Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies

Author(s): Xin Zhao, Yun Ye, Shuyu Ge, Pingping Sun and Ping Yu*

Volume 20, Issue 30, 2020

Page: [2762 - 2776] Pages: 15

DOI: 10.2174/1568026620666200826122402

Price: $65

Abstract

Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.

Keywords: Targeted drug delivery, Brain tumors, Central nervous system, Blood-brain barrier, Blood-brain tumor barrier drug delivery, Ligand targeting, Drug transport.

Graphical Abstract

[1]
Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, H.T.; Abebe, M.; Abebe, Z.; Abejie, A.N.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abrham, A.R.; Abu-Raddad, L.J.; Accrombessi, M.M.K.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adedoyin, R.A.; Adekanmbi, V.; Adetokunboh, O.O.; Adhena, B.M.; Adib, M.G.; Admasie, A.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Agrawal, A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmed, M.B.; Ahmed, S.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akbari, M.E.; Akinyemi, R.O.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alebel, A.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alonso, J.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Amini, E.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansari, H.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Aremu, O.; Ärnlöv, J.; Arora, A.; Arora, M.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asfaw, E.T.; Ataro, Z.; Atique, S.; Atre, S.R.; Ausloos, M.; Avokpaho, E.F.G.A.; Awasthi, A.; Quintanilla, B.P.A.; Ayele, Y.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Bacha, U.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Banach, M.; Banerjee, K.; Bannick, M.S.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barquera, S.; Barrero, L.H.; Bassat, Q.; Basu, S.; Baune, B.T.; Baynes, H.W.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Belay, E.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bernabe, E.; Bernstein, R.S.; Bertolacci, G.J.; Beuran, M.; Beyranvand, T.; Bhalla, A.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Biehl, M.H.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Biswas, T.; Blacker, B.F.; Basara, B.B.; Borschmann, R.; Bosetti, C.; Bozorgmehr, K.; Brady, O.J.; Brant, L.C.; Brayne, C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Britton, G.; Brugha, T.; Busse, R.; Butt, Z.A.; Callender, C.S.K.H.; Campos-Nonato, I.R.; Campuzano Rincon, J.C.; Cano, J.; Car, M.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castle, C.D.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Charlson, F.J.; Chaturvedi, P.; Chiang, P.P-C.; Chimed-Ochir, O.; Chisumpa, V.H.; Chitheer, A.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Chung, S-C.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Cooper, L.T.; Cortesi, P.A.; Cortinovis, M.; Cousin, E.; Cowie, B.C.; Criqui, M.H.; Cromwell, E.A.; Crowe, C.S.; Crump, J.A.; Cunningham, M.; Daba, A.K.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dang, A.K.; Dargan, P.I.; Daryani, A.; Das, S.K.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Dash, A.P.; Davis, A.C.; Davis Weaver, N.; Davitoiu, D.V.; Davletov, K.; De La Hoz, F.P.; De Neve, J-W.; Degefa, M.G.; Degenhardt, L.; Degfie, T.T.; Deiparine, S.; Demoz, G.T.; Demtsu, B.B.; Denova-Gutiérrez, E.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dicker, D.; Dinberu, M.T.; Ding, E.L.; Dirac, M.A.; Djalalinia, S.; Dokova, K.; Doku, D.T.; Donnelly, C.A.; Dorsey, E.R.; Doshi, P.P.; Douwes-Schultz, D.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Edessa, D.; Edvardsson, D.; Eggen, A.E.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Ellingsen, C.L.; Endres, M.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esmaeili, R.; Esteghamati, A.; Fakhar, M.; Fakhim, H.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farinha, C.S.E. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2018, 392, 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7]
[2]
Smith, M.A.; Reaman, G.H. Remaining challenges in childhood cancer and newer targeted therapeutics. Pediatr. Clin. North Am., 2015, 62(1), 301-312.
[http://dx.doi.org/10.1016/j.pcl.2014.09.018] [PMID: 25435124]
[3]
Perkins, A.; Liu, G. Primary brain tumors in adults: diagnosis and treatment. Am. Fam. Physician, 2016, 93(3), 211-217.
[PMID: 26926614]
[4]
Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; Brandes, A.A.; Hilton, M.; Abrey, L.; Cloughesy, T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 709-722.
[http://dx.doi.org/10.1056/NEJMoa1308345] [PMID: 24552318]
[5]
Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; Jones, D.T.W.; Joyce, J.A.; Kearns, P.; Kieran, M.W.; Mellinghoff, I.K.; Merchant, M.; Pfister, S.M.; Pollard, S.M.; Ramaswamy, V.; Rich, J.N.; Robinson, G.W.; Rowitch, D.H.; Sampson, J.H.; Taylor, M.D.; Workman, P.; Gilbertson, R.J. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol., 2019, 16(8), 509-520.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[6]
Peyrl, A.; Frischer, J.; Hainfellner, J.A.; Preusser, M.; Dieckmann, K.; Marosi, C. Brain tumors - other treatment modalities. Handb. Clin. Neurol., 2017, 145, 547-560.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00034-1] [PMID: 28987193]
[7]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[8]
Gerstner, E.R.; Fine, R.L. Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J. Clin. Oncol., 2007, 25(16), 2306-2312.
[http://dx.doi.org/10.1200/JCO.2006.10.0677] [PMID: 17538177]
[9]
Kornblith, P.L.; Walker, M. Chemotherapy for malignant gliomas. J. Neurosurg., 1988, 68(1), 1-17.
[http://dx.doi.org/10.3171/jns.1988.68.1.0001] [PMID: 3275753]
[10]
GBD 2016 Neurology Collaborators, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.;Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the global burden of disease Study. Lancet Neurol., 2019, 18, 459-480.
[11]
GBD 2016 Brain and Other CNS Cancer Collaborators, A.P.; Fisher, J.L.; Belachew, A.B.; Bijani, A.; Feigin, V.L.; Murray, C.J.L.; Fitzmaurice, C. Global, regional, and national burden of brain and other cns cancer, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18, 376-393.
[12]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[13]
Mohandas, R.; Gayathri, R.; Priya, V. Cancer nanotechnology: a review. Drug Invent. Today, 2018, 10, 2719-2726.
[14]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[15]
Ashida, R.; Kawabata, K. ichi; Maruoka, T.; Asami, R.; Yoshikawa, H.; Takakura, R.; Ioka, T.; Katayama, K.; Tanaka, S. New approach for local cancer treatment using pulsed high-intensity focused ultrasound and phase-change nanodroplets. J. Med. Ultrason., 2015, 42, 457-466.
[http://dx.doi.org/10.1007/s10396-015-0634-4]
[16]
Han, H.; Lee, H.; Kim, K.; Kim, H. Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery. J. Control. Release, 2017, 266, 75-86.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.022] [PMID: 28928042]
[17]
Parodi, A.; Rudzińska, M.; Deviatkin, A.A.; Soond, S.M.; Baldin, A.V.; Zamyatnin, A.A., Jr Established and emerging strategies for drug delivery across the blood-brain barrier in brain cancer. Pharmaceutics, 2019, 11(5), 11.
[http://dx.doi.org/10.3390/pharmaceutics11050245] [PMID: 31137689]
[18]
Vogelbaum, M.A.; Brewer, C.; Barnett, G.H.; Mohammadi, A.M.; Peereboom, D.M.; Ahluwalia, M.S.; Gao, S. First-in-human evaluation of the Cleveland Multiport Catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. J. Neurosurg., 2018, 130, 1-10.
[http://dx.doi.org/10.3171/2017.10.JNS171845] [PMID: 29652233]
[19]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[20]
Patel, D.; Kell, A.; Simard, B.; Xiang, B.; Lin, H.Y.; Tian, G. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials, 2011, 32(4), 1167-1176.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.013] [PMID: 21035183]
[21]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[22]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[23]
Banerjee, D.; Sengupta, S. Nanoparticles in cancer chemotherapy. Prog. Mol. Biol. Transl. Sci., 2011, 104, 489-507.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00012-7] [PMID: 22093227]
[24]
Sarafraz, M.; Heidari, M.; Bayat, A.; Hanafi, M.G.; Fahimi, A.; Farasat, M.; Saki, N.; Molaei, J. Role of HRCT imaging in predicting the visibility of round window (rw) on patients underwent cochlear implant surgery. Clin. Epidemiol. Glob. Health, 2020, 8, 432-436.
[http://dx.doi.org/10.1016/j.cegh.2019.10.003]
[25]
Chichieveishvili, N.; Khubulava, S.; Korsantiya, B.; Kristesashvili, G.; Pichhaia, G. The possibility of silver nanoparticle use in medicine. Drug Invent. Today, 2018, 10, 1222-1226.
[26]
Rezaee, Z.; Yadollahpour, A.; Bayati, V.; Negad Dehbashi, F.; Negad Dehbashi, F.; Dehbashi, F.N. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study. Int. J. Nanomedicine, 2017, 12, 1431-1439.
[http://dx.doi.org/10.2147/IJN.S128996] [PMID: 28260889]
[27]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Dye-doped fluorescent nanoparticles in molecular imaging: a review of recent advances and future opportunities. Material Science Research India, 2014, 11(2), 102-113.
[http://dx.doi.org/10.13005/msri/110203]
[28]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[29]
Yadollahpour, A.; Venkateshwarlu, G. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging. Int. J. Pharm. Technol., 2016, 8, 11379-11393.
[30]
Du, Y.; Rajamanickam, K.; Stumpf, T.R.; Qin, Y.; McCulloch, H.; Yang, X.; Zhang, J.; Tsai, E.; Cao, X. Paramagnetic quantum dots as multimodal probes for potential applications in nervous system imaging. J. Inorg. Organomet. Polym. Mater., 2018, 28, 711-720.
[http://dx.doi.org/10.1007/s10904-017-0766-7]
[31]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Applications of upconversion nanoparticles in molecular imaging: a review of recent advances and future opportunities. Biosci. Biotechnol. Res. Asia, 2015, 12, 131-140.
[http://dx.doi.org/10.13005/bbra/1615]
[32]
Subbiahdoss, G.; Sharifi, S.; Grijpma, D.W.; Laurent, S.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater., 2012, 8(6), 2047-2055.
[http://dx.doi.org/10.1016/j.actbio.2012.03.002] [PMID: 22406508]
[33]
Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev., 2013, 113(5), 3407-3424.
[http://dx.doi.org/10.1021/cr300335p] [PMID: 23452512]
[34]
Mangraviti, A.; Gullotti, D.; Tyler, B.; Brem, H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J. Control. Release, 2016, 240, 443-453.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.031] [PMID: 27016141]
[35]
Koziara, J.M.; Lockman, P.R.; Allen, D.D.; Mumper, R.J. In situ blood-brain barrier transport of nanoparticles. Pharm. Res., 2003, 20(11), 1772-1778.
[http://dx.doi.org/10.1023/B:PHAM.0000003374.58641.62] [PMID: 14661921]
[36]
Sharma, G.; Sharma, A.R.; Lee, S-S.; Bhattacharya, M.; Nam, J-S.; Chakraborty, C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm., 2019, 559, 360-372.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.056] [PMID: 30721725]
[37]
Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4(1), e1153568.
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[38]
Halle, B.; Mongelard, K.; Poulsen, F.R. Convection-enhanced drug delivery for glioblastoma: a systematic review focused on methodological differences in the use of the convection-enhanced delivery method. Asian J. Neurosurg., 2019, 14(1), 5-14.
[http://dx.doi.org/10.4103/ajns.AJNS_302_17] [PMID: 30937002]
[39]
Raucher, D.; Dragojevic, S.; Ryu, J. Macromolecular drug carriers for targeted glioblastoma therapy: preclinical studies, challenges, and future perspectives. Front. Oncol., 2018, 8, 624.
[http://dx.doi.org/10.3389/fonc.2018.00624] [PMID: 30619758]
[40]
Sharif, Y.; Jumah, F.; Coplan, L.; Krosser, A.; Sharif, K.; Tubbs, R.S. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin. Anat., 2018, 31(6), 812-823.
[http://dx.doi.org/10.1002/ca.23083] [PMID: 29637627]
[41]
Arvanitis, C.D.; Askoxylakis, V.; Guo, Y.; Datta, M.; Kloepper, J.; Ferraro, G.B.; Bernabeu, M.O.; Fukumura, D.; McDannold, N.; Jain, R.K. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl. Acad. Sci. USA, 2018, 115(37), E8717-E8726.
[http://dx.doi.org/10.1073/pnas.1807105115] [PMID: 30150398]
[42]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[43]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[44]
Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol., 2015, 38, 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[45]
Cardoso, F.L.; Brites, D.; Brito, M.A. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Brain Res. Rev., 2010, 64(2), 328-363.
[http://dx.doi.org/10.1016/j.brainresrev.2010.05.003] [PMID: 20685221]
[46]
Shi, M.; Sanche, L. Convection-enhanced delivery in malignant gliomas: a review of toxicity and efficacy. J. Oncol., 2019, 2019, 9342796.
[http://dx.doi.org/10.1155/2019/9342796] [PMID: 31428153]
[47]
Bonkowski, D.; Katyshev, V.; Balabanov, R.D.; Borisov, A.; Dore-Duffy, P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS, 2011, 8(1), 8.
[http://dx.doi.org/10.1186/2045-8118-8-8] [PMID: 21349156]
[48]
Cucullo, L.; Couraud, P-O.; Weksler, B.; Romero, I-A.; Hossain, M.; Rapp, E.; Janigro, D. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J. Cereb. Blood Flow Metab., 2008, 28(2), 312-328.
[http://dx.doi.org/10.1038/sj.jcbfm.9600525] [PMID: 17609686]
[49]
Boje, K.M.K. In vivo measurement of blood-brain barrier. Curr. Protocols Pharmacol., 2002, 7, 1-39.
[50]
Hanada, S.; Fujioka, K.; Inoue, Y.; Kanaya, F.; Manome, Y.; Yamamoto, K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int. J. Mol. Sci., 2014, 15(2), 1812-1825.
[http://dx.doi.org/10.3390/ijms15021812] [PMID: 24469316]
[51]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[52]
de Boer, A.G.; Gaillard, P.J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 323-355.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105237] [PMID: 16961459]
[53]
Burton, A.R.; Baquet, Z.; Eisenbarth, G.S.; Tisch, R.; Smeyne, R.; Workman, C.J.; Vignali, D.A.A. Central nervous system destruction mediated by glutamic acid decarboxylase-specific CD4+ T cells. J. Immunol., 2010, 184(9), 4863-4870.
[http://dx.doi.org/10.4049/jimmunol.0903728] [PMID: 20348424]
[54]
Petty, M.A.; Lo, E.H. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol., 2002, 68(5), 311-323.
[http://dx.doi.org/10.1016/S0301-0082(02)00128-4] [PMID: 12531232]
[55]
Campbell, H.K.; Maiers, J.L.; DeMali, K.A. Interplay between Tight Junctions &amp. Adherens Junctions. Exp. Cell Res., 2017, 358, 39-44.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.061] [PMID: 28372972]
[56]
Kobayashi, T.; Ishida, T.; Okada, Y.; Ise, S.; Harashima, H.; Kiwada, H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm., 2007, 329(1-2), 94-102.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.039] [PMID: 16997518]
[57]
Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 586-599.
[http://dx.doi.org/10.1038/nrm882] [PMID: 12154370]
[58]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[59]
Hu, Q.; Sun, W.; Wang, C.; Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev., 2016, 98, 19-34.
[http://dx.doi.org/10.1016/j.addr.2015.10.022] [PMID: 26546751]
[60]
Lakshmi, P.J.; Anitha, R.; Lakshmi, T. Targeted drug delivery systems used in dentistry - a short review. Drug Invent. Today, 2018, 10, 2747-2751.
[61]
Durairaj, B.; Santhi, R.; Hemalatha, A. Isolation of chitosan from fish scales of catla catla and synthesis, characterization and screening for larvicidal potential of chitosan-based silver nanoparticles. Drug Invent. Today, 2018, 10, 1357-1362.
[62]
Phillips, M.A.; Gran, M.L.; Peppas, N.A. Targeted nanodelivery of drugs and diagnostics. Nano Today, 2010, 5(2), 143-159.
[http://dx.doi.org/10.1016/j.nantod.2010.03.003] [PMID: 20543895]
[63]
Girardin, F. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin. Neurosci., 2006, 8(3), 311-321.
[PMID: 17117613]
[64]
Lin, L.; Yee, S.W.; Kim, R.B.; Giacomini, K.M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov., 2015, 14(8), 543-560.
[http://dx.doi.org/10.1038/nrd4626] [PMID: 26111766]
[65]
Borst, P.; Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem., 2002, 71, 537-592.
[http://dx.doi.org/10.1146/annurev.biochem.71.102301.093055] [PMID: 12045106]
[66]
Abbruscato, T.J.; Lopez, S.P.; Mark, K.S.; Hawkins, B.T.; Davis, T.P. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci., 2002, 91(12), 2525-2538.
[http://dx.doi.org/10.1002/jps.10256] [PMID: 12434396]
[67]
Choi, Y.H.; Yu, A-M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[68]
Zhan, C.; Lu, W. The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr. Pharm. Biotechnol., 2012, 13(12), 2380-2387.
[http://dx.doi.org/10.2174/138920112803341798] [PMID: 23016643]
[69]
Hervé, F.; Ghinea, N.; Scherrmann, J-M. CNS delivery via adsorptive transcytosis. AAPS J., 2008, 10(3), 455-472.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[70]
Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 2013, 7, 27-34.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[71]
Mei, L.; Zhang, Z.; Zhao, L.; Huang, L.; Yang, X.L.; Tang, J.; Feng, S.S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv. Drug Deliv. Rev., 2013, 65(6), 880-890.
[http://dx.doi.org/10.1016/j.addr.2012.11.005] [PMID: 23220325]
[72]
Culot, M.; Lundquist, S.; Vanuxeem, D.; Nion, S.; Landry, C.; Delplace, Y.; Dehouck, M.P.; Berezowski, V.; Fenart, L.; Cecchelli, R. An in vitro blood-brain barrier model for high throughput (hts) toxicological screening. Toxicol. In Vitro, 2008, 22(3), 799-811.
[http://dx.doi.org/10.1016/j.tiv.2007.12.016] [PMID: 18280105]
[73]
Song, W.; Li, D.; Tao, L.; Luo, Q.; Chen, L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm. Sin. B, 2020, 10(1), 61-78.
[http://dx.doi.org/10.1016/j.apsb.2019.12.006] [PMID: 31993307]
[74]
Sabharanjak, S.; Mayor, S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev., 2004, 56(8), 1099-1109.
[http://dx.doi.org/10.1016/j.addr.2004.01.010] [PMID: 15094209]
[75]
Bogman, K.; Erne-Brand, F.; Alsenz, J.; Drewe, J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci., 2003, 92(6), 1250-1261.
[http://dx.doi.org/10.1002/jps.10395] [PMID: 12761814]
[76]
Alexander, S.; Mathie, A.; Peters, J. Transporters are an under-developed therapeutic target. Discuss. Br. J. Pharmacol., 2011, 164(7), 1751-1752.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01738.x] [PMID: 22085158]
[77]
Torchilin, V.P. Passive and active drug targeting: drug delivery to tumors as an example. In: Handbook of experimental pharmacology; Springer: Berlin; , 2010; pp. 3-53.
[78]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[79]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8(4), 1172-1181.
[PMID: 11948130]
[80]
Velraj, M.; Shruthi, V.; Murugavel, S.; Shanmugam, R. Evaluation of quercetin-loaded poly-lactide-co-glycolide acid silver nanoparticles from the ethanolic extract of mallotus philippensis fruits. Drug Invent. Today, 2018, 10, 253-256.
[81]
Drummond, D.C.; Hong, K.; Park, J.W.; Benz, C.C.; Kirpotin, D.B. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm., 2000, 60, 285-332.
[http://dx.doi.org/10.1016/S0083-6729(00)60022-5] [PMID: 11037627]
[82]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[83]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[84]
Maeda, H.; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst., 1989, 6(3), 193-210.
[PMID: 2692843]
[85]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[86]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[87]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2004, 56(11), 1649-1659.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[88]
Kreuter, J. Nanoparticles--a historical perspective. Int. J. Pharm., 2007, 331(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.021] [PMID: 17110063]
[89]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[90]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[91]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[92]
Jones, A.; Harris, A.L. New developments in angiogenesis: a major mechanism for tumor growth and target for therapy. Cancer J. Sci. Am., 1998, 4(4), 209-217.
[PMID: 9689977]
[93]
Baban, D.F.; Seymour, L.W. Control of tumour vascular permeability. Adv. Drug Deliv. Rev., 1998, 34(1), 109-119.
[http://dx.doi.org/10.1016/S0169-409X(98)00003-9] [PMID: 10837673]
[94]
Segal, E.; Pan, H.; Ofek, P.; Udagawa, T.; Kopecková, P.; Kopecek, J.; Satchi-Fainaro, R. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One, 2009, 4(4), e5233.
[http://dx.doi.org/10.1371/journal.pone.0005233] [PMID: 19381291]
[95]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[96]
Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4607-4612.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[97]
Rubin, P.; Casarett, G. Microcirculation of tumors. II. The supervascularized state of irradiated regressing tumors. Clin. Radiol., 1966, 17(4), 346-355.
[http://dx.doi.org/10.1016/S0009-9260(66)80052-1] [PMID: 5924244]
[98]
Shubik, P. Vascularization of tumors: a review. J. Cancer Res. Clin. Oncol., 1982, 103(3), 211-226.
[http://dx.doi.org/10.1007/BF00409698] [PMID: 6181069]
[99]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[100]
Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med., 1971, 133(2), 275-288.
[http://dx.doi.org/10.1084/jem.133.2.275] [PMID: 4332371]
[101]
Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol., 2020, 10, 221.
[http://dx.doi.org/10.3389/fonc.2020.00221] [PMID: 32175278]
[102]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[103]
Veikkola, T.; Karkkainen, M.; Claesson-Welsh, L.; Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res., 2000, 60(2), 203-212.
[PMID: 10667560]
[104]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[105]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[106]
Zhang, J.; Tang, H.; Liu, Z.; Chen, B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int. J. Nanomedicine, 2017, 12, 8483-8493.
[http://dx.doi.org/10.2147/IJN.S148359] [PMID: 29238188]
[107]
Krasnici, S.; Werner, A.; Eichhorn, M.E.; Schmitt-Sody, M.; Pahernik, S.A.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Naujoks, K.; Dellian, M. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer, 2003, 105(4), 561-567.
[http://dx.doi.org/10.1002/ijc.11108] [PMID: 12712451]
[108]
Kunstfeld, R.; Wickenhauser, G.; Michaelis, U.; Teifel, M.; Umek, W.; Naujoks, K.; Wolff, K.; Petzelbauer, P. Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J. Invest. Dermatol., 2003, 120(3), 476-482.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12057.x] [PMID: 12603862]
[109]
Thurston, G.; McLean, J.W.; Rizen, M.; Baluk, P.; Haskell, A.; Murphy, T.J.; Hanahan, D.; McDonald, D.M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest., 1998, 101(7), 1401-1413.
[http://dx.doi.org/10.1172/JCI965] [PMID: 9525983]
[110]
Ran, S.; Downes, A.; Thorpe, P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res., 2002, 62(21), 6132-6140.
[PMID: 12414638]
[111]
Zhuang, J.; Gordon, M.R.; Ventura, J.; Li, L.; Thayumanavan, S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev., 2013, 42(17), 7421-7435.
[http://dx.doi.org/10.1039/c3cs60094g] [PMID: 23765263]
[112]
Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev., 2011, 40(5), 2673-2703.
[http://dx.doi.org/10.1039/c0cs00097c] [PMID: 21286593]
[113]
Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev., 2016, 116(6), 3883-3918.
[http://dx.doi.org/10.1021/acs.chemrev.5b00578] [PMID: 26934630]
[114]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[115]
Kiessling, F.; Mertens, M.E.; Grimm, J.; Lammers, T. Nanoparticles for imaging: top or flop? Radiology, 2014, 273(1), 10-28.
[http://dx.doi.org/10.1148/radiol.14131520] [PMID: 25247562]
[116]
Estrada, A.C.; Daniel-Da-Silva, A.L.; Trindade, T. Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Advances, 2013, 3, 10828-10836.
[http://dx.doi.org/10.1039/c3ra40662h]
[117]
Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res., 2017, 115, 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[118]
Gray, M.D.; Lyon, P.C.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Focused ultrasound hyperthermia for targeted drug release from thermosensitive liposomes: results from a phase i trial. Radiology, 2019, 291(1), 232-238.
[http://dx.doi.org/10.1148/radiol.2018181445] [PMID: 30644817]
[119]
Oude Blenke, E.; Mastrobattista, E.; Schiffelers, R.M. Strategies for triggered drug release from tumor targeted liposomes. Expert Opin. Drug Deliv., 2013, 10(10), 1399-1410.
[http://dx.doi.org/10.1517/17425247.2013.805742] [PMID: 23796390]
[120]
van Elk, M.; Deckers, R.; Oerlemans, C.; Shi, Y.; Storm, G.; Vermonden, T.; Hennink, W.E. Triggered release of doxorubicin from temperature-sensitive poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) grafted liposomes. Biomacromolecules, 2014, 15(3), 1002-1009.
[http://dx.doi.org/10.1021/bm401904u] [PMID: 24476227]
[121]
Zhang, Y.; Wei, C.; Lv, F.; Liu, T. Real-time imaging tracking of a dual-fluorescent drug delivery system based on doxorubicin-loaded globin- polyethylenimine nanoparticles for visible tumor therapy. Colloids Surf. B Biointerfaces, 2018, 170, 163-171.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.008] [PMID: 29906701]
[122]
Motamarry, A.; Negussie, A.H.; Rossmann, C.; Small, J.; Wolfe, A.M.; Wood, B.J.; Haemmerich, D. Real-time fluorescence imaging for visualization and drug uptake prediction during drug delivery by thermosensitive liposomes. Int. J. Hyperthermia, 2019, 36(1), 817-826.
[http://dx.doi.org/10.1080/02656736.2019.1642521] [PMID: 31451077]
[123]
Santos, M.A.; Goertz, D.E.; Hynynen, K. Focused ultrasound hyperthermia mediated drug delivery using thermosensitive liposomes and visualized with in vivo two-photon microscopy. Theranostics, 2017, 7(10), 2718-2731.
[http://dx.doi.org/10.7150/thno.19662] [PMID: 28819458]
[124]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[125]
Gundelfinger, E.D.; Kessels, M.M.; Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nat. Rev. Mol. Cell Biol., 2003, 4(2), 127-139.
[http://dx.doi.org/10.1038/nrm1016] [PMID: 12563290]
[126]
Etame, A.B.; Smith, C.A.; Chan, W.C.W.; Rutka, J.T. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine (Lond.), 2011, 7(6), 992-1000.
[http://dx.doi.org/10.1016/j.nano.2011.04.004] [PMID: 21616168]
[127]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.014] [PMID: 19874859]
[128]
Kolhar, P.; Anselmo, A.C.; Gupta, V.; Pant, K.; Prabhakarpandian, B.; Ruoslahti, E.; Mitragotri, S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10753-10758.
[http://dx.doi.org/10.1073/pnas.1308345110] [PMID: 23754411]
[129]
Lockman, P.R.; Koziara, J.M.; Mumper, R.J.; Allen, D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target., 2004, 12(9-10), 635-641.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[130]
Kreuter, J.; Hekmatara, T.; Dreis, S.; Vogel, T.; Gelperina, S.; Langer, K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J. Control. Release, 2007, 118(1), 54-58.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.012] [PMID: 17250920]
[131]
Bramini, M.; Ye, D.; Hallerbach, A.; Nic Raghnaill, M.; Salvati, A.; Åberg, C.; Dawson, K.A. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano, 2014, 8(5), 4304-4312.
[http://dx.doi.org/10.1021/nn5018523] [PMID: 24773217]
[132]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[133]
Wiley, D.T.; Webster, P.; Gale, A.; Davis, M.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8662-8667.
[http://dx.doi.org/10.1073/pnas.1307152110] [PMID: 23650374]
[134]
Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7), 5390-5399.
[http://dx.doi.org/10.1021/nn200365a] [PMID: 21634407]
[135]
Jallouli, Y.; Paillard, A.; Chang, J.; Sevin, E.; Betbeder, D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int. J. Pharm., 2007, 344(1-2), 103-109.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.023] [PMID: 17651930]
[136]
Gao, X.; Qian, J.; Zheng, S.; Changyi, Y.; Zhang, J.; Ju, S.; Zhu, J.; Li, C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano, 2014, 8(4), 3678-3689.
[http://dx.doi.org/10.1021/nn5003375] [PMID: 24673594]
[137]
Bellavance, M-A.; Blanchette, M.; Fortin, D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J., 2008, 10(1), 166-177.
[http://dx.doi.org/10.1208/s12248-008-9018-7] [PMID: 18446517]
[138]
Donaldson, K.; Stone, V.; Clouter, A.; Renwick, L.; MacNee, W. Ultrafine particles. Occup. Environ. Med., 2001, 58(3), 211-216., 199.
[http://dx.doi.org/10.1136/oem.58.3.211] [PMID: 11171936]
[139]
Kumar, S.; Verma, M.K.; Srivastava, A.K. Ultrafine particles in urban ambient air and their health perspectives. Rev. Environ. Health, 2013, 28(2-3), 117-128.
[http://dx.doi.org/10.1515/reveh-2013-0008] [PMID: 24192498]
[140]
Frampton, M.W.; Rich, D.Q. Does particle size matter? ultrafine particles and hospital visits in eastern Europe. Am. J. Respir. Crit. Care Med., 2016, 194(10), 1180-1182.
[http://dx.doi.org/10.1164/rccm.201606-1164ED] [PMID: 27845588]
[141]
Morimoto, Y.; Kobayashi, N.; Shinohara, N.; Myojo, T.; Tanaka, I.; Nakanishi, J. Hazard assessments of manufactured nanomaterials. J. Occup. Health, 2010, 52(6)
[http://dx.doi.org/10.1539/joh.R10003]
[142]
Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16(6-7), 437-445.
[http://dx.doi.org/10.1080/08958370490439597] [PMID: 15204759]
[143]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[144]
çetin, M.; Aytekin, E.; Yavuz, B.; Bozda-Pehlivan, S. Nanoscience in targeted brain drug delivery. In: Nanotechnology methods for neurological diseases and brain tumors: drug delivery across the blood-brain barrier; Elsevier: Amsterdam, 2017, 117-147.
[145]
Allen, J.L.; Liu, X.; Weston, D.; Prince, L.; Oberdörster, G.; Finkelstein, J.N.; Johnston, C.J.; Cory-Slechta, D.A. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol. Sci., 2014, 140(1), 160-178.
[http://dx.doi.org/10.1093/toxsci/kfu059] [PMID: 24690596]
[146]
Karmakar, A.; Zhang, Q.; Zhang, Y. Neurotoxicity of nanoscale materials. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 147-160.
[http://dx.doi.org/10.1016/j.jfda.2014.01.012] [PMID: 24673911]
[147]
Pehlivan, S.B. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res., 2013, 30(10), 2499-2511.
[http://dx.doi.org/10.1007/s11095-013-1156-7] [PMID: 23959851]
[148]
Matés, J.M.; Sánchez-Jiménez, F. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci., 1999, 15(4), D339-D345.
[149]
Aschberger, K.; Micheletti, C.; Sokull-Klüttgen, B.; Christensen, F.M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies. Environ. Int., 2011, 37(6), 1143-1156.
[http://dx.doi.org/10.1016/j.envint.2011.02.005] [PMID: 21397332]
[150]
Chan, V.S.W. Nanomedicine: An unresolved regulatory issue. Regul. Toxicol. Pharmacol., 2006, 46(3), 218-224.
[http://dx.doi.org/10.1016/j.yrtph.2006.04.009] [PMID: 17081666]
[151]
Wang, J.; Sun, P.; Bao, Y.; Liu, J.; An, L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol. In Vitro, 2011, 25(1), 242-250.
[http://dx.doi.org/10.1016/j.tiv.2010.11.010] [PMID: 21094249]
[152]
Pisanic, T.R., II; Blackwell, J.D.; Shubayev, V.I.; Fiñones, R.R.; Jin, S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials, 2007, 28(16), 2572-2581.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.043] [PMID: 17320946]
[153]
Tin-Tin-Win-Shwe. Mitsushima, D.; Yamamoto, S.; Fukushima, A.; Funabashi, T.; Kobayashi, T.; Fujimaki, H. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol. Appl. Pharmacol., 2008, 226(2), 192-198.
[http://dx.doi.org/10.1016/j.taap.2007.09.009] [PMID: 17950771]
[154]
Zhang, Q.L.; Li, M.Q.; Ji, J.W.; Gao, F.P.; Bai, R.; Chen, C.Y.; Wang, Z.W.; Zhang, C.; Niu, Q. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int. J. Immunopathol. Pharmacol., 2011, 24(1)(Suppl.), 23S-29S.
[PMID: 21329562]
[155]
Zhang, Q.; Ding, Y.; He, K.; Li, H.; Gao, F.; Moehling, T.J.; Wu, X.; Duncan, J.; Niu, Q. Exposure to alumina nanoparticles in female mice during pregnancy induces neurodevelopmental toxicity in the offspring. Front. Pharmacol., 2018, 9, 253.
[http://dx.doi.org/10.3389/fphar.2018.00253] [PMID: 29615914]
[156]
Wu, J.; Wang, C.; Sun, J.; Xue, Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano, 2011, 5(6), 4476-4489.
[http://dx.doi.org/10.1021/nn103530b] [PMID: 21526751]
[157]
Jaganathan, H.; Godin, B. Biocompatibility assessment of Si-based nano- and micro-particles. Adv. Drug Deliv. Rev., 2012, 64(15), 1800-1819.
[http://dx.doi.org/10.1016/j.addr.2012.05.008] [PMID: 22634160]
[158]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[159]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[160]
Wiesing, U.; Clausen, J. The clinical Research of Nanomedicine: A New Ethical Challenge? NanoEthics, 2014, 8, 19-28.
[http://dx.doi.org/10.1007/s11569-014-0191-0]
[161]
Resnik, D.B.; Tinkle, S.S. Ethical issues in clinical trials involving nanomedicine. Contemp. Clin. Trials, 2007, 28(4), 433-441.
[http://dx.doi.org/10.1016/j.cct.2006.11.001] [PMID: 17166777]
[162]
Hofmann-Amtenbrink, M.; Grainger, D.W.; Hofmann, H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine (Lond.), 2015, 11(7), 1689-1694.
[http://dx.doi.org/10.1016/j.nano.2015.05.005] [PMID: 26051651]
[163]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[164]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[165]
Fatehi, L.; Wolf, S.M.; McCullough, J.; Hall, R.; Lawrenz, F.; Kahn, J.P.; Jones, C.; Campbell, S.A.; Dresser, R.S.; Erdman, A.G.; Haynes, C.L.; Hoerr, R.A.; Hogle, L.F.; Keane, M.A.; Khushf, G.; King, N.M.P.; Kokkoli, E.; Marchant, G.; Maynard, A.D.; Philbert, M.; Ramachandran, G.; Siegel, R.A.; Wickline, S. Recommendations for nanomedicine human subjects research oversight: an evolutionary approach for an emerging field. J. Law Med. Ethics, 2012, 40(4), 716-750.
[http://dx.doi.org/10.1111/j.1748-720X.2012.00703.x] [PMID: 23289677]
[166]
Gordijn, B. Nanoethics: from utopian dreams and apocalyptic nightmares towards a more balanced view. Sci. Eng. Ethics, 2005, 11(4), 521-533.
[http://dx.doi.org/10.1007/s11948-005-0024-1] [PMID: 16279753]
[167]
Bawa, R. FDA and nanotech: baby steps lead to regulatory uncertainty.Bio-Nanotechnology; Blackwell Publishing Ltd.: Oxford, UK, 2013, pp. 720-732.
[http://dx.doi.org/10.1002/9781118451915.ch41]
[168]
Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine (Lond.), 2008, 4(4), 273-282.
[http://dx.doi.org/10.1016/j.nano.2008.06.002] [PMID: 18640076]
[169]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[170]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond.), 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy