Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Exploration of a Framework for the Identification of Chronic Kidney Disease Based on 2D Ultrasound Images: A Survey

Author(s): Deepthy Mary Alex and D. Abraham Chandy*

Volume 17, Issue 4, 2021

Published on: 23 September, 2020

Page: [464 - 478] Pages: 15

DOI: 10.2174/1573405616666200923162600

Price: $65

Abstract

Background: Chronic kidney disease (CKD) is a fatal disease that ultimately results in kidney failure. The primary threat is the aetiology of CKD. Over the years, researchers have proposed various techniques and methods to detect and diagnose the disease. The conventional method of detecting CKD is the determination of the estimated glomerular filtration rate by measuring creatinine levels in blood or urine. Conventional methods for the detection and classification of CKD are tedious; therefore, several researchers have suggested various alternative methods. Recently, the research community has shown keen interest in developing methods for the early detection of this disease using imaging modalities such as ultrasound, magnetic resonance imaging, and computed tomography.

Discussion: The study aimed to conduct a systematic review of various existing techniques for the detection and classification of different stages of CKD using 2D ultrasound imaging of the kidney. The review was confined to 2D ultrasound images alone, considering the feasibility of implementation even in underdeveloped countries because 2D ultrasound scans are more cost effective than other modalities. The techniques and experimentation in each work were thoroughly studied and discussed in this review.

Conclusion: This review displayed the cutting-age research, challenges, and possibilities of further research and development in the detection and classification of CKD.

Keywords: Chronic kidney disease, classification, inpainting, speckle noise, segmentation, ultrasound.

Graphical Abstract

[1]
Wouters OJ, O’Donoghue DJ, Ritchie J, Kanavos PG, Narva AS. Early chronic kidney disease: diagnosis, management and models of care. Nat Rev Nephrol 2015; 11(8): 491-502.
[http://dx.doi.org/10.1038/nrneph.2015.85] [PMID: 26055354]
[2]
Norouzi J, Yadollahpour A, Mirbagheri SA, Mazdeh MM, Hosseini SA. Predicting renal failure progression in chronic kidney disease using integrated intelligent fuzzy expert system. Comput Math Methods Med 2016; 2016: 6080814.
[http://dx.doi.org/10.1155/2016/6080814] [PMID: 27022406]
[3]
Torres HR, Queirós S, Morais P, Oliveira B, Fonseca JC, Vilaça JL. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review. Comput Methods Programs Biomed 2018; 157: 49-67.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.014] [PMID: 29477435]
[4]
Ihnatsenka B, Boezaart AP. Ultrasound: Basic understanding and learning the language. Int J Shoulder Surg 2010; 4(3): 55-62.
[http://dx.doi.org/10.4103/0973-6042.76960] [PMID: 21472065]
[5]
Alex DM, Chandy DA, Paul A. Rationalizing of morphological renal parameters and eGFR for chronic kidney disease detection. Advances in Computerized Analysis in Clinical and Medical Imaging 2019; pp. 41-50.
[6]
Berns JS. Routine screening for CKD should be done in asymptomatic adults... selectively. Clin J Am Soc Nephrol 2014; 9(11): 1988-92.
[http://dx.doi.org/10.2215/CJN.02250314] [PMID: 25237073]
[7]
Arnold R, Issar T, Krishnan AV, Pussell BA. Neurological complications in chronic kidney disease. JRSM Cardiovasc Dis 2016; 3: 5.
[http://dx.doi.org/10.1177/2048004016677687] [PMID: 27867500]
[8]
Varughese S, Abraham G. Chronic kidney disease in India: a clarion call for change. Clin J Am Soc Nephrol 2018; 13(5): 802-4.
[http://dx.doi.org/10.2215/CJN.09180817] [PMID: 29382651]
[9]
Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. Lancet Glob Health 2016; 4(5): e307-19.
[http://dx.doi.org/10.1016/S2214-109X(16)00071-1] [PMID: 27102194]
[10]
Biljak VR, Honović L, Matica J, Krešić B, Vojak SŠ. The role of laboratory testing in detection and classification of chronic kidney disease: national recommendations. Biochem Med (Zagreb) 2017; 27(1): 153-76.
[http://dx.doi.org/10.11613/BM.2017.019] [PMID: 28392738]
[11]
Johnson DW, Jones GRD, Mathew TH, et al. Chronic kidney disease and measurement of albuminuria or proteinuria: a position statement. Med J Aust 2012; 197(4): 224-5.
[http://dx.doi.org/10.5694/mja11.11468] [PMID: 22900872]
[12]
Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt K-U, Eikefjord E. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 2018; 33: ii4-14.
[http://dx.doi.org/10.1093/ndt/gfy152]
[13]
Hansen KL, Nielsen MB, Ewertsen C. Ultrasonography of the kidney: a pictorial review. Diagnostics (Basel) 2015; 6(1): 2.
[http://dx.doi.org/10.3390/diagnostics6010002] [PMID: 26838799]
[14]
Vasuki P, Kanimozhi J, Devi MB. A survey on image preprocessing techniques for diverse fields of medical imagery. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). 1-6.
[http://dx.doi.org/10.1109/ICEICE.2017.8192443]
[15]
Norouzi A, Rahim MSM, Altameem A, Saba T, Rad AE, Rehman A. Medical image segmentation methods, algorithms, and applications. IETE Tech Rev 2014; 31(3): 199-213.
[http://dx.doi.org/10.1080/02564602.2014.906861]
[16]
Kotadiya H, Patel D. Review of Medical Image Classification Techniques. Third International Congress on Information and Communication Technology. 361-9.
[http://dx.doi.org/10.1007/978-981-13-1165-9_33]
[17]
Iqbal F, Pallewatte AS, Wansapura JP. Texture analysis of ultrasound images of chronic kidney disease. 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer). 1-5.
[http://dx.doi.org/10.1109/ICTER.2017.8257787]
[18]
Ogiela MR, Tadeusiewicz R. Preprocessing medical images and their overall enhancement. Modern Computational Intelligence Methods for the Interpretation of Medical Images 2008; pp. 65-97.
[http://dx.doi.org/10.1007/978-3-540-75402-2_4]
[19]
El-Said SA, Azar AT. Speckles suppression techniques for ultrasound images. J Med Imaging Radiat Sci 2012; 43(4): 200-13.
[http://dx.doi.org/10.1016/j.jmir.2012.06.001] [PMID: 31052006]
[20]
Narayan NS, Marziliano P, Kanagalingam J, Hobbs CG. Speckle in ultrasound images: Friend or FOE? 2014 IEEE International Conference on Image Processing (ICIP). 5816-20.
[http://dx.doi.org/10.1109/ICIP.2014.7026176]
[21]
Krissian K, Westin C-F, Kikinis R, Vosburgh KG. Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process 2007; 16(5): 1412-24.
[http://dx.doi.org/10.1109/TIP.2007.891803] [PMID: 17491469]
[22]
Garg A, Khandelwal V. Combination of spatial domain filters for speckle noise reduction in ultrasound medical images. Adv Elect Electron Eng 2018; 15(5): 857-65.
[http://dx.doi.org/10.15598/aeee.v15i5.2288]
[23]
Chen Y, Raheja A. Wavelet lifting for speckle noise reduction in ultrasound images. Conf Proc IEEE Eng Med Biol Soc 2005; 2005: 3129-32.
[24]
Gil J, Werman M. Computing 2-D min, median, and max filters. IEEE Trans Pattern Anal Mach Intell 1993; 15(5): 504-7.
[http://dx.doi.org/10.1109/34.211471]
[25]
Hiller AD, Chin RT. Iterative Wiener filters for image restoration. International Conference on Acoustics, Speech, and Signal Processing. 1901-4.
[http://dx.doi.org/10.1109/ICASSP.1990.115871]
[26]
Portilla J, Strela V, Wainwright MJ, Simoncelli EP. Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain. Proceedings 2001 International Conference on Image Processing 2001; Greece.
[http://dx.doi.org/10.1109/ICIP.2001.958418]
[27]
Saleh SAM, Ibrahim H. Mathematical equations for homomorphic filtering in frequency domain: a literature survey. Proceedings of the International Conference on Information and Knowledge Management. 74.
[28]
Kuan DT, Sawchuk AA, Strand TC, Chavel P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell 1985; 7(2): 165-77.
[http://dx.doi.org/10.1109/TPAMI.1985.4767641] [PMID: 21869255]
[29]
Frost VS, Stiles JA, Shanmugan KS, Holtzman JC. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 1982; 4(2): 157-66.
[http://dx.doi.org/10.1109/TPAMI.1982.4767223] [PMID: 21869022]
[30]
Lee J-S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell 1980; 2(2): 165-8.
[http://dx.doi.org/10.1109/TPAMI.1980.4766994] [PMID: 21868887]
[31]
Ahmed SM, Eldin FAE, Tarek AM. Speckle noise reduction in SAR images using adaptive morphological filter. 2010 10th International Conference on Intelligent Systems Design and Applications. Cairo, Egypt. 2010.
[http://dx.doi.org/10.1109/ISDA.2010.5687254]
[32]
Jaybhay J, Shastri R. A study of speckle noise reduction filters. Signal Image Process 2015; 6: 71-80.
[http://dx.doi.org/10.5121/sipij.2015.6306]
[33]
Coupé P, Hellier P, Kervrann C, Barillot C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process 2009; 18(10): 2221-9.
[http://dx.doi.org/10.1109/TIP.2009.2024064] [PMID: 19482578]
[34]
Deledalle C-A, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 2009; 18(12): 2661-72.
[http://dx.doi.org/10.1109/TIP.2009.2029593] [PMID: 19666338]
[35]
Bonny S, Chanu YJ, Singh KM. Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter. SIViP 2019; 13(2): 299-305.
[http://dx.doi.org/10.1007/s11760-018-1357-y]
[36]
Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process 2002; 11(11): 1260-70.
[http://dx.doi.org/10.1109/TIP.2002.804276] [PMID: 18249696]
[37]
Rahman MM. PK MK, Aziz A, Arefin MG, Uddin MS. Adaptive anisotropic diffusion filter for speckle noise reduction for ultrasound images. Int J Convergence Comput 2013; 1(1): 50-9.
[http://dx.doi.org/10.1504/IJCONVC.2013.054657]
[38]
Guan F, Ton P, Ge S, Zhao L. Anisotropic diffusion filtering for ultrasound speckle reduction. Sci China Technol Sci 2014; 57(3): 607-14.
[http://dx.doi.org/10.1007/s11431-014-5483-7]
[39]
Balocco S, Gatta C, Pujol O, Mauri J, Radeva P. SRBF: Speckle reducing bilateral filtering. Ultrasound Med Biol 2010; 36(8): 1353-63.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.05.007] [PMID: 20691924]
[40]
Damodaran N, Ramamurthy S, Velusamy S, Manickam GK. Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative. Ultrasound Med Biol 2012; 38(2): 276-86.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2011.10.021] [PMID: 22230135]
[41]
Alex D, Christinal H, Chandy A, Singh A, Pushkaran M. Speckle noise suppression in 2D ultrasound kidney images using local pattern based topological derivative. Pattern Recognit Lett 2020; 131: 49-55.
[42]
Wang S, Huang T-Z, Zhao X-L, Mei J-J, Huang J. Speckle noise removal in ultrasound images by first-and second-order total variation. Numer Algorithms 2018; 78(2): 513-33.
[http://dx.doi.org/10.1007/s11075-017-0386-x]
[43]
Yan F, Cheng L, Peng S. A new interscale and intrascale orthonormal wavelet thresholding for SURE-based image denoising. IEEE Signal Process Lett 2008; 15: 139-42.
[http://dx.doi.org/10.1109/LSP.2007.914790]
[44]
Choi HH, Lee JH, Kim SM, Park SY. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique. 2015.
[http://dx.doi.org/10.3233/BME-151458]
[45]
Choi H, Jeong J. Speckle noise reduction for ultrasound images by using speckle reducing anisotropic diffusion and Bayes threshold. J XRay Sci Technol 2019; 27(5): 885-98.
[http://dx.doi.org/10.3233/XST-190515] [PMID: 31256113]
[46]
Gai S, Zhang B, Yang C, Yu L. Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digit Signal Process 2018; 72: 192-207.
[http://dx.doi.org/10.1016/j.dsp.2017.10.006]
[47]
Dass R. Speckle noise reduction of ultrasound images using bfo cascaded with wiener filter and discrete wavelet transform in homomorphic region. Procedia Comput Sci 2018; 132: 1543-51.
[http://dx.doi.org/10.1016/j.procs.2018.05.118]
[48]
Kaur M, Wasson V. ROI based medical image compression for telemedicine application. Procedia Comput Sci 2015; 70: 579-85.
[http://dx.doi.org/10.1016/j.procs.2015.10.037]
[49]
Fasquel J-B, Bruynooghe MM. New hybrid opto-electronic method for fast and unsupervised object detection. Opt Eng 2003; 42(11): 3352-65.
[http://dx.doi.org/10.1117/1.1612511]
[50]
Zhang Q, Xiao H. Extracting regions of interest in biomedical images. 2008 International Seminar on Future BioMedical Information Engineering. 3-6.
[http://dx.doi.org/10.1109/FBIE.2008.8]
[51]
Fasquel J-B, Agnus V, Soler L, Marescaux J. A Hierarchical Topological Knowledge Based Image Segmentation Approach Optimizing the use of Contextual Regions of Interest: Illustration for Medical Image Analysis. 2006 International Conference on Image Processing. 777-80.
[http://dx.doi.org/10.1109/ICIP.2006.312517]
[52]
Hirano S, Tsumoto S. Rough representation of a region of interest in medical images. Int J Approx Reason 2005; 40(1-2): 23-34.
[http://dx.doi.org/10.1016/j.ijar.2004.11.008]
[53]
Tamilarasi A, Kumar K. Enhanced ROI (Region of Interest Algorithms) for medical image compression. Int J Comput Appl 2012; 38: 38-43.
[54]
Divya Krishna K, Akkala V, Bharath R, Rajalakshmi P, Mohammed AM, Merchant SN. Computer aided abnormality detection for kidney on FPGA based IoT enabled portable ultrasound imaging system. IRBM 2016; 37(4): 189-97.
[http://dx.doi.org/10.1016/j.irbm.2016.05.001]
[55]
Tamilselvi MP, Thangaraj DP. Computer aided diagnosis system for stone detection and early detection of kidney stones. J Comput Sci 2011; 7(2): 250.
[http://dx.doi.org/10.3844/jcssp.2011.250.254]
[56]
Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans Image Process 2008; 17(11): 2029-39.
[http://dx.doi.org/10.1109/TIP.2008.2004611] [PMID: 18854247]
[57]
Yap MH, Edirisinghe E, Bez H, Ewe H. Initial lesion detection and region of interest labeling in ultrasound breast images. 2006.
[http://dx.doi.org/10.1049/cp:20060552]
[58]
Yap MH, Edirisinghe EA, Bez HE. A novel algorithm for initial lesion detection in ultrasound breast images. J Appl Clin Med Phys 2008; 9(4): 2741.
[http://dx.doi.org/10.1120/jacmp.v9i4.2741] [PMID: 19020477]
[59]
Wang X, Guo Y, Wang Y. Automatic detection of regions of interest in breast ultrasound images based on local phase information. Biomed Mater Eng 2015; 26(Suppl. 1): S1265-73.
[http://dx.doi.org/10.3233/BME-151424] [PMID: 26405886]
[60]
Shan J, Cheng HD, Wang Y. A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering. Med Phys 2012; 39(9): 5669-82.
[http://dx.doi.org/10.1118/1.4747271] [PMID: 22957633]
[61]
Koundal D, Vishraj R, Gupta S, Singh S. An automatic ROI extraction technique for Thyroid Ultrasound image. 2015 2nd International Conference on Recent advances in Engineering and Computational Sciences (RAECS), India.
[http://dx.doi.org/10.1109/RAECS.2015.7453309]
[62]
Hafizah WM, Supriyanto E. Automatic generation of region of interest for kidney ultrasound images using texture analysis. Int J Biol Biomed Eng 2012; 6(1): 26-34.
[63]
Elharrouss O, Almaadeed N, Al-Maadeed S, Akbari Y. Image inpainting: A review. Neural Process Lett 2020; 51: 2007-28.
[64]
Muddala SM, Olsson R, Sjöström M. Spatio-temporal consistent depth-image-based rendering using layered depth image and inpainting. EURASIP J Image Video Process 2016; (1): 9.
[http://dx.doi.org/10.1186/s13640-016-0109-6]
[65]
Mahajan M, Bhanodia P. Image inpainting techniques for removal of object. International Conference on Information Communication and Embedded Systems (ICICES2014). 1-4.
[http://dx.doi.org/10.1109/ICICES.2014.7034008]
[66]
Vreja R, Brad R. Image inpainting methods evaluation and improvement. The Scientific World Journal 2014; p. 937845.
[67]
Kawai N, Sato T, Yokoya N. Diminished reality based on image inpainting considering background geometry. IEEE Trans Vis Comput Graph 2016; 22(3): 1236-47.
[http://dx.doi.org/10.1109/TVCG.2015.2462368] [PMID: 26829239]
[68]
Xue H, Zhang S, Cai D. Depth image inpainting: Improving low rank matrix completion with low gradient regularization. IEEE Trans Image Process 2017; 26(9): 4311-20.
[http://dx.doi.org/10.1109/TIP.2017.2718183] [PMID: 28644807]
[69]
Telea A. An image inpainting technique based on the fast marching method. J Graphics Tools 2004; 9(1): 23-34.
[http://dx.doi.org/10.1080/10867651.2004.10487596]
[70]
Ružić T, Pižurica A. Context-aware patch-based image inpainting using Markov random field modeling. IEEE Trans Image Process 2015; 24(1): 444-56.
[http://dx.doi.org/10.1109/TIP.2014.2372479] [PMID: 25420260]
[71]
Ding D, Ram S, Rodriguez JJ. Image inpainting using nonlocal texture matching and nonlinear filtering. IEEE Trans Image Process 2019; 28(4): 1705-19.
[http://dx.doi.org/10.1109/TIP.2018.2880681] [PMID: 30418909]
[72]
Fan Q, Zhang L. A novel patch matching algorithm for exemplar-based image inpainting. Multimedia Tools Appl 2018; 77(9): 10807-21.
[http://dx.doi.org/10.1007/s11042-017-5077-z]
[73]
Li H, Luo W, Huang J. Localization of diffusion-based inpainting in digital images. IEEE Trans Inf Forensics Security 2017; 12(12): 3050-64.
[http://dx.doi.org/10.1109/TIFS.2017.2730822]
[74]
Li K, Wei Y, Yang Z, Wei W. Image inpainting algorithm based on TV model and evolutionary algorithm. Soft Comput 2016; 20(3): 885-93.
[http://dx.doi.org/10.1007/s00500-014-1547-7]
[75]
Sridevi G, Srinivas Kumar S. Image inpainting based on fractional-order nonlinear diffusion for image reconstruction. Circuits Syst Signal Process 2019; 38(8): 3802-17.
[http://dx.doi.org/10.1007/s00034-019-01029-w]
[76]
Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. Adv Neural Inf Process Syst 2012.
[77]
Sasaki K, Iizuka S, Simo-Serra E, Ishikawa H. Joint gap detection and inpainting of line drawings. Proceedings of the IEEE conference on computer vision and pattern recognition. 5725-33.
[http://dx.doi.org/10.1109/CVPR.2017.611]
[78]
Yan Z, Li X, Li M, Zuo W, Shan S. Shift-net: Image inpainting via deep feature rearrangement. Proceedings of the European conference on computer vision (ECCV). 1-17.
[http://dx.doi.org/10.1007/978-3-030-01264-9_1]
[79]
Zaitoun NM, Aqel MJ. Survey on image segmentation techniques. Procedia Comput Sci 2015; 65: 797-806.
[http://dx.doi.org/10.1016/j.procs.2015.09.027]
[80]
Ozmen CA, Akin D, Bilek SU, Bayrak AH, Senturk S, Nazaroglu H. Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure. Clin Nephrol 2010; 74(1): 46-52.
[PMID: 20557866]
[81]
Cerrolaza JJ, Safdar N, Biggs E, Jago J, Peters CA, Linguraru MG. Renal segmentation from 3d ultrasound via fuzzy appearance models and patient-specific alpha shapes. IEEE Trans Med Imaging 2016; 35(11): 2393-402.
[http://dx.doi.org/10.1109/TMI.2016.2572641] [PMID: 27244730]
[82]
Sharma K, Rupprecht C, Caroli A, et al. Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep 2017; 7(1): 2049.
[http://dx.doi.org/10.1038/s41598-017-01779-0] [PMID: 28515418]
[83]
Krstinić D, Skelin AK, Slapničar I. Fast two-step histogram-based image segmentation. IET Image Process 2011; 5(1): 63.
[http://dx.doi.org/10.1049/iet-ipr.2009.0107]
[84]
Jeyavathana RB, Balasubramanian R, Pandian AA. A survey: analysis on preprocessing and segmentation techniques for medical images. Int J Res Sci Innovat IJRSI 2016; 3: 113-20.
[85]
Meiburger KM, Acharya UR, Molinari F. Automated localization and segmentation techniques for B-mode ultrasound images: A review. Comput Biol Med 2018; 92: 210-35.
[http://dx.doi.org/10.1016/j.compbiomed.2017.11.018] [PMID: 29247890]
[86]
Valckx FMJ, Thijssen JM. Characterization of echographic image texture by cooccurrence matrix parameters. Ultrasound Med Biol 1997; 23(4): 559-71.
[http://dx.doi.org/10.1016/S0301-5629(97)00041-0] [PMID: 9232765]
[87]
Zheng Q, Warner S, Tasian G, Fan Y. A dynamic graph cuts method with integrated multiple feature maps for segmenting kidneys in 2D ultrasound images. Acad Radiol 2018; 25(9): 1136-45.
[http://dx.doi.org/10.1016/j.acra.2018.01.004] [PMID: 29449144]
[88]
Rahman T, Uddin MS. Speckle noise reduction and segmentation of kidney regions from ultrasound image. 2013 International Conference on Informatics, Electronics and Vision (ICIEV). 1-5.
[http://dx.doi.org/10.1109/ICIEV.2013.6572601]
[89]
Dahdouh S, Frenoux E, Osorio A. Real-time kidney ultrasound image segmentation: a prospective study.Medical Imaging 2009: Ultrasonic Imaging and Signal Processing. International Society for Optics and Photonics 2009; p. 72650E.
[http://dx.doi.org/10.1117/12.812493]
[90]
Michailovich O, Tannenbaum A. Segmentation of medical ultrasound images using active contours. 2007 IEEE International Conference on Image Processing. V-513-6.
[http://dx.doi.org/10.1109/ICIP.2007.4379878]
[91]
Kop A, Hegadi R. Kidney Segmentation from Ultrasound Images using Gradient Vector Force. Int J Comput Appl 2010; 104-9.
[92]
Ross P, Kruusmaa M. Ultrasound image segmentation by Bhattacharyya distance with Rayleigh distribution. In: 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). 2013; pp. 149-53.
[93]
Huang J, Yang X, Chen Y, Tang L. Ultrasound kidney segmentation with a global prior shape. J Vis Commun Image Represent 2013; 24(7): 937-43.
[http://dx.doi.org/10.1016/j.jvcir.2013.05.013]
[94]
Yang F, Qin W, Xie Y, Wen T, Gu J. A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE. Biomed Eng Online 2012; 11(1): 82.
[http://dx.doi.org/10.1186/1475-925X-11-82] [PMID: 23110664]
[95]
Wang H, Pulido JE, Song Y, Furth SL, Tu C, Zhang C. Segmentation of renal parenchymal area from ultrasoundl images using level set evolution. 2014 36th Annual International Conference of the IEEE Engineeirng in Medicine and Biology Society, USA.
[96]
Song Y, Wang H, Liu Y, Li C, Tasian Gregory E, Gong Z. An improved level set method for segmentation of renal parenchymal area from ultrasound images. J Med Imaging Health Inform 2015; 5(7): 1533-6.
[http://dx.doi.org/10.1166/jmihi.2015.1566]
[97]
Selvathi D, Bama S. Phase based distance regularized level set for the segmentation of ultrasound kidney images. Pattern Recognit Lett 2017; 86: 9-17.
[http://dx.doi.org/10.1016/j.patrec.2016.12.002]
[98]
Li C, Xu C, Gui C, Fox MD. Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 2010; 19(12): 3243-54.
[http://dx.doi.org/10.1109/TIP.2010.2069690] [PMID: 20801742]
[99]
Chang EH, Chong WK, Kasoji SK, et al. Diagnostic accuracy of contrast-enhanced ultrasound for characterization of kidney lesions in patients with and without chronic kidney disease. BMC Nephrol 2017; 18(1): 266.
[http://dx.doi.org/10.1186/s12882-017-0681-8] [PMID: 28793871]
[100]
Xie J, Jiang Y, Tsui HT. Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans Med Imaging 2005; 24(1): 45-57.
[http://dx.doi.org/10.1109/TMI.2004.837792] [PMID: 15638185]
[101]
Mendoza CS, Kang X, Safdar N, Myers E, Peters CA, Linguraru MG. Kidney segmentation in ultrasound via genetic initialization and active shape models with rotation correction. 2013 IEEE 10th International Symposium on Biomedical Imaging. 69-72.
[http://dx.doi.org/10.1109/ISBI.2013.6556414]
[102]
Mendoza CS, Kang X, Safdar N, Myers E, Martin AD, Grisan E. Automatic analysis of pediatric renal ultrasound using shape, anatomical and image acquisition priors. International Conference on Medical Image Computing and Computer-Assisted Intervention. 259-66.
[http://dx.doi.org/10.1007/978-3-642-40760-4_33]
[103]
Jokar E, Pourghassem H. Kidney segmentation in Ultrasound images using curvelet transform and shape prior. 2013 International Conference on Communication Systems and Network Technologies. 180-5.
[http://dx.doi.org/10.1109/CSNT.2013.47]
[104]
Jokar E, Pourghassem H. Kidney extraction from ultrasound images based on mult scaling and multi-directional filters and shape model. Int J Tomogr Stat 2013; 23: 88-104.
[105]
Ravishankar H, Annangi P, Washburn M, Lanning J. Automated kidney morphology measurements from ultrasound images using texture and edge analysis.Medical Imaging 2016: Ultrasonic Imaging and Tomography. International Society for Optics and Photonics 2016; p. 97901A.
[106]
Moghaddam MJ, Soltanian-Zadeh H. Medical image segmentation using artificial neural networks. Artificial Neural Networks-Methodological Advances and Biomedical Applications 2011; pp. 121-38.
[107]
Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. J Digit Imaging 2019; 32(4): 582-96.
[http://dx.doi.org/10.1007/s10278-019-00227-x] [PMID: 31144149]
[108]
Ravishankar H, Venkataramani R, Thiruvenkadam S, Sudhakar P, Vaidya V. Learning and incorporating shape models for semantic segmentation. International conference on medical image computing and computer-assisted intervention. 203-11.
[http://dx.doi.org/10.1007/978-3-319-66182-7_24]
[109]
Yin S, Zhang Z, Li H, Peng Q, You X, Furth SL. Fully-automatic segmentation of kidneys in clinical ultrasound images using a boundary distance regression network. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 1741-4.
[http://dx.doi.org/10.1109/ISBI.2019.8759170]
[110]
Yin S, Peng Q, Li H, et al. Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Med Image Anal 2020; 60: 101602.
[http://dx.doi.org/10.1016/j.media.2019.101602] [PMID: 31760193]
[111]
Raja KB, Madheswaran M, Thyagarajah K. Analysis of ultrasound kidney images using content descriptive multiple features for disorder identification and ANN based classification. 2007 International Conference on Computing: Theory and Applications (ICCTA’07). 382-8.
[http://dx.doi.org/10.1109/ICCTA.2007.31]
[112]
Sharma K, Virmani J. A decision support system for classification of normal and medical renal disease using ultrasound images. Int J Ambient Comput Intell 2017; 8(2): 52-69.
[http://dx.doi.org/10.4018/IJACI.2017040104]
[113]
Biradar S, Badiger DrS, Pujari R. Review on classifications of medical ultrasound images of kidney. Int J Comput Sci Eng 2018; 6: 1565-8.
[114]
Fiorini F, Barozzi L. The role of ultrasonography in the study of medical nephropathy. J Ultrasound 2007; 10(4): 161-7.
[http://dx.doi.org/10.1016/j.jus.2007.09.001] [PMID: 23396246]
[115]
Sanusi AA, Arogundade FA, Famurewa OC, et al. Relationship of ultrasonographically determined kidney volume with measured GFR, calculated creatinine clearance and other parameters in chronic kidney disease (CKD). Nephrol Dial Transplant 2009; 24(5): 1690-4.
[http://dx.doi.org/10.1093/ndt/gfp055] [PMID: 19264744]
[116]
Egberongbe AA, Adetiloye VA, Adeyinka AO, Afolabi OT, Akintomide AO, Ayoola OO. Evaluation of renal volume by ultrasonography in patients with essential hypertension in Ile-Ife, south western Nigeria. Libyan J Med 2010; 5(1): 4848.
[http://dx.doi.org/10.3402/ljm.v5i0.4848] [PMID: 21483591]
[117]
Beland MD, Walle NL, Machan JT, Cronan JJ. Renal cortical thickness measured at ultrasound: is it better than renal length as an indicator of renal function in chronic kidney disease? AJR Am J Roentgenol 2010; 195(2): W146-9.
[http://dx.doi.org/10.2214/AJR.09.4104] [PMID: 20651174]
[118]
Shivashankara VU, Shivalli S, Pai BH, et al. A comparative study of sonographic grading of renal parenchymal changes and estimated glomerular filtration rate (eGFR) using modified diet in renal disease formula. J Clin Diagn Res 2016; 10(2): TC09-11.
[http://dx.doi.org/10.7860/JCDR/2016/16986.7233] [PMID: 27042555]
[119]
Yoruk U, Hargreaves BA, Vasanawala SS. Automatic renal segmentation for MR urography using 3D-GrabCut and random forests. Magn Reson Med 2018; 79(3): 1696-707.
[http://dx.doi.org/10.1002/mrm.26806] [PMID: 28656614]
[120]
Gao J, Perlman A, Kalache S, et al. Multiparametric quantitative ultrasound imaging in assessment of chronic kidney disease. J Ultrasound Med 2017; 36(11): 2245-56.
[http://dx.doi.org/10.1002/jum.14209] [PMID: 28407281]
[121]
Ho C-Y, Pai T-W, Peng Y-C, Lee C-H, Chen Y-C, Chen Y-T. Ultrasonography image analysis for detection and classification of chronic kidney disease. 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems. 624-9.
[http://dx.doi.org/10.1109/CISIS.2012.180]
[122]
Pujari RM, Hajare VD. Analysis of ultrasound images for identification of Chronic Kidney Disease stages. 2014 First International Conference on Networks & Soft Computing (ICNSC2014). 380-.
[http://dx.doi.org/10.1109/CNSC.2014.6906704]
[123]
Nakagami M. The m-distribution—A general formula of intensity distribution of rapid fading.Statistical methods in radio wave propagation. Elsevier 1960; pp. 3-36.
[http://dx.doi.org/10.1016/B978-0-08-009306-2.50005-4]
[124]
Mohana Shankar P. A general statistical model for ultrasonic backscattering from tissues. IEEE Trans Ultrason Ferroelectr Freq Control 2000; 47(3): 727-36.
[http://dx.doi.org/10.1109/58.842062] [PMID: 18238602]
[125]
Hsieh J-W, Lee C-H, Chen Y-C, Lee W-S, Chiang H-F. Stage classification in chronic kidney disease by ultrasound image. Proceedings of the 29th International Conference on Image and Vision Computing New Zealand. 271-6.
[http://dx.doi.org/10.1145/2683405.2683457]
[126]
Gold C, Sollich P. Model selection for support vector machine classification Neurocomputing 2003; 55: 221-49.
[http://dx.doi.org/10.1016/S0925-2312(03)00375-8]
[127]
Acharya UR, Meiburger KM, Koh JEW, Hagiwara Y, Oh SL, Leong SS. Automated detection of chronic kidney disease using higher-order features and elongated quinary patterns from B- mode ultrasound images. Neural Comput Appl 2019; 1-10.
[128]
Nikias CL, Raghuveer MR. Bispectrum estimation: A digital signal processing framework. Proc IEEE 1987; 75(7): 869-91.
[http://dx.doi.org/10.1109/PROC.1987.13824]
[129]
Cai D, He X, Zhou K, Han J, Bao H. Locality sensitive discriminant analysis. IJCAI 2007; pp. 1713-26.
[130]
Yi Y, Zhang B, Kong J, Wang J. An improved locality sensitive discriminant analysis approach for feature extraction. Multimedia Tools Appl 2015; 74(1): 85-104.
[http://dx.doi.org/10.1007/s11042-013-1429-5]
[131]
Wu Y, Wang H, Zhang B, Du K-L. Using Radial Basis Function Networks for Function Approximation and Classification 2012.
[http://dx.doi.org/10.5402/2012/324194]
[132]
Kuo C-C, Chang C-M, Liu K-T, Lin W-K, Chiang H-Y, Chung C-W. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning 2019.
[http://dx.doi.org/10.1038/s41746-019-0104-2]
[133]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 770-8.
[134]
Chen C-J, Pai T-W, Hsu H-H, Lee C-H, Chen K-S, Chen Y-C. Prediction of chronic kidney disease stages by renal ultrasound imaging. Enterprise Inf Syst 2020; 14(2): 178-95.
[http://dx.doi.org/10.1080/17517575.2019.1597386]
[135]
Attia MW, Abou-Chadi FEZ, Moustafa HE-D, Mekky N. Classification of ultrasound kidney images using PCA and neural networks. Int J Adv Comput Sci Appl 2015; 6(4): 52-7.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy