Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Screening and Identification of Differentially Expressed Genes Between Diabetic Nephropathy Glomerular and Normal Glomerular via Bioinformatics Technology

Author(s): Junjie Du, Jihong Yang* and Lingbing Meng

Volume 24, Issue 5, 2021

Published on: 21 August, 2020

Page: [645 - 655] Pages: 11

DOI: 10.2174/1386207323999200821163314

Price: $65

Abstract

Background: Diabetes is a chronic metabolic disease characterized by disorders of glucose and lipid metabolism. Its most serious microvascular complication is diabetic nephropathy (DN), which is characterized by varying degrees of proteinuria and progressive glomerulosclerosis, eventually progressing to end-stage renal failure.

Objective: The aim of this research is to identify hub genes that might serve as genetic markers to enhance the diagnosis, treatment, and prognosis of DN.

Methods: The procedures of the study include access to public data, identification of differentially expressed genes (DEGs) by GEO2R, and functional annotation of DEGs using enrichment analysis. Subsequently, the construction of the protein-protein interaction (PPI) network and identification of significant modules were performed. Finally, the hub genes were identified and analyzed, including clustering analysis, Pearson’s correlation coefficient analysis, and multivariable linear regression analysis.

Results: Between the GSE30122 and GSE1009 datasets, a total of 142 DEGs were identified, which were mainly enriched in cell migration, platelet activation, glomerulus development, glomerular basement membrane development, focal adhesion, regulation of actin cytoskeleton, and the PI3K-AKT signaling pathway. The PPI network was composed of 205 edges and 142 nodes. A total of 10 hub genes (VEGFA, NPHS1, WT1, PODXL, TJP1, FYN, SULF1, ITGA3, COL4A3, and FGF1) were identified from the PPI network.

Conclusion: The DEGs between DN and control glomeruli samples may be involved in the occurrence and development of DN. It was speculated that hub genes might be important inhibitory genes in the pathogenesis of diabetic nephropathy, therefore, they are expected to become the new gene targets for the treatment of DN.

Keywords: Diabetic nephropathy, bioinformatics technology, differentially expressed genes, hub genes, glomeruli, public data.

[1]
Higuchi, S.; Izquierdo, M.C.; Haeusler, R.A. Unexplained reciprocal regulation of diabetes and lipoproteins. Curr. Opin. Lipidol., 2018, 29(3), 186-193.
[http://dx.doi.org/10.1097/MOL.0000000000000521] [PMID: 29708925]
[2]
Kato, M.; Natarajan, R. Diabetic nephropathy--emerging epigenetic mechanisms. Nat. Rev. Nephrol., 2014, 10(9), 517-530.
[http://dx.doi.org/10.1038/nrneph.2014.116] [PMID: 25003613]
[3]
Schieppati, A.; Remuzzi, G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int. Suppl., 2005, (98), S7-S10.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09801.x] [PMID: 16108976]
[4]
Zhang, L.; Zhao, M. H.; Zuo, L.; Wang, Y.; Yu, F.; Zhang, H.; Wang, H. Group, C.-N. W., China Kidney Disease Network (CK-NET) 2015 Annual Data Report. Kidney Int Suppl, 2011, 9(1), e1-e81.
[5]
Duarte, C.W.; Zeng, Z.B. High-confidence discovery of genetic network regulators in expression quantitative trait loci data. Genetics, 2011, 187(3), 955-964.
[http://dx.doi.org/10.1534/genetics.110.124685] [PMID: 21212238]
[6]
Wen, P.; Chidanguro, T.; Shi, Z.; Gu, H.; Wang, N.; Wang, T.; Li, Y.; Gao, J. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Mol. Med. Rep., 2018.
[http://dx.doi.org/10.3892/mmr.2018.9095]
[7]
Zhang, T.; Guo, J.; Gu, J.; Wang, Z.; Wang, G.; Li, H.; Wang, J. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Oncol. Rep., 2019, 41(1), 279-291.
[PMID: 30542696]
[8]
Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 2002, 30(1), 207-210.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[9]
Na, J.; Sweetwyne, M.T.; Park, A.S.; Susztak, K.; Cagan, R.L. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Rep., 2015, 12(4), 636-647.
[http://dx.doi.org/10.1016/j.celrep.2015.06.056] [PMID: 26190114]
[10]
Woroniecka, K.I.; Park, A.S.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome analysis of human diabetic kidney disease. Diabetes, 2011, 60(9), 2354-2369.
[http://dx.doi.org/10.2337/db10-1181] [PMID: 21752957]
[11]
Baelde, H.J.; Eikmans, M.; Doran, P.P.; Lappin, D.W.; de Heer, E.; Bruijn, J.A. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am. J. Kidney Dis., 2004, 43(4), 636-650.
[http://dx.doi.org/10.1053/j.ajkd.2003.12.028] [PMID: 15042541]
[12]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[13]
Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol., 2007, 8(9), R183.
[http://dx.doi.org/10.1186/gb-2007-8-9-r183] [PMID: 17784955]
[14]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[15]
Kanehisa, M. The KEGG database. Novartis Found Symp, 2002, 247, 91-101.
[http://dx.doi.org/10.1002/0470857897.ch8]
[16]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[17]
Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27(3), 431-432.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[18]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[19]
Qiu, C.; Huang, S.; Park, J.; Park, Y.; Ko, Y-A.; Seasock, M.J.; Bryer, J.S.; Xu, X-X.; Song, W-C.; Palmer, M.; Hill, J.; Guarnieri, P.; Hawkins, J.; Boustany-Kari, C.M.; Pullen, S.S.; Brown, C.D.; Susztak, K. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med., 2018, 24(11), 1721-1731.
[http://dx.doi.org/10.1038/s41591-018-0194-4] [PMID: 30275566]
[20]
Dardiotis, E.; Siokas, V.; Garas, A.; Paraskevaidis, E.; Kyrgiou, M.; Xiromerisiou, G.; Deligeoroglou, E.; Galazios, G.; Kontomanolis, E.N.; Spandidos, D.A.; Tsatsakis, A.; Daponte, A. Genetic variations in the SULF1 gene alter the risk of cervical cancer and precancerous lesions. Oncol. Lett., 2018, 16(3), 3833-3841.
[http://dx.doi.org/10.3892/ol.2018.9104] [PMID: 30127996]
[21]
Maltseva, I.; Chan, M.; Kalus, I.; Dierks, T.; Rosen, S.D.; Rosen, S.D. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair. PLoS One, 2013, 8(8)e69642
[http://dx.doi.org/10.1371/journal.pone.0069642] [PMID: 23950901]
[22]
Nagarajan, A.; Malvi, P.; Wajapeyee, N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front. Endocrinol. (Lausanne), 2018, 9, 483.
[http://dx.doi.org/10.3389/fendo.2018.00483] [PMID: 30197623]
[23]
Lai, J.P.; Chien, J.R.; Moser, D.R.; Staub, J.K.; Aderca, I.; Montoya, D.P.; Matthews, T.A.; Nagorney, D.M.; Cunningham, J.M.; Smith, D.I.; Greene, E.L.; Shridhar, V.; Roberts, L.R. hSulf1 Sulfatase promotes apoptosis of hepatocellular cancer cells by decreasing heparin-binding growth factor signaling. Gastroenterology, 2004, 126(1), 231-248.
[http://dx.doi.org/10.1053/j.gastro.2003.09.043] [PMID: 14699503]
[24]
Li, X.; Zhu, Q.; Zheng, R.; Yan, J.; Wei, M.; Fan, Y.; Deng, Y.; Zhong, Y. Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Front. Physiol., 2020, 11, 73.
[http://dx.doi.org/10.3389/fphys.2020.00073] [PMID: 32116781]
[25]
Lai, J.P.; Chien, J.; Strome, S.E.; Staub, J.; Montoya, D.P.; Greene, E.L.; Smith, D.I.; Roberts, L.R.; Shridhar, V. HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene, 2004, 23(7), 1439-1447.
[http://dx.doi.org/10.1038/sj.onc.1207258] [PMID: 14973553]
[26]
Lin, T-A.; Wu, V.C-C.; Wang, C-Y. Autophagy in Chronic Kidney Diseases. Cells, 2019, 8(1)E61
[http://dx.doi.org/10.3390/cells8010061] [PMID: 30654583]
[27]
Li, G.; Kidd, J.; Li, P.L. Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. Int. J. Mol. Sci., 2020, 21(5), 1559.
[http://dx.doi.org/10.3390/ijms21051559] [PMID: 32106480]
[28]
Mueller, S.C.; Ghersi, G.; Akiyama, S.K.; Sang, Q.X.; Howard, L.; Pineiro-Sanchez, M.; Nakahara, H.; Yeh, Y.; Chen, W.T. A novel protease-docking function of integrin at invadopodia. J. Biol. Chem., 1999, 274(35), 24947-24952.
[http://dx.doi.org/10.1074/jbc.274.35.24947] [PMID: 10455171]
[29]
Aggarwal, A.; Al-Rohil, R.N.; Batra, A.; Feustel, P.J.; Jones, D.M.; DiPersio, C.M. Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer. BMC Cancer, 2014, 14, 459.
[http://dx.doi.org/10.1186/1471-2407-14-459] [PMID: 24950714]
[30]
Zhou, B.; Gibson-Corley, K.N.; Herndon, M.E.; Sun, Y.; Gustafson-Wagner, E.; Teoh-Fitzgerald, M.; Domann, F.E.; Henry, M.D.; Stipp, C.S. Integrin α3β1 can function to promote spontaneous metastasis and lung colonization of invasive breast carcinoma. Mol. Cancer Res., 2014, 12(1), 143-154.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0184] [PMID: 24002891]
[31]
Bai, Y.; Wang, L.; Li, Y.; Liu, S.; Li, J.; Wang, H.; Huang, H. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell. Physiol. Biochem., 2006, 17(1-2), 57-68.
[http://dx.doi.org/10.1159/000091464] [PMID: 16543722]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy