Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Novel Polypseudorotaxanes Hydrogel based Nail Lacquer of Efinaconazole for Transungual Drug Delivery

Author(s): Rohan Aggarwal*, Monika Targhotra, Bhumika Kumar, P.K Sahoo and Meenakshi K. Chauhan

Volume 11, Issue 1, 2021

Published on: 18 September, 2020

Page: [52 - 61] Pages: 10

DOI: 10.2174/2210303110999200918163213

Price: $65

Abstract

Aim: Due to the various drawbacks associated with current treatment therapy of onychomycosis, the main aim was to develop thermosensitive hydrogels and thermosensitive polypseudorotaxanes hydrogels-based nail lacquer for transungual delivery of Efinaconazole for the management of onychomycosis. The objective is to enhance the permeation and retention of the drug in the nails and improve patient compliance.

Methods: Poloxamer 407 and Hydroxy Propyl-β-cyclodextrin were used to prepare the nail lacquers. 2-mercaptoethanol was added as a penetration enhancer to improve the penetration of the drug across the nail plate. The formulations were optimized by varying the concentration of poloxamer and water: ethanol ratio and evaluated based on the basis of drying time, sol-gel transition temperature, ex vivo drug release, and viscosity. The optimized formulation was further evaluated for pH, water resistance, non-volatile content, drug content, blush test, spreadability, and stability studies.

Results: The increase in ethanol concentration and reduction in poloxamer proportion led to a reduction in lacquer stickiness thus, improving the lacquer drying time and penetration. The polypseudorotaxanes improved the permeation profile of the drug in comparison to the marketed nail lacquer. The presence of 2-mercaptoethanol also contributed to the transungual delivery of Efinaconazole.

Conclusion: The polypseudorotaxanes based nail lacquer with the incorporation of penetration enhancer was able to achieve a high rate of drug penetration and retention, thus supporting the potential use of aqueous based-nail lacquer in transungual drug delivery for the onychomycosis treatment.

Keywords: Poloxamer 407, hydroxy Propyl-β-cyclodextrin, polypseudorotaxanes, transungual drug delivery, onychomycosis, efinaconazole.

Graphical Abstract

[1]
Welsh, O.; Vera-Cabrera, L.; Welsh, E. Onychomycosis. Clin. Dermatol., 2010, 28(2), 151-159.
[http://dx.doi.org/10.1016/j.clindermatol.2009.12.006] [PMID: 20347657]
[2]
Thomas, J.; Jacobson, G.A.; Narkowicz, C.K.; Peterson, G.M.; Burnet, H.; Sharpe, C. Toenail onychomycosis: An important global disease burden. J. Clin. Pharm. Ther., 2010, 35(5), 497-519.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01107.x] [PMID: 20831675]
[3]
Shirwaikar, A.A.; Thomas, T.; Shirwaikar, A.; Lobo, R.; Prabhu, K.S. Treatment of onychomycosis: An update. Indian J. Pharm. Sci., 2008, 70(6), 710-714.
[http://dx.doi.org/10.4103/0250-474X.49088] [PMID: 21369429]
[4]
Monod, M.; Méhul, B. Recent findings in onychomycosis and their application for appropriate treatment. J. Fungi (Basel), 2019, 5(1), 20.
[http://dx.doi.org/10.3390/jof5010020] [PMID: 30813287]
[5]
Bongomin, F.; Batac, C.R.; Richardson, M.D.; Denning, D.W. A review of Onychomycosis due to Aspergillus species. Mycopathologia, 2018, 183(3), 485-493.
[http://dx.doi.org/10.1007/s11046-017-0222-9] [PMID: 29147866]
[6]
Martínez-Herrera, E.O.; Arroyo-Camarena, S.; Tejada-García, D.L.; Porras-López, C.F.; Arenas, R. Onychomycosis due to opportunistic molds. An. Bras. Dermatol., 2015, 90(3), 334-337.
[http://dx.doi.org/10.1590/abd1806-4841.20153521] [PMID: 26131862]
[7]
Kobayashi, Y.; Miyamoto, M.; Sugibayashi, K.; Morimoto, Y. Drug permeation through the three layers of the human nail plate. J. Pharm. Pharmacol., 1999, 51(3), 271-278.
[http://dx.doi.org/10.1211/0022357991772448] [PMID: 10344627]
[8]
Schaller, M.; Borelli, C.; Berger, U.; Walker, B.; Schmidt, S.; Weindl, G.; Jäckel, A. Susceptibility testing of amorolfine, bifonazole and ciclopiroxolamine against Trichophyton rubrum in an in vitro model of dermatophyte nail infection. Med. Mycol., 2009, 47(7), 753-758.
[http://dx.doi.org/10.3109/13693780802577892] [PMID: 19888808]
[9]
Tatsumi, Y.; Yokoo, M.; Senda, H.; Kakehi, K. Therapeutic efficacy of topically applied KP-103 against experimental tinea unguium in guinea pigs in comparison with amorolfine and terbinafine. Antimicrob. Agents Chemother., 2002, 46(12), 3797-3801.
[http://dx.doi.org/10.1128/AAC.46.12.3797-3801.2002] [PMID: 12435679]
[10]
Glynn, M.; Jo, W.; Minowa, K.; Sanada, H.; Nejishima, H.; Matsuuchi, H.; Okamura, H.; Pillai, R.; Mutter, L. Efinaconazole: Developmental and reproductive toxicity potential of a novel antifungal azole. Reprod. Toxicol., 2015, 52, 18-25.
[http://dx.doi.org/10.1016/j.reprotox.2014.12.007] [PMID: 25527861]
[11]
Jo Siu, W.J.; Tatsumi, Y.; Senda, H.; Pillai, R.; Nakamura, T.; Sone, D.; Fothergill, A. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob. Agents Chemother., 2013, 57(4), 1610-1616.
[http://dx.doi.org/10.1128/AAC.02056-12] [PMID: 23318803]
[12]
Lipner, S.R.; Scher, R.K. Efinaconazole in the treatment of onychomycosis. Infect. Drug Resist., 2015, 8, 163-172.
[http://dx.doi.org/10.2147/IDR.S69596] [PMID: 26082652]
[13]
Sugiura, K.; Sugimoto, N.; Hosaka, S.; Katafuchi-Nagashima, M.; Arakawa, Y.; Tatsumi, Y.; Jo Siu, W.; Pillai, R. The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob. Agents Chemother., 2014, 58(7), 3837-3842.
[http://dx.doi.org/10.1128/AAC.00111-14] [PMID: 24752277]
[14]
Aggarwal, R.; Targhotra, M.; Sahoo, P.K.; Chauhan, M.K. Onychomycosis: Novel strategies for treatment. J. Drug Deliv. Sci. Technol., 2020, 25, 101774.
[http://dx.doi.org/10.1016/j.jddst.2020.101774]
[15]
Monti, D.; Saccomani, L.; Chetoni, P.; Burgalassi, S.; Saettone, M.F.; Mailland, F. In vitro transungual permeation of ciclopirox from a hydroxypropyl chitosan-based, water-soluble nail lacquer. Drug Dev. Ind. Pharm., 2005, 31(1), 11-17.
[http://dx.doi.org/10.1081/DDC-43935] [PMID: 15704853]
[16]
Akhtar, N.; Sharma, H.; Pathak, K. Onychomycosis: Potential of nail lacquers in transungual delivery of antifungals. Scientifica (Cairo), 2016, 2016, 1387936.
[http://dx.doi.org/10.1155/2016/1387936] [PMID: 27123362]
[17]
Gupta, A.K. Ciclopirox nail lacquer: A brush with onychomycosis. Cutis, 2001, 68(2)(Suppl.), 13-16.
[PMID: 11665723]
[18]
Monti, D.; Saccomani, L.; Chetoni, P.; Burgalassi, S.; Senesi, S.; Ghelardi, E.; Mailland, F. Hydrosoluble medicated nail lacquers: In vitro drug permeation and corresponding antimycotic activity. Br. J. Dermatol., 2010, 162(2), 311-317.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09504.x] [PMID: 19886884]
[19]
Penlac nail lacquer (ciclopirox)—FDA summary of product characteristics. Available from:https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/21022s004lbl.pdf
[20]
Curanail 5% w/v medicated nail lacquer—summary of product characteristics—eMC. Available from:https://www.medicines.org.uk/emc/medicine/17637
[21]
King, J.R.; Monteiro-Riviere, N.A. Effects of organic solvent vehicles on the viability and morphology of isolated perfused porcine skin. Toxicology, 1991, 69(1), 11-26.
[http://dx.doi.org/10.1016/0300-483X(91)90149-U] [PMID: 1926152]
[22]
Hiipakka, D.; Samimi, B. Exposure of acrylic fingernail sculptors to organic vapors and methacrylate dusts. Am. Ind. Hyg. Assoc. J., 1987, 48(3), 230-237.
[http://dx.doi.org/10.1080/15298668791384670] [PMID: 3578034]
[23]
Murdan, S. Drug delivery to the nail following topical application. Int J Pharm, 2010, 392(1-2), 314.
[24]
Vejnovic, I.; Simmler, L.; Betz, G. Investigation of different formulations for drug delivery through the nail plate. Int. J. Pharm., 2010, 386(1-2), 185-194.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.019] [PMID: 19941943]
[25]
Mertin, D.; Lippold, B.C. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Influence of the partition coefficient octanol/water and the water solubility of drugs on their permeability and maximum flux. J. Pharm. Pharmacol., 1997, 49(1), 30-34.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06747.x] [PMID: 9120766]
[26]
Bibby, D.C.; Davies, N.M.; Tucker, I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm., 2000, 197(1-2), 1-11.
[http://dx.doi.org/10.1016/S0378-5173(00)00335-5] [PMID: 10704788]
[27]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[28]
Cutrín-Gómez, E.; Conde-Penedo, A.; Anguiano-Igea, S.; Gómez-Amoza, J.L.; Otero-Espinar, F.J. Optimization of drug permeation from 8% ciclopirox cyclodextrin/poloxamer-soluble polypseudorotaxane-based nail lacquers. Pharmaceutics, 2020, 12(3), 231.
[http://dx.doi.org/10.3390/pharmaceutics12030231] [PMID: 32151015]
[29]
Chouhan, P.; Saini, T.R. Hydroxypropyl-beta-cyclodextrin: A Novel transungual permeation enhancer for development of topical drug delivery system for Onychomycosis. J. Drug Deliv., 2014.
[30]
Van Tomme, S.R.; Storm, G.; Hennink, W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm., 2008, 355(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.057] [PMID: 18343058]
[31]
Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 37-51.
[http://dx.doi.org/10.1016/S0169-409X(01)00242-3] [PMID: 11755705]
[32]
Nogueiras-Nieto, L.; Alvarez-Lorenzo, C.; Sandez-Macho, I.; Concheiro, A.; Otero-Espinar, F.J. Hydrosoluble cyclodextrin/poloxamer polypseudorotaxanes at the air/water interface, in bulk solution, and in the gel state. J. Phys. Chem. B, 2009, 113(9), 2773-2782.
[http://dx.doi.org/10.1021/jp809806w] [PMID: 19708112]
[33]
Nogueiras-Nieto, L.; Sobarzo-Sánchez, E.; Gómez-Amoza, J.L.; Otero-Espinar, F.J. Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: Implications in drug solubilization and delivery. Eur. J. Pharm. Biopharm., 2012, 80(3), 585-595.
[http://dx.doi.org/10.1016/j.ejpb.2011.12.001] [PMID: 22182528]
[34]
Chaudhary, B.; Verma, S. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. Scientific World Journal, 2014, 2014, 280928.
[http://dx.doi.org/10.1155/2014/280928] [PMID: 24790559]
[35]
Joshi, M.; Sharma, V.; Pathak, K. Matrix based system of isotretinoin as nail lacquer to enhance transungal delivery across human nail plate. Int. J. Pharm., 2015, 478(1), 268-277.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.050] [PMID: 25445993]
[36]
Specification, B.I.s. Nail polish (nail enamel). IS 9245, B.o.I. standards, 1994.
[37]
Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A multifunctional in situ forming hydrogel for wound healing. Wound Repair Regen., 2012, 20(6), 904-910.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00848.x] [PMID: 23110551]
[38]
Elsherif, N.I. In-situ gels and nail lacquers as potential delivery systems for treatment of onychomycosis. A comparative study. J. Drug Deliv. Sci. Technol., 2018, 43, 253-261.
[http://dx.doi.org/10.1016/j.jddst.2017.10.018]
[39]
Desai, N.J.; Maheshwari, D.G. UV Spectrophotometric Method for the estimation of luliconazole in marketed formulation (lotion). Pharma Sci. Monit. an Int J Pharm Sci., 2014, 5(2), 48-54.
[40]
Myoung, Y.; Choi, H.K. Permeation of ciclopirox across porcine hoof membrane: Effect of pressure sensitive adhesives and vehicles. Eur. J. Pharm. Sci., 2003, 20(3), 319-325.
[http://dx.doi.org/10.1016/j.ejps.2003.07.001] [PMID: 14592697]
[41]
Kim, J.H.; Lee, C.H.; Choi, H.K. A method to measure the amount of drug penetrated across the nail plate. Pharm. Res., 2001, 18(10), 1468-1471.
[http://dx.doi.org/10.1023/A:1012265125158] [PMID: 11697474]
[42]
Nogueiras-Nieto, L.; Gómez-Amoza, J.L.; Delgado-Charro, M.B.; Otero-Espinar, F.J. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery. J. Control. Release, 2011, 156(3), 337-344.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.021] [PMID: 21906642]
[43]
Monti, D; Saccomani, L; Chetoni, P; Burgalassi, S; Tampucci, S; Mailland, F Validation of bovine hoof slices as a model for infected human toenails: In vitro ciclopirox transungual permeation. Br J ermatol, 2011, 165, 99-105.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10303.x]
[44]
Hao, J.; Smith, K.A.; Li, S.K. Chemical method to enhance transungual transport and iontophoresis efficiency. Int. J. Pharm., 2008, 357(1-2), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.027] [PMID: 18321669]
[45]
Rajendra, V.B.; Baro, A.; Kumari, A.; Dhamecha, D.L.; Lahoti, S.R.; Shelke, S.D. Transungual drug delivery: An overview. J. Appl. Pharm. Sci., 2012, 02, 203-209.
[46]
Dhiman, D.; Kumar, S.; Mittal, A. Formulation & evaluation of medicated nail lacquer of fluconazole. Indian J. Pharm., 2016, 3(4), 266-270.
[47]
Bhise, K.; Jan, S.; Bora, D. Preungual drug delivery systems of terbinafine hydrochloride nail lacquer. Asian J Pharm., 2008, 2(1), 53.
[http://dx.doi.org/10.4103/0973-8398.41567]
[48]
Kansagra, H.; Mallick, S. Microemulsion-based antifungal gel of luliconazole for dermatophyte infections: Formulation, characterization and efficacy studies. J. Pharm. Investig., 2016, 46(1), 21-28.
[http://dx.doi.org/10.1007/s40005-015-0209-9]
[49]
Hafeez, F.; Hui, X.; Chiang, A.; Hornby, S.; Maibach, H. Transungual delivery of ketoconazole using novel lacquer formulation. Int. J. Pharm., 2013, 456(2), 357-361.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.082] [PMID: 24029171]
[50]
Mahajan, H.S.; Shah, S.K.; Sanjay, J.; Surana, S.J. Nasal in situ gel containing hydroxy propyl b-cyclodextrin inclusion complex of artemether: Develeopment and in vitro evaluation. J. Incl. Phenom. Macrocycl. Chem., 2011, 70, 49-58.
[http://dx.doi.org/10.1007/s10847-010-9861-x]
[51]
Galgatte, U.; Chaudhari, P. Preformulation study of poloxamer 407 gels: Effect of additives. Int. J. Pharm., 2014, 6, 1.
[52]
Miller, S.C.; Drabik, B.R. Rheological properties of poloxamer vehicles. Int. J. Pharm., 1984, 18(3), 269-276.
[http://dx.doi.org/10.1016/0378-5173(84)90142-X]
[53]
Devi, D.R. Poloxamer: A novel functional molecule for drug delivery and. Gene Ther., 2013, 5(8), 159-165.
[54]
Majithiya, R.J.; Ghosh, P.K.; Umrethia, M.L.; Murthy, R.S. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS Pharm Sci Tech, 2006, 7(3), 67.
[http://dx.doi.org/10.1208/pt070367] [PMID: 17025248]
[55]
Kim, E.Y.; Gao, Z.G.; Park, J.S.; Li, H.; Han, K. rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int. J. Pharm., 2002, 233(1-2), 159-167.
[http://dx.doi.org/10.1016/S0378-5173(01)00933-4] [PMID: 11897420]
[56]
Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon, 2017, 3(8), e00390.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00390] [PMID: 28920092]
[57]
Inal, O.; Yapar, E.A. Effect of mechanical properties on the release of meloxicam from poloxamer gel bases. Indian J. Pharm. Sci., 2013, 75(6), 700-706.
[PMID: 24591745]
[58]
Ricci, E.J.; Lunardi, L.O.; Nanclares, D.M.; Marchetti, J.M. Sustained release of lidocaine from Poloxamer 407 gels. Int. J. Pharm., 2005, 288(2), 235-244.
[http://dx.doi.org/10.1016/j.ijpharm.2004.09.028] [PMID: 15620863]
[59]
Singh, R.M.; Kumar, A.; Pathak, K. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech, 2013, 14(1), 412-424.
[http://dx.doi.org/10.1208/s12249-013-9921-9] [PMID: 23358934]
[60]
Šveikauskaitė, I.; Pockevičius, A.; Briedis, V. Potential of chemical and physical enhancers for transungual delivery of amorolfine hydrochloride. Materials (Basel), 2019, 12(7), 1028.
[http://dx.doi.org/10.3390/ma12071028] [PMID: 30925734]
[61]
Aggarwal, R.; Targhotra, M.; Kumar, B.; Sahoo, P.K.; Chauhan, M.K. Treatment and management strategies of onychomycosis. J. Mycol. Med., 2020, 30(2), 100949.
[http://dx.doi.org/10.1016/j.mycmed.2020.100949] [PMID: 32234349]
[62]
Chen, J.; Zhou, R.; Li, L.; Li, B.; Zhang, X.; Su, J. Mechanical, rheological and release behaviors of a poloxamer 407/ poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules, 2013, 18(10), 12415-12425.
[http://dx.doi.org/10.3390/molecules181012415] [PMID: 24108402]
[63]
Balsam, M.S.; Edward, S. Nail lacquer and remover.Cosmetic science and technology 2nd edition.; Balsam, MS.; Sagarine, E.; Strianse, J.; Rieger, MM.; Gershon, SD., Eds.; Wiley Interscience, a division of John Wiley and Sons Inc: New York; , 1972, pp. pp 521-541.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy