones and Xanthenones

Author(s): Niloofar Sabet Mehr, Shahrzad Abdolmohammadi* and Maryam Afsharpour

Volume 24, Issue 5, 2021

Published on: 24 September, 2020

Page: [683 - 694] Pages: 12

DOI: 10.2174/1386207323666200924111602

Price: $65

Abstract

Background: Nanoscale metal oxide catalysts have been extensively employed in organic reactions because they have been found to influence the chemical and physical properties of bulk material. The chromene (benzopyran) nucleus constitutes the core structure in a major class of many biologically active compounds, and interest in their chemistry consequently continues because of their numerous biological activities. The xanthene (dibenzopyran) derivatives are classified as highly significant compounds which display a number of various bioactive properties. Pyrimidinones have also gained interest due to their remarkable biological utilization, such as antiviral, antibacterial, antihypertensive, antitumor, and calcium blockers effects.

Objective: The aim of this work presented herein was to prepare activated carbon/MoO3 nanocomposite and explore its role as a green and recyclable catalyst for the synthesis of chromeno[d]pyrimidinediones and xanthenones under ethanol-drop grinding at room temperature.

Methods: The activated carbon/MoO3 nanocomposite was prepared successfully via a simple route in which the carbonization of gums as new natural precursors was used for the synthesis of activated carbon. This nanocomposite was then effectively used in a reaction of 3,4-methylenedioxyphenol, aromatic aldehydes, and active methylene compounds, including 1,3-dimethylbarbituric acid and dimedone, to synthesize a series of chromeno[d]pyrimidinediones and xanthenones in high yields. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), Powder x-ray diffractometry (XRD), Scanning electron microscope (SEM), Raman spectroscopy, and also by TGA analysis. Confirmation of the structures of compounds 5(a-g) and 6(a-g) were also established with IR, 1H NMR, and 13C NMR spectroscopic data and also by elemental analyses.

Results: A number of 6,8-dimethyl-10-phenyl-6,10-dihydro-7H-[1,3]dioxolo[4´,5´:6,7]chromeno[2,3- d]pyrimidine-7,9(8H)-diones and 7,7-dimethyl-10-(4-methylphenyl)-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[ 4,5-b]xanthen-9-ones were effectively synthesized using activated carbon/MoO3 nanocomposite (0.05 gr) as a catalyst under ethanol-drop grinding at room temperature. The desired products were obtained in high yields (93-97%) within short reaction times (15-20 min).

Conclusion: This paper investigates the catalytic potential of the synthesized activated carbon/MoO3 nanocomposite for the preparation of chromeno[d]pyrimidinediones and xanthenones under the ethanol-drop grinding procedure. The mildness of the reaction conditions, high yields of products, short reaction times, experimental simplicity, and avoiding the use of harmful solvents or reagents makes this procedure preferable for the synthesis of these compounds.

Keywords: Chromeno[d]pyrimidinediones, ethanol-drop grinding, activated carbon/MoO3 nanocomposite, recyclability of the catalyst, xanthenones, MCRs.

[1]
Zhu, J.; Bienayme´, H. Multicomponent reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[2]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[3]
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41(1), 40-49.
[http://dx.doi.org/10.1021/ar700155p] [PMID: 18159936]
[4]
aFarshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem. Rev. Lett., 2018, 1(2), 56-67.
bBehmagham, F.; Asadi, Z.; Sadeghi, Y.J. Synthesis, spectroscopic and computational investigation of bis(3-methoxyphenylthio) ethyl) naphthalene. Chem. Rev. Lett., 2018, 1(2), 68-76.
cZhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
dAlvim, H.G.O.; Correa, J.R.; Assumpção, J.A.F.; da Silva, W.A.; Rodrigues, M.O.; de Macedo, J.L.; Fioramonte, M.; Gozzo, F.C.; Gatto, C.C.; Neto, B.A.D. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: Mechanisms and mitochondrial staining. J. Org. Chem., 2018, 83(7), 4044-4053.
eVasco, A.V.; Méndez, Y.; Porzel, A.; Balbach, J.; Wessjohann, L.A.; Rivera, D.G. A multicomponent stapling approach to exocyclic functionalized helical peptides: Adding lipids, sugars, PEGs, labels, and handles to the lactam bridge. Bioconjug. Chem., 2019, 30(1), 253-259.
fda Silveira Pinto, L.S.; Couri, M.R.C.; de Souza, M.V.N. Multicomponent reactions in the synthesis of complex fused coumarin derivatives. Curr. Org. Synth., 2018, 15(1), 21-37.
gBoukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 2018, 9(1), 1439.
hNikpassand, M. ZareFekri, L. Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1,3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett, 2019, 2(1), 7-12.
iValinia, F.; Shojaei, N.; Ojaghloo, P. Novel 1-(4-chlorophenyl)-3-(2-ethoxyphenyl)triazene ligand: Synthesis, X-ray crystallographic studies, spectroscopic characterization and DFT calculations. Chem. Rev. Lett, 2019, 2(2), 90-97.
jJafari, E.; Farajzadeh, P.; Akbari, N.; Karbakhshzadeh, A. An efficient and facile synthesis of the coumarin and ester derivatives using sulfonated polyionic liquid as a highly active heterogeneous catalyst. Chem. Rev. Lett., 2019, 2(3), 123-129.
[http://dx.doi.org/10.1039/C9OB00772E ] [PMID: 31339143] [http://dx.doi.org/10.1021/acs.joc.8b00472] [PMID: 29547280] [http://dx.doi.org/10.1021/acs.bioconjchem.8b00906 ] [PMID: 30575393 ] [http://dx.doi.org/10.2174/1570179414666170614124053] [http://dx.doi.org/10.1038/s41467-018-03784-x ] [PMID: 29651145]
[5]
aClaus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 2000, 122(46), 11430-11439.
bYamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat. Mater., 2004, 3(5), 337-341.
cTajbakhsh, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khaksar, S.; Rezaee, P.; Tajbakhsh, M. Titanium dioxide nanoparticles catalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives. Chin. J. Catal., 2012, 33(9), 1517-1522.
dSafaei-Ghomi, J.; Zahedi, S.; Javid, M.; Ghasemzadeh, M.A. MgO nanoparticles: An efficient, green and reusable catalyst for the Onepot syntheses of 2,6-dicyanoanilines and 1,3-diarylpropyl malononitriles under different conditions. J. Nanostruct., 2015, 5(2), 153-160.
eRostami-Charati, F.; Akbari, R. ZnO-nanoparticles as an efficient catalyst for the synthesis of functionalized benzenes: Multicomponent reactions of sulfonoketenimides. Comb. Chem. High Throughput Screen., 2017, 20(9), 781-786.
fMoradi, L.; Ataei, Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem. Lett. Rev., 2017, 10(4), 380-386.
gBansal, P.; Kaur, N.; Prakash, C.; Ram Chaudhary, G. ZrO2 nanoparticles: An industrially viable, efficient and recyclable catalyst for synthesis of pharmaceutically significant xanthene derivatives. Vacuum, 2018, 157, 9-16.
hDawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.1021/ja0012974] [http://dx.doi.org/10.1038/nmat1107 ] [PMID: 15077106] [http://dx.doi.org/10.1016/S1872-2067(11)60435-X] [http://dx.doi.org/10.2174/1386207320666171004163437] [PMID: 28982323] [http://dx.doi.org/10.1080/17518253.2017.1390611] [http://dx.doi.org/10.1016/j.vacuum.2018.08.018] [http://dx.doi.org/10.2174/1573406414666180912113226 ] [PMID: 30207239]
[6]
Dimitrijevic, N.M.; Tepavcevic, S.; Liu, Y.; Rajh, T. Nanostructured TiO2/polypyrrole for visible light photocatalysis. J. Phys. Chem. C, 2013, 117(30), 15540-15544.
[http://dx.doi.org/10.1021/jp405562b]
[7]
Peng, C-W.; Chang, K-C.; Weng, C-J.; Lai, M-C.; Hsu, C-H.; Hsu, S-C.; Hsu, Y-Y.; Hung, W-I.; Wei, Y.; Yeh, J-M. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochim. Acta, 2013, 95(15), 192-199.
[http://dx.doi.org/10.1016/j.electacta.2013.02.016]
[8]
Wang, X.; Shen, Y.; Xie, A.; Qiu, L.; Li, S.; Wang, Y. Novel structure CuI/PANI nanocomposites with bifunctions: Superhydrophobicity and photocatalytic activity. J. Mater. Chem., 2011, 21(26), 9641-9646.
[http://dx.doi.org/10.1039/c0jm04558f]
[9]
Liang, L.; Liu, J.; Windisch, C.F., Jr; Exarhos, G.J.; Lin, Y. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. Engl., 2002, 41(19), 3665-3668, 3520.
[http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-B] [PMID: 12370924]
[10]
Bose, S.; Kuila, T.; Mishra, A.K.; Rajasekar, R.; Kim, N.H.; Lee, J.H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem., 2012, 22(3), 767-784.
[http://dx.doi.org/10.1039/C1JM14468E]
[11]
Huang, Y.; Chen, D.; Hu, X.; Qian, Y.; Li, D. Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of rhodamine B. Nanomaterials (Basel), 2018, 8(6), 431.
[http://dx.doi.org/10.3390/nano8060431] [PMID: 29899274]
[12]
Afsharpour, M.; Dini, Z. One-pot functionalization of carbon nanotubes by WO3/MoO3 nanoparticles as oxidative desulfurization catalysts. Fuller. Nanotub. Car. N., 2019, 27(3), 198-205.
[http://dx.doi.org/10.1080/1536383X.2018.1538132]
[13]
Afsharpour, M.; Khomand, E. Synthesis of bio-inspired porous silicon carbides using Cortaderia selloana and Equisetum arvense grasses as remarkable sulfur adsorbents. Int. J. Environ. Sci. Technol., 2019, 16(7), 3125-3134.
[http://dx.doi.org/10.1007/s13762-018-1679-x]
[14]
Dini, Z.; Afsharpour, M.; Tabarheidar, K. UV-assisted functionalization of carbon nanotube for synthesis of efficient desulfurization catalysts (NH2/COOH)-MWNT/MoO3. Diamond Related Mat., 2019, 91, 237-246.
[http://dx.doi.org/10.1016/j.diamond.2018.11.026]
[15]
Veréb, G.; Kálmán, V.; Gyulavári, T.; Kertész, S.; Beszédes, S.; Kovács, G.; Hernádi, K.; Pap, Z.; Hodúr, C.; László, Z. Advantages of TiO2/carbon nanotube modified photocatalytic membranes in the purification of oil-in-water emulsions. Water Supply, 2019, 19(4), 1167-1174.
[http://dx.doi.org/10.2166/ws.2018.172]
[16]
Kidwai, M.; Saxena, S.; Khan, M.K.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4 H -chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[17]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. An atom efficient. solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[( E )-arylmethylidene]-5.6.7.8-tetrahydro-4 H -pyrano[3.2- c ]pyridine-3-carbonitriles. Bioorg. Med. Chem. Lett., 2007, 17(23), 6459-6462.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.095] [PMID: 17933535]
[18]
Donkor, I.O.; Klein, C.L.; Liang, L.; Zhu, N.; Bradley, E.; Clark, A.M. Synthesis and antimicrobial activity of 6,7-annulated pyrido[2,3-d]pyrimidines. J. Pharm. Sci., 1995, 84(5), 661-664.
[http://dx.doi.org/10.1002/jps.2600840526] [PMID: 7658362]
[19]
Khafagy, M.M.; Abd el-Wahab, A.H.; Eid, F.A.; el-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[20]
Alvey, L.; Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S.T.; Tillequin, F.; Janin, Y.L. A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial. Bioorg. Med. Chem., 2008, 16(17), 8264-8272.
[http://dx.doi.org/10.1016/j.bmc.2008.06.057] [PMID: 18752967]
[21]
Bedair, A.H.; El-Hady, N.A.; El-Latif, A.; Fakery, A.H.; El-Agrody, A.M. 4-Hydroxycoumarin in heterocyclic synthesis. Part III. Synthesis of some new pyrano[2,3-d]pyrimidine, 2-substitute. Farmaco, 2000, 55(11-12), 708-714.
[http://dx.doi.org/10.1016/S0014-827X(00)00097-5] [PMID: 11204946]
[22]
Mladenović, M.; Mihailović, M.; Bogojević, D.; Matić, S.; Nićiforović, N.; Mihailović, V.; Vuković, N.; Sukdolak, S.; Solujić, S. In vitro antioxidant activity of selected 4-hydroxy-chromene-2-one derivatives-SAR, QSAR and DFT studies. Int. J. Mol. Sci., 2011, 12(5), 2822-2841.
[http://dx.doi.org/10.3390/ijms12052822] [PMID: 21686153]
[23]
Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D.J.; Kallitsakis, M.; Litinas, K.E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1139-1142.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.098] [PMID: 19150597]
[24]
Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Boudreau, C.; Geerts, L.; Cai, S.X.; Drewe, J.; Labrecque, D.; Kasibhatla, S.; Tseng, B. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol. Cancer Ther., 2004, 3(11), 1375-1384.
[PMID: 15542776]
[25]
Tandon, V.K.; Vaish, M.; Jain, S.; Bhakuni, D.S.; Srimal, R.C. Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-4-one. Indian J. Pharm. Sci., 1991, 53(1), 22-23.
[26]
Longobardi, M.; Bargagna, A.; Mariani, E.; Schenone, P.; Vitagliano, S.; Stella, L.; Di Sarno, A.; Marmo, E. 2H-[1]benzothiepino [5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities. Farmaco, 1990, 45(4), 399-404.
[PMID: 2400514]
[27]
Lambert, R.W.; Martin, J.A.; Merrett, J.H.; Parker, K.E.B.; Thomas, G.J. PCT Int. Appl. WO 9706178, 1997. Chem. Abstr., 1997, 126212377y
[28]
Hideo, T. Jpn. Tokkyo Koho, JP 56005480, 1981. Chem. Abstr., 1981, 9580922b
[29]
Poupelin, J.P.; Saint-Rut, G.; Fussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lakroix, R. Synthesis and antiinflammatory properties of bis(2-hydroxy, 1-naphthyl) methane derivatives. Eur. J. Med. Chem., 1978, 13(1), 67-71.
[30]
Naya, A.; Ishikawa, M.; Matsuda, K.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake, N. Structure-activity relationships of xanthene carboxamides, novel CCR1 receptor antagonists. Bioorg. Med. Chem., 2003, 11(6), 875-884.
[http://dx.doi.org/10.1016/S0968-0896(02)00559-X] [PMID: 12614873]
[31]
Kappe, C.O. 100 Years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[32]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[33]
Saadatjoo, N.; Golshekan, M.; Shariati, S.; Kefayati, H.; Azizi, P. Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo[alpha]xanthenone derivatives. J. Mol. Catal. Chem., 2013, 377, 173-179.
[http://dx.doi.org/10.1016/j.molcata.2013.05.007]
[34]
Khanna, R.; Dalal, A.; Kumar, R.; Kamboj, R.C. Synthesis of xanthenones: A review. ChemistrySelect, 2016, 1(4), 840-851.
[http://dx.doi.org/10.1002/slct.201600056]
[35]
Terra, B.S.; Osorio, A.M.B.; de Oliverira, A.; Santos, R.P.M.; Mouro, A.P.; de Araujo, N.F.; da Silva, C.C.; Martins, F.T.; Vieira, L.B.; Bonaventura, D.; de Abren, H.A.; Alcantara, A.F.C.; de Fatima, A. Natural organic acid as green catalyst for xanthenones synthesis: Methodology, mechanism and calcium channel blocking activity. J. Braz. Chem. Soc., 2017, 28(12), 2313-2325.
[http://dx.doi.org/10.21577/0103-5053.20170082]
[36]
Zhang, Z.; Wallace, M.B.; Feng, J.; Stafford, J.A.; Skene, R.J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Xu, R.; Kassel, D.B.; Kaldor, S.W.; Navre, M.; Webb, D.R.; Gwaltney, S.L. Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. J. Med. Chem., 2011, 54(2), 510-524.
[http://dx.doi.org/10.1021/jm101016w] [PMID: 21186796]
[37]
Shorunov, S.V.; Plutschack, M.B.; Bermeschev, M.V.; Guzei, I.A. Synthesis and unusual photochemistry of a highly reactive pyrimidinedione. Mendeleev Commun., 2018, 28(5), 501-502.
[http://dx.doi.org/10.1016/j.mencom.2018.09.016]
[38]
Ponra, S.; Gohain, M.; Donka, R.; van Tonder, J.H.; Bezuidenhoudt, B.C.B. Al (OTf)3 catalyzed one-pot synthesis of pyrrole [3,2-d]pyrimidinedione derivatives. Tetrahedron Lett., 2018, 59(30), 2909-2912.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.039]
[39]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. H3PMO12O40-immobilized chitosan/Co3O4: A novel and recyclable nanocomposite for the synthesis of pyrimidinedione derivatives. Appl. Organomet. Chem., 2019, 33(5), 1-12.
[http://dx.doi.org/10.1002/aoc.4748]
[40]
aAbdolmohammadi, S.; Mohammadnejad, M.; Shafaei, F. TiO2 nanoparticles as an efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in aqueous media. Z. Naturforsch. B, 2013, 68(4), 362-366.
bAbdolmohammadi, S. Solvent-free synthesis of 4,5-dihydropyrano[c]chromene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr. Catal., 2013, 2(2), 116-121.
cAbdolmohammadi, S. ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6-aminouracils. Comb. Chem. High Throughput Screen., 2013, 16(1), 32-36.
dAbdolmohammadi, S.; Afsharpour, M.; Keshavarz-Fatideh, S. An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S. Afr. J. Chem.-. S. Afr. T., 2014, 67, 203-210.
eRabiei, A.; Abdolmohammadi, S.; Shafaei, F. A green approach for an efficient preparation of 2,4-diamino-6-aryl-5-pyrimidinecarbonitriles using a TiO2/SiO2 nanocomposite catalyst under solvent-free conditions. Z. Naturforsch. B, 2017, 72(4), 241-247.
fKhalilian, S.; Abdolmohammadi, S.; Nematolahi, F. An eco-friendly and highly efficient synthesis of pyrimidinones using a TiO2-CNTs nanocomposite catalyst. Lett. Org. Chem., 2017, 14(5), 361-367.
gAbdolmohammadi, S. TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b][1]benzopyranones and xanthenols in water. Comb. Chem. High Throughput Screen., 2018, 21(8), 594-601.
hSadegh-Samiei, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media. J. Chin. Chem. Soc. (Taipei), 2018, 65(10), 1155-1159.
iSadegh-Samiei, S.; Abdolmohammadi, S. Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2-SiO2 nanocomposite in aqueous media at room temperature. Z. Naturforsch. B, 2018, 73(9), 641-645.
jYaltaghian-Khiabani, N.; Abdolmohammadi, S.; Sadegh-Samiei, S. Aqueous media preparation of pyrido[d]pyrimidines over calcined TiO2-SiO2 nanocomposite as an efficient catalyst at ambient temperature. Lett. Org. Chem., 2019, 16(11), 915-921.
kJanitabar-Darzi, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite as a highly efficient catalyst for the solvent-free cyclocondensation reaction of isatins, cyclohexanones, and urea. Z. Naturforsch. B, 2019, 74(7-8), 559-564.
lAbdolmohammadi, S.; Hossaini, Z. Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol. Divers., 2019, 23(4), 885-896.
mAbdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: An efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Advances, 2019, 9, 41868-41876.
nRasouli Nasrabadi, S.R.; Dabiri, M.R.; Banihashemi Jozdani, S.M. TiO2 nanoparticles immobilized on carbon nanotubes: An efficient heterogeneous catalyst in cyclocondensation reaction of isatins with malononitrile and 4-hydroxycoumarin or 3,4-methylenedioxyphenol under mild reaction conditions. Appl. Organomet. Chem., 2020, 34e5462
oChaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R. PANI-Fe3O4@ZnO nanocomposite: A magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Advances, 2020, 10(26), 15614-15621.
pSaeedi, B.; Abdolmohammadi, S. MirJafari, Z.; Kia-Kojoori, R. Nickel(II) chromite nanoparticles promoted efficient synthesis of novel [1]benzopyrano[4,3-b]pyridines in aqueous media. Monatsh. Chem., 2020, 151(5), 773-780.
qEbrahimi, M.; Abdolmohammadi, S.; Kia-Kojoori, R. Ultrasonic accelerated efficient synthesis of aminobenzochromenes using Ag2Cr2O7 nanoparticles as a reusable heterogeneous catalyst. J. Heterocycl. Chem., 2020, 57(4), 1875-1881.
rAbdolmohammadi, S.; Shariati, S.; Elmi Fard, N.; Samani, A. Aqueous-mediated green synthesis of novel spiro[indole-quinazoline] derivatives using Kit-6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J. Heterocycl. Chem., 2020, 57(7), 2729-2737.
[http://dx.doi.org/10.5560/znb.2013-2323] [http://dx.doi.org/10.2174/2211544711302020005] [http://dx.doi.org/10.2174/1386207311316010005] [PMID: 22931310] [http://dx.doi.org/10.1515/znb-2016-0219] [http://dx.doi.org/10.2174/1570178614666170321113926] [http://dx.doi.org/10.2174/1386207321666181018164739] [PMID: 30338732] [http://dx.doi.org/10.1002/jccs.201800057] [http://dx.doi.org/10.1515/znb-2018-0076] [http://dx.doi.org/10.2174/1570178616666181210102146] [http://dx.doi.org/10.1515/znb-2019-0059] [http://dx.doi.org/10.1007/s11030-019-09916-9] [PMID: 30656505] [http://dx.doi.org/10.1039/C9RA09031B] [http://dx.doi.org/10.1039/D0RA01978J] [http://dx.doi.org/10.1007/s00706-020-02595-5] [http://dx.doi.org/10.1002/jhet.3915] [http://dx.doi.org/10.1002/jhet.3981]
[41]
Heravi, M.M.; Alinejhad, H.; Bakhtiari, K.; Oskooie, H.A. Sulfamic acid catalyzed solvent-free synthesis of 10-aryl-7,7-dimethyl-6,7,8,10-tetrahydro-9H-[1,3]-dioxolo [4,5- b]xanthen-9-ones and 12-aryl-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-ones. Mol. Divers., 2010, 14(4), 621-626.
[http://dx.doi.org/10.1007/s11030-009-9196-y] [PMID: 19789988]
[42]
Wu, L.; Wu, Y.; Yan, F.; Fang, L. HClO4–SiO2-catalyzed synthesis of 12-aryl-12H-benzo[i][1,3]dioxolo[4,5-b]xanthene-6,11-diones and 10-aryl-6,7,8,10-tetrahydro-7,7-dimethyl-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones. Monatsh. Chem., 2010, 141(8), 871-875.
[http://dx.doi.org/10.1007/s00706-010-0333-1]
[43]
Zhang, J.; Li, W.L.; Wu, L.Q. Zr(HSO4)4 as an efficient catalyst for the preparation of 10-aryl-6,8-dimethyl-6,10-dihydro-5-oxa-6,8-diazaanthra[2,3-d][1,3]dioxole-7,9-diones under solvent-free conditions. J. Braz. Chem. Soc., 2011, 22(7), 1236-1240.
[44]
Kiani, M.; Abdolmohammadi, S.; Janitabar-Darzi, S. Fast and efficient synthesis of chromeno[d]pyrimidinediones catalysed by a TiO2–SiO2 nanocomposite in aqueous media. J. Chem. Res., 2017, 41(6), 337-340.
[http://dx.doi.org/10.3184/174751917X14949407124706]
[45]
Samani, A.; Abdolmohammadi, S.; Otaredi-Kashani, A. A green synthesis of xanthenone derivatives in aqueous media using TiO2-CNTs nanocomposite as an eco-friendly and re-usable catalyst. Comb. Chem. High Throughput Screen., 2018, 21(2), 111-116.
[http://dx.doi.org/10.2174/1386207321666180219151705] [PMID: 29468961]
[46]
Isahak, W.N.R.W.; Hisham, M.W.M.; Yarmo, M.A. Highly porous carbon materials from biomass by chemical and carbonization method: A comparison study. J. Chem., 2013, •••620346
[http://dx.doi.org/10.1155/2013/620346]
[47]
Liu, Q.; Gu, J.; Zhang, W.; Miyamoto, Y.; Chen, Z.; Zhang, D. Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem., 2012, 22(39), 21183-21188.
[http://dx.doi.org/10.1039/c2jm34590k]
[48]
Peng, X.; Zhang, L.; Chen, Z.; Zhong, L.; Zhao, D.; Chi, X.; Zhao, X.; Li, L.; Lu, X.; Leng, K.; Liu, C.; Liu, W.; Tang, W.; Loh, K.P. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater., 2019, 31(16)e1900341
[http://dx.doi.org/10.1002/adma.201900341] [PMID: 30843289]
[49]
Xu, C.; Strømme, M. Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture. Nanomaterials (Basel), 2019, 9(1), 103.
[http://dx.doi.org/10.3390/nano9010103]
[50]
Qi, Y.; Ma, J.; Chen, X.; Xiu, F.R.; Chen, Y.; Lu, Y. Practical aptamer-based assay of heavy metal mercury ion in contaminated environmental samples: convenience and sensitivity. Anal. Bioanal. Chem., 2020, 412(2), 439-448.
[http://dx.doi.org/10.1007/s00216-019-02253-8] [PMID: 31773229]
[51]
Qi, Y.; Chen, Y.; Xiu, F.R.; Hou, J. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sens. Actuators B Chem., 2020, 304(1)127359
[http://dx.doi.org/10.1016/j.snb.2019.127359]
[52]
Xiu, F.R.; Wang, Y.; Yu, X.; Li, Y.; Lu, Y.; Zhou, K.; He, J.; Song, Z.; Gao, X. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Sci. Total Environ., 2020, 708(15)134532
[http://dx.doi.org/10.1016/j.scitotenv.2019.134532] [PMID: 31785902]
[53]
Xiu, F.R.; Lu, Y.; Qi, Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study. Chemosphere, 2020, 249126138
[http://dx.doi.org/10.1016/j.chemosphere.2020.126138] [PMID: 32045755]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy