Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

SLS-catalyzed Multi-component One-pot Reactions for the Convenient Synthesis of Spiro[indoline-3,4’-pyrano [2,3-c]pyrazole] Derivatives

Author(s): Archana Dhakar*, Archana Rajput, Ghazala Khanum and Dau D. Agarwal

Volume 8, Issue 2, 2021

Published on: 10 September, 2020

Page: [200 - 210] Pages: 11

DOI: 10.2174/2213337207999200910103325

Price: $65

Abstract

Background and Objective: Spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives are an important heterocyclic compounds. These compounds shows wide range of biological properties and exhibits varied pharmaceutical applications. Pyranopyrazoles, which are basically fused heterocyclic compounds and act as vasodilators, hypertensive, hypoglycaemic and anticancer agents.

Methods: An efficient and micelle-promoted surfactant catalyzed synthesis of spiro[indoline- 3,4′-pyrano[2,3-c]pyrazole] derivatives have been achieved via one-pot four-component reaction of hydrazine hydrate (phenyl hydrazine), ethyl acetoacetate, malononitrile (ethyl cyanoacetate) and isatin under thermal conditions (at 60°C) in water as a solvent.

Results: Sodium lauryl sulphate (SLS) used has been found to be an efficient and green catalyst. The compounds reported during this work were obtained in excellent yield, in a short duration of time and ease of work up. They were purified by recrystalization from ethanol and also the synthesized compounds were characterized by various spectroscopic techniques.

Conclusion: The method offers several advantages such as safe, cost-effective and catalyst easily recovered and reused for a minimum of five cycles, that confirms its good stability. Short reaction times, high yield and usage of eco-friendly catalyst and solvent are the key features of this methodology.

Keywords: Sodium lauryl sulphate (SLS), multicomponent reaction, isatin, malononitrile, ethyl acetoacetate, hydrazine hydrate.

Graphical Abstract

[1]
(a) Rahmati, A.; Khalesi, Z. Progress in Heterocyclic Chemistry: Chapter 4.7. Five-Membered Ring Systems. Tetrahedron, 2012, 68, 8472; (b) Vuppalapati, S.V.N.; Lee, Y.R. Heterocycles via Cross Dehydrogenative Coupling: Synthesis and Functionalization. Tetrahedron, 2012, 68, 8286.
[2]
(a) Kusebauch, U.; Beck, B.; Messer, K.; Herdtweck, E. Domling, A. Massive parallel catalyst screening:  toward asymmetric mcrs. Org. Lett., 2003, 5, 4021-4024.
(b) Elinson, M.N.; Dorofeev, A.S.; Miloserdov, F.M.; Nikishin, G.I. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] system. Mol. Divers., 2009, 13(1), 47-52.
[http://dx.doi.org/10.1021/ol035010u] [PMID: 14572239] [http://dx.doi.org/10.1007/s11030-008-9100-1] [PMID: 19048382]
[3]
Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
[4]
Bose, A.K.; Maghar, S.M.; Suhas, P.; Subhendu, N.G.; Hoang, D.; William, H.; Arun, M. Large scale Biginelli reaction via water-based biphasic media: a green chemistry strategy. Tetrahedron Lett., 2005, 46, 1901.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.087]
[5]
Guo, Q.; John Zhao, C-G.; Hadi, A. Base-catalyzed three-component direct Mannich reaction of enolizable ketones with high syn-selectivities. Tetrahedron Lett., 2012, 53, 4866-4869.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.140]
[6]
Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H. Organotin triflates as functional lewis acids. A new entry to simple and efficient robinson annulations. Tetrahedron Lett., 1990, 31, 1581-1584.
[http://dx.doi.org/10.1016/0040-4039(90)80022-E]
[7]
Marcos, C.F.; Bossio, R.; Marcaccini, S.; Pepino, R. Multicomponent Reactions: A Convenient Undergraduate Organic Chemistry Experiment. J. Chem. Educ., 2000, 77, 382.
[http://dx.doi.org/10.1021/ed077p382]
[8]
(a) Ram Reddy, T.; Srinivasula Reddy, L.; Rajeshwar Reddy, G.; Nuthalapati, V.S.; Lingappa, Y.; Sandra, S.; Kapavarapu, R.; Misra, P.; Pal, M. A Pd-mediated new strategy to functionalized 2-aminochromenes: their in vitro evaluation as potential anti tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(21), 6433-6439.
(b) Schi€oth, H. B.; Haitina, T.; Ling, M. K.; Ringholm, A.; Fredriksson, R.; Cerd_a-Reverter, J. M.; Klovins, J. Evolutionary conservation of the structural, pharmacological and genomic characteristics of the melanocortin receptor subtypes. Peptides, 2005, 26, 1886-1900.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.088] [PMID: 21920745] [http://dx.doi.org/10.1016/j.peptides.2004.11.034]
[9]
Elinson, M.N.; Merkulova, V.M.; Ilovaisky, A.I.; Demchuk, D.V.; Belyakov, P.A.; Nikishin, G.I. Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4′-pyrano[3,2-c]quinoline] scaffold. Mol. Divers., 2010, 14(4), 833-839.
[http://dx.doi.org/10.1007/s11030-009-9207-z] [PMID: 19921455]
[10]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[11]
Vilches, M.; Spannenberg, H.A.; Viktor, P.L.; Iaroshenko, O. Novel and efficient synthesis of 4,7-dihydro-1H-pyrrolo[2,3-b]pyridine derivatives via one-pot, three-component approach from N- substituted 5-amino-3-cyanopyrroles, various carbonyl and active methylene compounds. Tetrahedron, 2013, 69, 5955-5967.
[http://dx.doi.org/10.1016/j.tet.2013.04.115]
[12]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[13]
Hilton, S.T.; Ho, T.C.T.; Pljevaljcic, G.; Jones, K. A new route to spirooxindoles. Org. Lett., 2000, 2(17), 2639-2641.
[http://dx.doi.org/10.1021/ol0061642] [PMID: 10990416]
[14]
Rapposelli, S.; Breschi, M.C.; Calderone, V.; Digiacomo, M.; Martelli, A.; Testai, L.; Vanni, M.; Balsamo, A. Synthesis and biological evaluation of 5-membered spiro heterocycle-benzopyran derivatives against myocardial ischemia. Eur. J. Med. Chem., 2011, 46(3), 966-973.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.003] [PMID: 21288603]
[15]
Edmondson, S.; Danishefsky, S.; Sepp-lorenzinol, L.; Rosen, N. Total synthesis of spirotryprostatin A, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc., 1999, 121, 2147-2155.
[http://dx.doi.org/10.1021/ja983788i]
[16]
Kang, T.H.; Matsumoto, K.; Tohda, M.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Pteropodine and isopteropodine positively modulate the function of rat muscarinic M(1) and 5-HT(2) receptors expressed in Xenopus oocyte. Eur. J. Pharmacol., 2002, 444(1-2), 39-45.
[http://dx.doi.org/10.1016/S0014-2999(02)01608-4] [PMID: 12191580]
[17]
Huang, L.; Zhang, X.; Li, J.; Ding, K.; Li, X.; Zheng, W.; Yin, B. Three-Component Synthesis of Indanone-Fused Spirooxindole Derivatives. Eur. J. Org. Chem., 2013, 21, 4607-4613.
[18]
(a) Galliford, C.V.; Scheidt, K.A.; Angew, S. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. Engl., 2007, 46(46), 8748-8758.
(b) Chowdhury, S.; Liu, S.; Cadieux, A.J.; Hsieh, T.; Chafeev, M.; Sun, S.; Jia, Q.; Sun, J.; Wood, M.; Langille, J.; Sviridov, S.; Fu, J.; Zhang, Z.; Chui, R.; Wang, A.; Cheng, X.; Zhong, J.; Hossain, S.; Khakh, K.; Rajlic, I.; Verschoof, H.; Kwan, R.; Young, W. Tetracyclic spirooxindole blockers of hNaV1.7: activity in vitro and in CFA-induced inflammatory pain model. Med. Chem. Res., 2013, 22, 1825-1836.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924] [http://dx.doi.org/10.1007/s00044-012-0180-1]
[19]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; el-Bady, ShM. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[20]
Koch, M.A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17272-17277.
[http://dx.doi.org/10.1073/pnas.0503647102] [PMID: 16301544]
[21]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[22]
Trost, B.M.; Brennan, M.K. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis, 2009, 18, 3003-3025.
[http://dx.doi.org/10.1055/s-0029-1216975]
[23]
Ball-Jones, N.R.; Badillo, J.J.; Franz, A.K. Strategies for the enantioselective synthesis of spirooxindoles. Org. Biomol. Chem., 2012, 10(27), 5165-5181.
[http://dx.doi.org/10.1039/c2ob25184a] [PMID: 22581310]
[24]
Hong, L.; Wang, R. Recent advances in asymmetric organocatalytic construction of 3,30-spirocyclic oxindoles. Adv. Synth. Catal., 2013, 355, 1023-1030.
[http://dx.doi.org/10.1002/adsc.201200808]
[25]
Tan, B.; Candeias, N.R.; Barbas, C.F., III Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nat. Chem., 2011, 3(6), 473-477.
[http://dx.doi.org/10.1038/nchem.1039] [PMID: 21602863]
[26]
Shi, F.; Tao, Z.L.; Luo, S.W.; Tu, S.J.; Gong, L.Z. Scaffold-inspired enantioselective synthesis of biologically important spiro[pyrrolidin-3,2′-oxindoles] with structural diversity through catalytic isatin-derived 1,3-dipolar cycloadditions. Chemistry, 2012, 18(22), 6885-6894.
[http://dx.doi.org/10.1002/chem.201200358] [PMID: 22505189]
[27]
Deng, H.P.; Wei, Y.; Shi, M. Highly regio- and diastereoselective construction of spirocyclopenteneoxindoles through phosphine-catalyzed [3 + 2] annulation of Morita-Baylis-Hillman carbonates with isatylidene malononitriles. Org. Lett., 2011, 13(13), 3348-3351.
[http://dx.doi.org/10.1021/ol201094f] [PMID: 21650190]
[28]
Li, X.; Li, Y.M.; Peng, F.Z.; Wu, S.T.; Li, Z.Q.; Sun, Z.W.; Zhang, H.B.; Shao, Z.H. Highly enantioselective one-pot synthesis of spirocyclopentaneoxindoles containing the oxime group by organocatalyzed Michael addition/ISOC/fragmentation sequence. Org. Lett., 2011, 13(23), 6160-6163.
[http://dx.doi.org/10.1021/ol2024955] [PMID: 22050288]
[29]
Kuo, S.C.; Huang, L.J.; Nakamura, H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J. Med. Chem., 1984, 27(4), 539-544.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[30]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[31]
Dyachenko, V.D.; Rusanov, E.B. Novel approaches to synthesis of 4-alkyl-6-amino-5-cyano-3methyl(propyl,phenyl)2H,4Hpyrano[2,3c]pyrazoles. Chem. Heterocycl. Compd., 2004, 40, 231-240.
[http://dx.doi.org/10.1023/B:COHC.0000027898.06493.c5]
[32]
Shaabani, A.; Soleimani, E.; Sarvary, A.; Rezayan, A.H. A simple and efficient approach to the synthesis of 4H-furo[3,4-b]pyrans via a three-component reaction of isocyanides. Bioorg. Med. Chem. Lett., 2008, 18(14), 3968-3970.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.014] [PMID: 18585033]
[33]
Shaabani, A.; Sarvary, A.; Rezayan, A.H.; Keshipour, S. Synthesis of fully substituted pyrano[2,3-c]pyrazole derivatives via a multicomponent reaction of isocyanides. Tetrahedron, 2009, 65, 3492-3495.
[http://dx.doi.org/10.1016/j.tet.2009.02.035]
[34]
Litvinov, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M. New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro[(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-carbonitriles. J. Comb. Chem., 2009, 11(5), 914-919.
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[35]
Al-Matar, H.M.; Khalil, K.D.; Adam, A.Y.; Elnagdi, M.H. Green one pot solvent-free synthesis of pyrano[2,3-c]-pyrazoles and pyrazolo[1,5-a]pyrimidines. Molecules, 2010, 15(9), 6619-6629.
[http://dx.doi.org/10.3390/molecules15096619] [PMID: 20877248]
[36]
Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles per-6-amino-b-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett., 2010, 51, 3312-3316.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.087]
[37]
Mecadon, H.; Rohman, M.D.R.; Kharbangar, I. L-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett., 2011, 52, 3228-3231.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.048]
[38]
Muramulla, S.; Zhao, C.G. A new catalytic mode of the modularly designed organo catalysts (MDOs): enantioselective synthesis of dihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett., 2011, 5, 3905-3908.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.092]
[39]
Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A. Cross- condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: single-stage synthesis of 10-substituted6-amino-spiro-4-(piperidine-40)-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitriles. Tetrahedron, 2003, 59, 7491-7496.
[http://dx.doi.org/10.1016/S0040-4020(03)01178-5]
[40]
Vasuki, G.; Kumaravel, K. Rapid four-component reactions in water: synthesis of Pyranopyrazoles. Tetrahedron Lett., 2008, 49, 5636-5638.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.055]
[41]
Gogoi, S.; Zhao, C.G. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett., 2009, 50(19), 2252-2255.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.210] [PMID: 19915654]
[42]
Siddekha, A.; Nizam, A.; Pasha, M.A. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl- 1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 431-440.
[http://dx.doi.org/10.1016/j.saa.2011.06.033] [PMID: 21795106]
[43]
Mecadon, H.; Rohman, M.R.; Rajbangshi, M.; Myrboh, B. g-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett., 2011, 52, 2523-2525.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.036]
[44]
Azzam, S.H.S.; Pasha, M.A. Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Lett., 2012, 53, 6834-6837.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.025]
[45]
Mandha, S.R.; Siliveri, S.; Alla, M.; Bommena, V.R.; Bommineni, M.R.; Balasubramanian, S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg. Med. Chem. Lett., 2012, 22(16), 5272-5278.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[46]
Zonouz, A.M.; Eskandari, I.; Khavasi, H.R. A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4- aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett., 2012, 53, 5519-5522.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.010]
[47]
Albadi, J.; Mansournezhad, A.; Derakhshandeh, Z. CuO-CeO2 nanocomposite: a highly efficient recyclable catalyst for the multicomponent synthesis of 4Hbenzo[b]pyran derivatives. Chin. Chem. Lett., 2013, 24, 821-824.
[http://dx.doi.org/10.1016/j.cclet.2013.05.031]
[48]
Yu, J.X.; Zhou, Y.B.; Shen, T.H. Novel and efficient one-pot synthesis of spiro[indoline-3,40-pyrano[2,3-c]pyrazole]derivatives catalyzed by L-proline in aqueous medium. J. Chem. Res., 2013, 37, 365-368.
[http://dx.doi.org/10.3184/174751913X13687116634925]
[49]
Pal, S.; Khan, M.D.; Karamthulla, S.; Abbas, S.J.; Choudhury, L.H. One pot four component reaction for the efficient synthesis of spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-30-carboxylate derivatives. Tetrahedron Lett., 2013, 54, 5434-5440.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.117]
[50]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[51]
Ahadi, S.; Yasaei, Z.; Bazgir, A. A clean and one-pot synthesis of spiroindolinepyranopyrazoles. J. Heterocycl. Chem., 2010, 47, 1090-1094.
[http://dx.doi.org/10.1002/jhet.437]
[52]
Liu, X.Q.; Xu, X.L.; Wang, X. A facile and convenient way to functionalized trifluoromethylated spirocyclic[indole-3,4-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron Lett., 2013, 54, 4451-4455.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.038]
[53]
(a) Shanthi, G.; Subbulakshmi, G.; Perumal, P.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron, 2007, 63, 2057-2063.
(b) Silveira, C.C.; Mendes, S.R.; Wolf, L.; Martins, G.M.; Mullen, L.V. Efficient synthesis of 3-selanyl- and 3-sulfanylindoles employing trichloroisocyanuric acid and dichalcogenides. Tetrahedron, 2012, 68, 10464-10469.
(c) Aygün, A.; Pindur, U. Chemistry and biology of new marine alkaloids from the indole and annelated indole series. Curr. Med. Chem., 2003, 10(13), 1113-1127.
(d) Gupta, L.; Talwar, A.; Chauhan, P.M. Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr. Med. Chem., 2007, 14(16), 1789-1803.
(e) La Regina, G.; Edler, M.C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J.F.; Scovassi, A.I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies. J. Med. Chem., 2007, 50(12), 2865-2874.
(f) Funk, C.D. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat. Rev. Drug Discov., 2005, 4(8), 664-672.
(g) Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110(8), 4489-4497.
[http://dx.doi.org/10.1016/j.tet.2006.12.042] [http://dx.doi.org/10.1016/j.tet.2012.09.022] [http://dx.doi.org/10.2174/0929867033457511] [PMID: 12678805] [http://dx.doi.org/10.2174/092986707781058904] [PMID: 17627517] [http://dx.doi.org/10.1021/jm061479u] [PMID: 17497841] [http://dx.doi.org/10.1038/nrd1796] [PMID: 16041318] [http://dx.doi.org/10.1021/cr900211p] [PMID: 20380420]
[54]
Zhu, S.L.; Ji, S.J.; Zhang, Y. A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron, 2007, 63, 9365-9372.
[http://dx.doi.org/10.1016/j.tet.2007.06.113]
[55]
Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64, 9143-9149.
[http://dx.doi.org/10.1016/j.tet.2008.06.061]
[56]
Shemchuk, L.; Chernykh, V.; Red’kin, R. Synthesis of fused 2′-amino-3′-R-spiro-[indole-3,4′-pyran]-2(1H)-ones. Russ. J. Org. Chem., 2008, 44, 1789.
[http://dx.doi.org/10.1134/S1070428008120117]
[57]
Wang, L.M.; Jiao, N.; Qiu, J.; Yu, J.J.; Liu, J.Q.; Guo, F.L.; Liu, Y. Sodium stearatecatalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron, 2010, 66, 339-343.
[http://dx.doi.org/10.1016/j.tet.2009.10.091]
[58]
Hari, G.S.; Lee, Y.R. Efficient One-Pot Synthesis of Spirooxindole Derivatives by Ethylenediamine Diacetate Catalyzed Reactions in Water. ChemInform, 2010, 41, 453-464.
[http://dx.doi.org/10.1002/chin.201023107]
[59]
Zhao, L.Q.; Zhou, B.; Li, Y.Q. An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition. Heteroatom Chem., 2011, 22, 673-677.
[http://dx.doi.org/10.1002/hc.20723]
[60]
Suresh, B.A.; Raghunathan, R. TiO2–silica mediated one pot three component 1,3-dipolar cycloaddition reaction: a facile and rapid synthesis of dispiro acenaphthenone/oxindole [indanedione/oxindole] pyrroloisoquinoline ring systems. Tetrahedron, 2007, 63, 8010-8016.
[http://dx.doi.org/10.1016/j.tet.2007.05.063]
[61]
Ahadi, S.; Yasaei, Z.; Bazgir, A. A clean and one-pot synthesis of spiroindoline-pyranopyrazoles. J. Heterocycl. Chem., 2010, 47, 1090-1094.
[http://dx.doi.org/10.1002/jhet.437]
[62]
Guo, R.Y.; An, Z.M.; Mo, L.P.; Yang, S.T.; Liu, H.X.; Wang, S.X.; Zhang, Z.H. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron, 2013, 69, 9931-9938.
[http://dx.doi.org/10.1016/j.tet.2013.09.082]
[63]
Yu, J.; Zhou, Y.; Shen, T.; Mao, W.; Chen, K.; Song, Q. Novel and Efficient One-Pot Synthesis of Spiro[Indoline-3,4′-Pyrano [2,3-c]pyrazole]Derivatives Catalysed by L-Proline in Aqueous Medium. J. Chem. Res., 2013, 37, 365.
[http://dx.doi.org/10.3184/174751913X13687116634925]
[64]
Mamaghani, M.; Hossein Nia, R.; Shirini, F.; Tabatabaeian, K.; Rassa, M. An efficient and eco-friendly synthesis and evaluation of antibactrial activity of pyrano[2,3-c]pyrazole derivatives. Med. Chem. Res., 2015, 24, 1916-1926.
[http://dx.doi.org/10.1007/s00044-014-1271-y]
[65]
Rai, P.; Srivastava, M.; Singh, J.; Singh, J. Efficient iodine-catalyzed one pot synthesis of highly functionalised pyrazoles in water. New J. Chem., 2014, 38, 302-307.
[http://dx.doi.org/10.1039/C3NJ01149F]
[66]
Paul, S.; Pradhan, K.; Ghosh, S.; De, S.; Das, A.R. Uncapped SnO2 quantum dot catalyzed cascade assembling of four components: a rapid and green approach to the pyrano[2,3-c]pyrazole and spiro-2-oxindole derivatives. Tetrahedron, 2014, 70, 6088-6099.
[http://dx.doi.org/10.1016/j.tet.2014.02.077]
[67]
Feng, J.; Ablajan, K.; Sali, A. 4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron, 2014, 70, 484-489.
[http://dx.doi.org/10.1016/j.tet.2013.11.019]
[68]
Daraie, M.; Beheshtiha, Y.S.; Heravi, M.M. Synthesis of spirochromene derivatives catalyzed by Mn(bpyo)2/MCM-41 in water. Monatsh. Chem., 2015, 146, 191-198.
[http://dx.doi.org/10.1007/s00706-014-1292-8]
[69]
Ziarani, G.M.; Rahimifard, M.; Nouri, F.; Badiei, A. Green one-pot, four-componentsynthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives using amino-functionalized nanoporous silica SBA-15 under solvent-free conditions. J. Serb. Chem. Soc., 2015, 80(10), 1265-1272.
[http://dx.doi.org/10.2298/JSC140930045M]
[70]
Gein, V.L.; Zamaraeva, T.M.; Slepukhin, P.A. Diethyl oxalacetate sodium salt as a reagent to obtain functionalized spiro[indoline-3,40-pyrano[2,3-c]pyrazoles]. Tetrahedron Lett., 2017, 58, 134-136.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.117]
[71]
Rezvanian, A.; Zadsirjan, V.; Saedi, P.; Heravi, M.M. Iodine-catalyzed one-pot four-component synthesis of spiro[indoline-3,4′-pyrano-pyrazole] derivatives. J. Heterocycl. Chem., 2018, 55, 2772-2780.
[http://dx.doi.org/10.1002/jhet.3342]
[72]
(a) Kobayashi, S.; Manabe, K.; Nagayama, S.; Otera, J. Modern amination methods; Wiley-VCH: Weinheim, 2000.
(b) Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. Organic synthesis inside particles in water. J. Am. Chem. Soc., 2000, 122, 7202-7207.
(c) Kobayashi, S.; Nagayama, S.; Busujima, T. Lewis acid catalysts stable in water. correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J. Am. Chem. Soc., 1998, 120, 8287-8288.
[http://dx.doi.org/10.1021/ja001420r] [http://dx.doi.org/10.1021/ja980715q]
[73]
Wang, L.M.; Jiao, N.; Qui, J.; Yu, J.J.; Liu, J.Q.; Guo, F.L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron, 2010, 66, 339-343.
[http://dx.doi.org/10.1016/j.tet.2009.10.091]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy