Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Recent Progress in Saikosaponin Biosynthesis in Bupleurum

Author(s): Chun Sui, Wen-Jing Han, Chu-Ran Zhu and Jian-He Wei*

Volume 22, Issue 3, 2021

Published on: 18 September, 2020

Page: [329 - 340] Pages: 12

DOI: 10.2174/1389201021999200918101248

Price: $65

Abstract

Background: Chaihu is a popular traditional Chinese medicine that has been used for centuries. It is traditionally used to treat cold fever and liver-related diseases. Saikosaponins (SSs) are one of the main active components of chaihu, in addition to essential oils, flavonoids, and polysaccharides. Considerable effort is needed to reveal the biosynthesis and regulation of SSs on the basis of current progress.

Objective: The aim of this study is to provide a reference for further studies and arouse attention by summarizing the recent achievements of SS biosynthesis.

Methods: All the data compiled and presented here were obtained from various online resources, such as PubMed Scopus and Baidu Scholar in Chinese, up to October 2019.

Results: A few genes of the enzymes of SSs participating in the biosynthesis of SSs were isolated. Among these genes, only the P450 gene was verified to catalyze the SS skeleton β-amyrin synthase. Several UDP-glycosyltransferase genes were predicted to be involved in the biosynthesis of SSs. SSs could be largely biosynthesized in the phloem and then transported from the protoplasm, which is the biosynthetic site, to the vacuoles to avoid self-poisoning. As for the other secondary metabolites, the biosynthesis of SSs was strongly affected by environmental factors and the different species belonging to the genus of Bupleurum. Transcriptional regulation was studied at the molecular level.

Conclusion: Profound discoveries in SSs may elucidate the mechanism of diverse the monomer formation of SSs and provide a reference for maintaining the stability of SS content in Radix Bupleuri.

Keywords: Bupleurum, saikosaponin, biosynthesis, transcriptional regulation, stress response, vacuoles.

Graphical Abstract

[1]
Ashour, M.L.; Wink, M. Genus Bupleurum: A review of its phytochemistry, pharmacology and modes of action. J. Pharm. Pharmacol., 2011, 63(3), 305-321.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01170.x] [PMID: 21749378]
[2]
Yao, R.; Zou, Y.F.; Chen, X.F. Traditional uses, principal pharmacologies, toxicology and quality control of the genus Bupleurum L. Chin. Herb. Med., 2013, 5(4), 245-255.
[http://dx.doi.org/10.1016/S1674-6384(13)60036-2] [PMID: 32288759]
[3]
Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A review of traditional uses, botany, phytochemistry, pharmacology, and toxicology. BioMed Res. Int., 2017, 2017, 7597596.
[http://dx.doi.org/10.1155/2017/7597596] [PMID: 28593176]
[4]
Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm. Biol., 2017, 55(1), 620-635.
[http://dx.doi.org/10.1080/13880209.2016.1262433] [PMID: 27951737]
[5]
Li, X.; Li, X.; Huang, N.; Liu, R.; Sun, R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine, 2018, 50, 73-87.
[http://dx.doi.org/10.1016/j.phymed.2018.09.174] [PMID: 30466994]
[6]
Wang, X.; Feng, Q.; Xiao, Y.; Li, P. Radix Bupleuri ameliorates depression by increasing nerve growth factor and brain-derived neurotrophic factor. Int. J. Clin. Exp. Med., 2015, 8(6), 9205-9217.
[PMID: 26309578]
[7]
Liu, X.; Liu, C.; Tian, J.; Gao, X.; Li, K.; Du, G.; Qin, X. Plasma metabolomics of depressed patients and treatment with Xiaoyaosan based on mass spectrometry technique. J. Ethnopharmacol., 2020, 246, 112219.
[http://dx.doi.org/10.1016/j.jep.2019.112219] [PMID: 31494201]
[8]
Jiao, H.; Yan, Z.; Ma, Q.; Li, X.; Jiang, Y.; Liu, Y.; Chen, J. Influence of Xiaoyaosan on depressive-like behaviors in chronic stress-depressed rats through regulating tryptophan metabolism in hippocampus. Neuropsychiatr. Dis. Treat., 2018, 15, 21-31.
[http://dx.doi.org/10.2147/NDT.S185295] [PMID: 30587994]
[9]
Liu, X.; Zheng, X.; Du, G.; Li, Z.; Qin, X. Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by 1H NMR analysis. J. Ethnopharmacol., 2019, 235, 141-154.
[http://dx.doi.org/10.1016/j.jep.2019.01.018] [PMID: 30708033]
[10]
Pan, S.L. Bupleurum species: Scientific evaluation and clinical applications; Taylor & Francis Group, 2006.
[http://dx.doi.org/10.1201/9781420009071]
[11]
Lin, T.Y.; Chiou, C.Y.; Chiou, S.J. Putative genes involved in saikosaponin biosynthesis in Bupleurum species. Int. J. Mol. Sci., 2013, 14(6), 12806-12826.
[http://dx.doi.org/10.3390/ijms140612806] [PMID: 23783277]
[12]
Pan, S.L.; Shun, Q.S.; Bai, Q.M.; Bao, X.S. The coloured atlas of the medicinal plants from genus Buplerurum in China; Shanghai Scientific and Technology Literature Publishing House , 2002.
[13]
Ren, M.; McGowan, E.; Li, Y.; Zhu, X.; Lu, X.; Zhu, Z.; Lin, Y.; He, S. Saikosaponin-d suppresses COX2 through p-STAT3/C/EBPβ signaling pathway in liver cancer: A novel mechanism of action. Front. Pharmacol., 2019, 10, 623.
[http://dx.doi.org/10.3389/fphar.2019.00623] [PMID: 31191326]
[14]
Pan, Y.; Ke, Z.; Ye, H.; Sun, L.; Ding, X.; Shen, Y.; Zhang, R.; Yuan, J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm. Res., 2019, 68(12), 1025-1034.
[http://dx.doi.org/10.1007/s00011-019-01284-2] [PMID: 31531682]
[15]
Wang, J.; Qi, H.; Zhang, X.; Si, W.; Xu, F.; Hou, T.; Zhou, H.; Wang, A.; Li, G.; Liu, Y.; Fang, Y.; Piao, H.L.; Liang, X. Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomed. Pharmacother., 2018, 108, 724-733.
[http://dx.doi.org/10.1016/j.biopha.2018.09.038] [PMID: 30248540]
[16]
Li, D.; Liu, D.; Yue, D.; Gao, P.; Du, C.; Liu, X.; Zhang, L. Network pharmacology and RNA sequencing studies on triterpenoid saponins from Bupleurum chinense for the treatment of breast cancer. RSC Adv., 2019, 9, 41088-41098.
[http://dx.doi.org/10.1039/C9RA08970E]
[17]
Zhang, C.Y.; Jiang, Z.M.; Ma, X.F.; Li, Y.; Liu, X.Z.; Li, L.L.; Wu, W.H.; Wang, T. Saikosaponin-d inhibits the hepatoma cells and enhances chemosensitivity through SENP5-dependent inhibition of Gli1 Sumoylation under hypoxia. Front. Pharmacol., 2019, 10, 1039.
[http://dx.doi.org/10.3389/fphar.2019.01039] [PMID: 31616295]
[18]
Zhao, X.; Liu, J.; Ge, S.; Chen, C.; Li, S.; Wu, X.; Feng, X.; Wang, Y.; Cai, D. Saikosaponin a inhibits breast cancer by regulating Th1/Th2 balance. Front. Pharmacol., 2019, 10, 624.
[http://dx.doi.org/10.3389/fphar.2019.00624] [PMID: 31214035]
[19]
Ma, Q.; Gao, F.F.; He, X.; Li, K.; Gao, Y.; Xu, X.L.; Jiang, N.H.; Ding, L.; Song, W.J.; He, Y.Q.; Pan, W.T.; Wei, L.; Zhang, J.W. Antitumor effects of saikosaponin b2 on breast cancer cell proliferation and migration. Mol. Med. Rep., 2019, 20(2), 1943-1951.
[http://dx.doi.org/10.3892/mmr.2019.10385] [PMID: 31257464]
[20]
Guo, J.; Zhang, F.; Gao, J.; Guan, X.; Liu, B.; Wang, X.; Qin, Z.; Tang, K.; Liu, S. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of Saikosaponin A. J. Cell. Mol. Med., 2020, 24(1), 174-188.
[http://dx.doi.org/10.1111/jcmm.14695] [PMID: 31762213]
[21]
Chao, B.; Huang, S.; Pan, J.; Zhang, Y.; Wang, Y. Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB. Brain Res. Bull., 2020, 157, 69-76.
[http://dx.doi.org/10.1016/j.brainresbull.2020.01.008] [PMID: 31926302]
[22]
Lee, C.H.; Wang, J.D.; Chen, P.C. Risk of liver injury associated with Chinese herbal products containing Radix Bupleuri in 639,779 patients with hepatitis B virus infection. PLoS One, 2011, 6(1), e16064.
[http://dx.doi.org/10.1371/journal.pone.0016064] [PMID: 21264326]
[23]
Ren, S.; Liu, J.; Xue, Y.; Zhang, M.; Liu, Q.; Xu, J.; Zhang, Z.; Song, R. Comparative permeability of three saikosaponins and corresponding saikogenins in Caco-2 model by a validated UHPLC-MS/MS method. J. Pharm. Anal., 2019.
[http://dx.doi.org/10.1016/j.jpha.2020.06.006]
[24]
Zhang, Q.; Huang, W.; Gao, Y.; Lv, Y.; Zhang, W.; Zhang, Z.; Xu, F. Saikosaponins with similar structures but different mechanisms lead to combined hepatotoxicity. arXiv:1805.05001v1 [q-bio.SC], 2018.
[25]
Sun, K.; Yu, W.; Ji, B.; Chen, C.; Yang, H.; Du, Y.; Song, M.; Cai, H.; Yan, F.; Su, R. Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Appl. Mat. Today, 2020, 18, 100505.
[http://dx.doi.org/10.1016/j.apmt.2019.100505]
[26]
Biswas, T.; Dwivedi, U.N. Plant triterpenoid saponins: Biosynthesis, in vitro production, and pharmacological relevance. Protoplasma, 2019, 256(6), 1463-1486.
[http://dx.doi.org/10.1007/s00709-019-01411-0] [PMID: 31297656]
[27]
Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol., 2014, 49(6), 439-462.
[http://dx.doi.org/10.3109/10409238.2014.953628] [PMID: 25286183]
[28]
Mais, E.; Alolga, R.; Qi, L.W. The biosynthesis of ginsenosides: A mini-review. Pharm. Res., 2017, 6(6), 81-91.
[http://dx.doi.org/10.20959/wjpr20176-8492]
[29]
Seki, H.; Tamura, K.; Muranaka, T. P450s and UGTs: Key players in the structural diversity of triterpenoid saponins. Plant Cell Physiol., 2015, 56(8), 1463-1471.
[http://dx.doi.org/10.1093/pcp/pcv062] [PMID: 25951908]
[30]
Rahimi, S.; Kim, J.; Mijakovic, I.; Jung, K.H.; Choi, G.; Kim, S.C.; Kim, Y.J. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol. Adv., 2019, 37(7), 107394.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.016] [PMID: 31078628]
[31]
Kim, Y.S.; Cho, J.H.; Ahn, J.; Hwang, B. Upregulation of isoprenoid pathway genes during enhanced saikosaponin biosynthesis in the hairy roots of Bupleurum falcatum. Mol. Cells, 2006, 22(3), 269-274.
[http://dx.doi.org/10.1016/j.tcm.2006.07.002] [PMID: 17202854]
[32]
Dong, L.; Sui, C.; Liu, Y.; Yang, Y.; Wei, J.; Yang, Y. Validation and application of reference genes for quantitative gene expression analyses in various tissues of Bupleurum chinense. Mol. Biol. Rep., 2011, 38(8), 5017-5023.
[http://dx.doi.org/10.1007/s11033-010-0648-3] [PMID: 21161394]
[33]
Sui, C.; Zhan, Q.Q.; Wei, J.H.; Chen, H.Q.; Yang, C.M.; Zheng, T.T. Full-length cDNA cloning and sequence analysis of isopentenyl diphosphate isomerase involved in saikosaponin biosynthesis pathway of Bupleurum chinense. Chin. Tradit. Herb. Drugs, 2010, 41(7), 1178-1184.
[http://dx.doi.org/en.cnki.com.cn/Article_en/CJFDTOTAL-ZCYO201007044.htm]
[34]
Sui, C.; Wei, J.H.; Zhan, Q.Q.; Yang, C.M. Cloning and sequence analysis of squalene synthase gene and cDNA in Bupleurum chinense DC. Yuan Yi Xue Bao, 2010, 2(37), 283-290.
[http://dx.doi.org/10.3724/SP.J.1142.2010.40491]
[35]
Kim, Y.S.; Cho, J.H.; Park, S.; Han, J.Y.; Back, K.; Choi, Y.E. Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum. Planta, 2011, 233(2), 343-355.
[http://dx.doi.org/10.1007/s00425-010-1292-9] [PMID: 21053012]
[36]
Gao, K.; Xu, J.S.; Sun, J.; Xu, Y.H.; Wei, J.H.; Sui, C. Molecular cloning and expression of squalene epoxidase from a medicinal plant, Bupleurum chinense. Chin. Herb. Med., 2016, 8(1), 70-77.
[http://dx.doi.org/10.1016/S1674-6384(16)60010-2]
[37]
Lin, W.Y.; Peng, P.H.; Lin, T.Y. Cloning and characterization of beta-amyrin synthase from Bupleurum kaoi. 8th international congress of plant molecular biology. College Life Sci., 2006, POSTUE-121, 20-25.http://ir.lib.nthu.edu.tw/handle/987654321/105009
[38]
Gao, K.; Wu, S.R.; Wang, L.; Xu, Y.H.; Wei, J.H.; Sui, C. Cloning and analysis of β-amyrin synthase gene in Bupleurum chinense. Genes Genomics, 2015, 37(9), 767-774.
[http://dx.doi.org/10.1007/s13258-015-0307-0]
[39]
Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreño, M.A.; Martins, J.C.; Thevelein, J.M.; Goossens, A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum. Proc. Natl. Acad. Sci. USA, 2014, 111(4), 1634-1639.
[http://dx.doi.org/10.1073/pnas.1323369111] [PMID: 24434554]
[40]
Sui, C.; Zhang, J.; Wei, J.; Chen, S.; Li, Y.; Xu, J.; Jin, Y.; Xie, C.; Gao, Z.; Chen, H.; Yang, C.; Zhang, Z.; Xu, Y. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics, 2011, 12, 539.
[http://dx.doi.org/10.1186/1471-2164-12-539] [PMID: 22047182]
[41]
Xu, J.; Wu, S.R.; Xu, Y.H.; Ge, Z.Y.; Sui, C.; Wei, J.H. Overexpression of BcbZIP134 negatively regulates the biosynthesis of saikosaponins. Plant Cell Tiss. Org., 2019, 137(2), 297-308.
[http://dx.doi.org/10.1007/s11240-019-01571-0]
[42]
Neti, S.S.; Pan, J.J.; Poulter, C.D. Mechanistic studies of the protonation-deprotonation reactions for type 1 and type 2 isopentenyl diphosphate: Dimethylallyl diphosphate isomerase. J. Am. Chem. Soc., 2018, 140(40), 12900-12908.
[http://dx.doi.org/10.1021/jacs.8b07274] [PMID: 30183274]
[43]
Iorizzo, M.; Ellison, S.; Senalik, D.; Zeng, P.; Satapoomin, P.; Huang, J.; Bowman, M.; Iovene, M.; Sanseverino, W.; Cavagnaro, P.; Yildiz, M.; Macko-Podgórni, A.; Moranska, E.; Grzebelus, E.; Grzebelus, D.; Ashrafi, H.; Zheng, Z.; Cheng, S.; Spooner, D.; Van Deynze, A.; Simon, P. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet., 2016, 48(6), 657-666.
[http://dx.doi.org/10.1038/ng.3565] [PMID: 27158781]
[44]
Nakamura, A.; Shimada, H.; Masuda, T.; Ohta, H.; Takamiya, K. Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco. FEBS Lett., 2001, 506(1), 61-64.
[http://dx.doi.org/10.1016/S0014-5793(01)02870-8] [PMID: 11591371]
[45]
Thibodeaux, C.J.; Liu, H.W. The type II isopentenyl Diphosphate: Dimethylallyl Diphosphate Isomerase (IDI-2): A model for acid/base chemistry in flavoenzyme catalysis. Arch. Biochem. Biophys., 2017, 632, 47-58.
[http://dx.doi.org/10.1016/j.abb.2017.05.017] [PMID: 28577910]
[46]
Okada, K.; Kasahara, H.; Yamaguchi, S.; Kawaide, H.; Kamiya, Y.; Nojiri, H.; Yamane, H. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol., 2008, 49(4), 604-616.
[http://dx.doi.org/10.1093/pcp/pcn032] [PMID: 18303110]
[47]
Guirimand, G.; Guihur, A.; Phillips, M.A.; Oudin, A.; Glévarec, G.; Mahroug, S.; Melin, C.; Papon, N.; Clastre, M.; Giglioli-Guivarc’h, N.; St-Pierre, B.; Rodríguez-Concepción, M.; Burlat, V.; Courdavault, V. Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene. Plant Signal. Behav., 2012, 7(11), 1495-1497.
[http://dx.doi.org/10.4161/psb.21892] [PMID: 22951398]
[48]
Ma, D.; Li, G.; Alejos-Gonzalez, F.; Zhu, Y.; Xue, Z.; Wang, A.; Zhang, H.; Li, X.; Ye, H.; Wang, H.; Liu, B.; Xie, D.Y. Overexpression of a type-I isopentenyl pyrophosphate isomerase of Artemisia annua in the cytosol leads to high arteannuin B production and artemisinin increase. Plant J., 2017, 91(3), 466-479.
[http://dx.doi.org/10.1111/tpj.13583] [PMID: 28440881]
[49]
Jin, X.; Baysal, C.; Gao, L.; Medina, V.; Drapal, M.; Ni, X.; Sheng, Y.; Shi, L.; Capell, T.; Fraser, P.D.; Christou, P.; Zhu, C. The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis. Plant Cell Rep., 2020, 39(1), 119-133.
[http://dx.doi.org/10.1007/s00299-019-02479-x] [PMID: 31679061]
[50]
Wang, X.Q.; Kim, K.W.; Chu, S.H.; Phitaktansakul, R.; Park, S.W.; Chung, I.M.; Lee, Y.S.; Park, Y.J. Genome-wide association study for squalene contents and functional haplotype analysis in rice. ACS Omega, 2019, 4(21), 19358-19365.
[http://dx.doi.org/10.1021/acsomega.9b02754] [PMID: 31763560]
[51]
Qiao, J.; Cui, S.; Shi, H.; Luo, Z.; Ma, X. Homology modeling and molecular docking of cycloartenol synthase in Siraitia grosvenorii and speculated mechanism of catalytic cyclization. Biotech. Bull., 2019, 35(2), 101-108.
[http://dx.doi.org/10.13560/j.cnki.biotech.bull.1985.2018-0693]
[52]
Liu, Y.; Zhou, J.; Hu, T.; Lu, Y.; Gao, L.; Tu, L.; Gao, J.; Huang, L.; Gao, W. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii. Plant Cell Rep., 2020, 39(3), 409-418.
[http://dx.doi.org/10.1007/s00299-019-02499-7] [PMID: 31838574]
[53]
Song, Y.; Guan, Z.; van Merkerk, R.; Pramastya, H.; Abdallah, I.I.; Setroikromo, R.; Quax, W.J. Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering. J. Agric. Food Chem., 2020, 68(15), 4447-4455.
[http://dx.doi.org/10.1021/acs.jafc.0c00375] [PMID: 32208656]
[54]
Kowalczyk, T.; Sitarek, P.; Toma, M.; Picot, L.; Wielanek, M.; Skała, E.; Śliwiński, T. An extract of transgenic Senna obtusifolia L. hairy roots with overexpression of PgSS1 gene in combination with chemotherapeutic agent induces apoptosis in the leukemia cell line. Biomolecules, 2020, 10(4), E510.
[http://dx.doi.org/10.3390/biom10040510] [PMID: 32230928]
[55]
Cai, X.; Zheng, L.; Zheng-Hai, H.U. Ultracytochemical studies on the accumulation of saikosaponin during the root development in Bupleurum scorzonerifolium Willd. J. Chin. Electron. Microsc. Soc., 2009, 28, 414-419.http://dx.doi.org/
[56]
Cai, X.; Zhou, Y.F.; Hu, Z.H. Ultrastructure and secretion of secretory canals in vegetative organs of Bupleurum chinense DC. Fen Zi Xi Bao Sheng Wu Xue Bao, 2008, 41(2), 96-106.
[http://dx.doi.org/10.1145/1344411.1344416] [PMID: 18567500]
[57]
Shon, T.K.; Haryanto, T.A.D.; Yoshida, T. Variation and distribution and saikosaponin in Bupleurum falcatum L. J. Fac. Agr. Kyushu U., 1997, 42(1-2), 17-22.
[http://dx.doi.org/10.1017/S0021859697004917]
[58]
Tan, L.L.; Cai, X.; Hu, Z.H.; Ni, X.L. Localization and dynamic change of saikosaponin in root of Bupleurum chinense. J. Integr. Plant Biol., 2008, 50(8), 951-957.
[http://dx.doi.org/10.1111/j.1744-7909.2008.00668.x] [PMID: 18713344]
[59]
Nakahara, Y.; Okawa, M.; Kinjo, J.; Nohara, T. Oleanene glycosides of the aerial parts and seeds of Bupleurum falcatum and the aerial parts of Bupleurum rotundifolium, and their evaluation as anti-hepatitis agents. Chem. Pharm. Bull. (Tokyo), 2011, 59(11), 1329-1339.
[http://dx.doi.org/10.1248/cpb.59.1329] [PMID: 22041067]
[60]
Tan, L.L.; Hu, Z.H.; Cai, X.; Chen, Y.; Shi, W.J. Histochemecal localization and the content compare of main medicinal components of vegetative organs in Bupleurum chinense DC. Fen Zi Xi Bao Sheng Wu Xue Bao, 2007, 40(4), 214-222.
[http://dx.doi.org/CNKI:SUN:SWSB.0.2007-04-007] [PMID: 17966458]
[61]
Zhao, X.; Zheng, L.; Si, J.; Miao, Y.; Peng, Y.; Cai, X. Immunocytochemical localization of saikosaponin-d in vegetative organs of Bupleurum scorzonerifolium Willd. Bot. Stud. (Taipei, Taiwan), 2013, 54(1), 32.
[http://dx.doi.org/10.1186/1999-3110-54-32] [PMID: 28510868]
[62]
Xia, P.; Zheng, Y.; Liang, Z. Structure and location studies on key enzymes in saponins biosynthesis of Panax notoginseng. Int. J. Mol. Sci., 2019, 20(24), E6121.
[http://dx.doi.org/10.3390/ijms20246121] [PMID: 31817263]
[63]
Zhu, S.; Shimokawa, S.; Shoyama, Y.; Tanaka, H. A novel analytical ELISA-based methodology for pharmacologically active saikosaponins. Fitoterapia, 2006, 77(2), 100-108.
[http://dx.doi.org/10.1016/j.fitote.2005.11.005] [PMID: 16376495]
[64]
Huang, H.Q.; Zhang, X.; Lin, M.; Shen, Y.H.; Yan, S.K.; Zhang, W.D. Characterization and identification of saikosaponins in crude extracts from three Bupleurum species using LC-ESI-MS. J. Sep. Sci., 2008, 31(18), 3190-3201.
[http://dx.doi.org/10.1002/jssc.200800120] [PMID: 18763253]
[65]
Qin, X.; Dai, Y.; Liu, N.Q.; Li, Z.; Liu, X.; Hu, J.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting by 1HNMR for discrimination of the two species used as Radix Bupleuri. Planta Med., 2012, 78(9), 926-933.
[http://dx.doi.org/10.1055/s-0031-1298496] [PMID: 22538475]
[66]
Lin, W.Y.; Chen, L.R.; Lin, T.Y. Rapid authentication of Bupleurum species using an array of immobilized sequence-specific oligonucleotide probes. Planta Med., 2008, 74(4), 464-469.
[http://dx.doi.org/10.1055/s-2008-1034325] [PMID: 18484544]
[67]
Yang, Z.Y.; Chao, Z.; Huo, K.K.; Xie, H.; Tian, Z.P.; Pan, S.L. ITS sequence analysis used for molecular identification of the Bupleurum species from northwestern China. Phytomedicine, 2007, 14(6), 416-423.
[http://dx.doi.org/10.1016/j.phymed.2007.04.009] [PMID: 17509842]
[68]
Lee, J.H.; Yoon, C.Y.; Han, E.K.; Kim, J.H. Development of 26 microsatellite markers in Bupleurum latissimum (Apiaceae), an endangered plant endemic to Ulleung Island, Korea. Appl. Plant Sci., 2018, 6(4), e1144.
[http://dx.doi.org/10.1002/aps3.1144] [PMID: 30131886]
[69]
Yang, L.L.; Sun, Z.; Yang, L.M.; Han, M. Screening of reference genes in Bupleurum scorzonerifolium and tissue expression analysis of key enzyme genes. Chin. Tradit. Herbal Drugs, 2018, 49(15), 3651-3658.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2018.15.026]
[70]
Sui, C.; Chen, M.; Xu, J.; Wei, J.; Jin, Y.; Xu, Y.; Sun, J.; Gao, K.; Yang, C.; Zhang, Z.; Chen, S.; Luo, H. Comparison of root transcriptomes and expressions of genes involved in main medicinal secondary metabolites from Bupleurum chinense and Bupleurum scorzonerifolium, the two Chinese official Radix Bupleuri source species. Physiol. Plant., 2015, 153(2), 230-242.
[http://dx.doi.org/10.1111/ppl.12254] [PMID: 25117935]
[71]
Zhu, Z.; Liang, Z.; Han, R. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. plants. Environ. Exp. Bot., 2009, 66(2), 326-333.
[http://dx.doi.org/10.1016/j.envexpbot.2009.03.017]
[72]
Selmar, D.; Kleinwächter, M. Stress enhances the synthesis of secondary plant products: The impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol., 2013, 54(6), 817-826.
[http://dx.doi.org/10.1093/pcp/pct054] [PMID: 23612932]
[73]
Selmar, D.; Kleinwächter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crops Prod., 2013, 42, 558-566.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.020]
[74]
Zhang, Y.; Zhou, Z.Y.; Xia, P.G.; Liang, Z.S.; Liu, S.L.; Liu, Z.L. Expression of key enzyme genes and content of saikosaponin in saikosaponin biosynthesis under drought stress in Bupleurum chinense. Zhongguo Zhongyao Zazhi, 2016, 41(4), 643-647.
[http://dx.doi.org/10.4268/cjcmm20160416] [PMID: 28871686]
[75]
Han, X.W.; Feng, H.; Feng, J.M.; Yan, Y.P.; Zhang, D.; Zheng, K.Y.; Zheng, Y.G. Effects of drought stress on activity of key enzyme in saikosaponin biosynthesis pathway and saponins content in Bupleurum chinense. Zhongguo Zhongyiyao Xinxi Zazhi, 2017, 24(5), 71-75.
[http://dx.doi.org/en.cnki.com.cn/Article_en/CJFDTotal-XXYY201705017.htm]
[76]
Zhu, Z.; Liang, Z.; Han, R.; Wang, X. Impact of fertilization on drought response in the medicinal herb Bupleurum chinense DC.: Growth and saikosaponin production. Ind. Crops Prod., 2009, 29(2-3), 629-633.
[http://dx.doi.org/10.1016/j.indcrop.2008.08.002]
[77]
Yang, L.; Zhao, Y.; Zhang, Q.; Cheng, L.; Han, M.; Ren, Y.; Yang, L. Effects of drought-re-watering-drought on the photosynthesis physiology and secondary metabolite production of Bupleurum chinense DC. Plant Cell Rep., 2019, 38(9), 1181-1197.
[http://dx.doi.org/10.1007/s00299-019-02436-8] [PMID: 31165250]
[78]
Zhang, W.; Gong, J.; Zhao, J.; Li, Y.; Liu, M.; Yang, L.; Yang, B.; Zhang, Z. What degree of light deficiency is suitable for saikosaponin accumulation by Bupleurum chinense DC.? Ind. Crops Prod., 2018, 122(15), 392-401.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.001]
[79]
Zhu, Z.; Liang, Z.; Han, R.; Dong, J.E. Growth and saikosaponin production of the medicinal herb Bupleurum chinense DC. under different levels of nitrogen and phosphorus. Ind. Crops Prod., 2009, 29(1), 96-101.
[http://dx.doi.org/10.1016/j.indcrop.2008.04.010]
[80]
Wu, S.R.; Gao, K.; Liu, X.; Xu, J.; Wei, J.H.; Sui, C. Identification of WRKY transcription factors related to saikosaponin biosynthesis in adventitious roots of Bupleurum chinense. Chin. Herb. Med., 2017, 9(2), 153-160.
[http://dx.doi.org/10.1016/S1674-6384(17)60089-3]
[81]
Liu, W.Y.; Chiou, S.J.; Ko, C.Y.; Lin, T.Y. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. J. Plant Physiol., 2011, 168(4), 375-381.
[http://dx.doi.org/10.1016/j.jplph.2010.07.006] [PMID: 20728241]
[82]
Aoyagi, H.; Kobayashi, Y.; Yamada, K.; Yokoyama, M.; Kusakari, K.; Tanaka, H. Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol., 2001, 57(4), 482-488.
[http://dx.doi.org/10.1007/s002530100819] [PMID: 11762592]
[83]
Kusakari, K.; Yokoyama, M.; Inomata, S.; Gozu, Y.; Katagiri, C.; Sugimoto, Y. Large-scale production of saikosaponins through root culturing of Bupleurum falcatum L. using modified airlift reactors. J. Biosci. Bioeng., 2012, 113(1), 99-105.
[http://dx.doi.org/10.1016/j.jbiosc.2011.08.019] [PMID: 21940203]
[84]
Sun, J.; Gao, K.; Wang, K.; Wu, S.R.; Yang, H.Y.; Sui, C. Effects of different medium, exogenous hormone and fungal eicitor on hairy root growth and saponins content of Bupleurum chinense DC. Biotech. News, 2015, 27(4), 546-550.
[http://dx.doi.org/10.3969/j.issn.1009-0002.2015.04.022]
[85]
Chen, L.R.; Chen, Y.; Lee, C.; Lin, T. MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi. Plant Sci., 2007, 173(1), 20-24.
[http://dx.doi.org/10.1016/j.plantsci.2007.03.013]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy