Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Research Article

Effect of Fe Substitution on Dielectric, Electrical and Photocatalytic Behavior of ZnO Nanoparticles

Author(s): Umesh B. Gawas*, Rajesh M. Pednekar, Manoj M. Kothawale, Nand K. Prasad and Santosh K. Alla

Volume 5, Issue 1, 2021

Published on: 21 August, 2020

Page: [54 - 64] Pages: 11

DOI: 10.2174/2666145413999200821161006

Price: $65

Abstract

Aims: To develop a simple and cost effective synthetic strategy for the preparation of Fe substituted ZnO nanoparticles.

Background: The optoelectronic, electrical, dielectric, optical and magnetic properties of nanocrystalline transition metal substituted ZnO are being explored worldwide for a variety of applications in optoelectronic devices, solar cells, transparent thin film transistors, ultraviolet photodetector, piezoelectric devices, light emitting diodes as well as in the biomedical field. Fe substituted ZnO nanoparticles are being looked upon as promising material in dilute magnetic semiconductor system.

Objective: To establish chemical identity and purity in order to ensure the complete substitution of Fe3+ in ZnO lattice and study the effect of Fe substitution on dielectric, electrical and photocatalytic behavior of ZnO nanoparticles.

Methods: The nearly spherical ZnO and Fe substituted ZnO nanoparticles were synthesized at a low temperature via solution combustion synthesis employing metal nitrate and sucrose.

Result: The powder X-ray diffraction measurement has revealed the monophasic character and complete substitution of Fe in the wurtzitic ZnO lattice. The lattice constants and aspect ratio of Fe substituted ZnO were nearly constant and comparable to that of pristine ZnO. The average crystallite size was found to decrease with increasing Fe substitution. SEM images revealed porous spongy network like morphology. TEM measurements revealed a nearly spherical particle with narrow size distribution between 10 nm - 25 nm.

Conclusion: The dielectric constant and dielectric loss decrease upto x = 0.04 and increases with further increase in Fe concentration. The lower value of dielectric loss in the higher frequency region indicates the less lossy nature of Fe substituted samples. AC conductivity behaviour suggests small polaron hopping type of conduction mechanism. The RT DC resistivity was found to decrease with increasing Fe substitution. Pristine ZnO displayed very high degradation efficiency for photodegradation of MB dye. The photodegradation efficiency was found to decrease considerably with increasing Fe substitution.

Keywords: AC conductivity, DC resistivity, dielectric constant, Fe-ZnO, nanoparticles, photocatalyst, ZnO.

« Previous
Graphical Abstract

[1]
Fabbiyola, S.; Kennedy, L.J.; Ratnaji, T.; Vijaya, J.J.; Aruldoss, U.; Bouodina, M.S. Effect of Fe-doping on the structural, optical and magnetic properties of ZnO nanostructures synthesised by co-precipitation method. Ceram. Int., 2016, 42, 1588-1596.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.110]
[2]
Gaur, U.K.; Kumar, A.; Varma, G.D. Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 4297-4307.
[http://dx.doi.org/10.1039/C4TC02809K]
[3]
Kumar, P.; Singh, J.; Parashar, V.; Singh, K.; Tiwari, R.S.; Srivastava, O.N.; Ramam, K.; Pandeya, A.C. Investigations on structural, optical and second harmonic generation in solvothermally synthesized pure and Cr-doped ZnO nanoparticles. CrystEngComm, 2012, 14, 1653-1658.
[http://dx.doi.org/10.1039/C1CE06127E]
[4]
Piprek, J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation; Academic Press: San Diego, 2003.
[5]
Moon, T.H.; Jeong, M.C.; Lee, W.; Myoung, J.M. The fabrication and characterization of ZnO UV detector. Appl. Surf. Sci., 2005, 240, 280-285.
[http://dx.doi.org/10.1016/j.apsusc.2004.06.149]
[6]
Bergh, A.A.; Dean, P.J. Light Emitting Diodes. Proc. IEEE, 1972, 60, 156-223.
[http://dx.doi.org/10.1109/PROC.1972.8592]
[7]
Li, Y.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.J. High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology, 2009, 20(4)045501
[http://dx.doi.org/10.1088/0957-4484/20/4/045501 PMID: 19417317]
[8]
Molarius, J.; Kaitila, J.; Pensala, T.; Ylilammi, M. Piezoelectric ZnO films by r.f. sputtering. J. Mater. Sci. Mater. Electron., 2003, 14, 431-435.
[http://dx.doi.org/10.1023/A:1023929524641]
[9]
Xu, C.; Cao, L.; Su, G.; Liu, W.; Liu, H.; Yu, Y.; Qu, X. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J. Hazard. Mater., 2010, 176(1-3), 807-813.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.106] [PMID: 20007008]
[10]
Su, N.R.; Lv, P.; Li, M.; Zhang, X.; Li, M.; Niu, J. Fabrication of MgFe2O4-ZnO heterojunction photocatalyst for application of organic pollutants. Mater. Lett., 2014, 122, 201-204.
[http://dx.doi.org/10.1016/j.matlet.2013.12.106]
[11]
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287(5455), 1019-1022.
[http://dx.doi.org/10.1126/science.287.5455.1019] [PMID: 10669409]
[12]
Sharma, P.; Gupta, A.; Rao, K.V.; Owens, F.J.; Sharma, R.; Ahuja, R.; Guillen, J.M.O.; Johansson, B.; Gehring, G.A. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater., 2003, 2(10), 673-677.
[http://dx.doi.org/10.1038/nmat984] [PMID: 14502276]
[13]
Calzolari, A.; Nardelli, M.B. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach. Sci. Rep., 2013, 3, 2999.
[http://dx.doi.org/10.1038/srep02999] [PMID: 24141391]
[14]
Sawalha, A.; Abu-Abdeen, M.; Sedky, A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B, 2009, 404, 1316-1320.
[http://dx.doi.org/10.1016/j.physb.2008.12.017]
[15]
Janotti, A.; Van de Walle, C.G. Native Points Defects in ZnO. Phys. Rev. B Condens. Matter Mater. Phys., 2007, •••76165202
[http://dx.doi.org/10.1103/PhysRevB.76.165202]
[16]
King, P.D.C.; Veal, T.D. Conductivity in transparent oxide semiconductors. J. Phys. Condens. Matter, 2011, 23(33)334214
[http://dx.doi.org/10.1088/0953-8984/23/33/334214] [PMID: 21813954]
[17]
Sahay, P.; Tewari, S.; Nath, R.; Jha, S.; Shamsuddin, M. Studies on ac response of zinc oxide pellets. J. Mater. Sci., 2008, 43, 4534-4540.
[http://dx.doi.org/10.1007/s10853-008-2642-x]
[18]
Jose, J.; Abdul Khadar, M. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. J. Mater. Sci. Eng. A, 2001, 304, 810-813.
[http://dx.doi.org/10.1016/S0921-5093(00)01579-3]
[19]
Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Compd., 2019, 770, 854-863.
[http://dx.doi.org/10.1016/j.jallcom.2018.08.217]
[20]
Das, B.K.; Das, T.; Parashar, K.; Parashar, S.K.S.; Kumar, R.; Anupama, A.V.; Sahoo, B. Effect of Cr Doping on Structural, Optical and Dielectric Properties of ZnO Nanoceramics Synthesized by Mechanical Alloying. Electr. Mater. Lett, , 2020.
[21]
Das, B.K.; Das, T.; Parashar, K.; Thirumurugan, A.; Parashar, S.K.S. Structural, band gap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying. J. Mater. Sci. Mater. Electron., 2017, 28, 15127-15134.
[http://dx.doi.org/10.1007/s10854-017-7388-2]
[22]
Mageswari, S.; Palanivell, B. Influence of Al, Ta Doped ZnO Seed Layer on the Structure, Morphology and Optical Properties of ZnO Nanorods. Curr. Smart Mater., 2019, 4, 45-58.
[http://dx.doi.org/10.2174/2405465804666190326150628]
[23]
Coulibaly, G.N.; Bae, S.; Kim, J.; Assadia, A.A.; Hanna, K. Enhanced removal of antibiotics in hospital wastewater by Fe-ZnO activated persulfate Oxidation. Environ. Sci. Water Res. Technol., 2019, 5, 2193.
[http://dx.doi.org/10.1039/C9EW00611G]
[24]
Hu, J.; Gao, F.; Zhao, Z.; Sang, S.; Li, P.; Zhang, W.; Zhou, X.; Chen, Y. Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci., 2016, 363, 181-188.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.024]
[25]
Poongodi, G.; Anandan, P.; Kumar, R.M.; Jayavel, R. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 148, 237-243.
[http://dx.doi.org/10.1016/j.saa.2015.03.134] [PMID: 25897717]
[26]
Hammad, T.M.; Salem, J.K.; Harrison, R.G. Structure, optical properties and synthesis of Co-doped ZnO Superstructures. Appl. Nanosci., 2013, 3, 133-139.
[http://dx.doi.org/10.1007/s13204-012-0077-9]
[27]
Fabbiyola, S.; John Kennedy, L.; Dakhel, A.A.; Bououdina, M.; Judith Vijaya, J. Ratnaji, Structural, microstructural, optical and magnetic properties of Mn doped ZnO nanostructures. J. Mol. Struct., 2016, 1109, 89-96.
[http://dx.doi.org/10.1016/j.molstruc.2015.12.071]
[28]
Gallegos, M.V.; Peluso, M.A.; Thomas, H.; Damonte, L.C. Structural and optical properties of ZnO and manganese-doped ZnO. J. Alloys Compd., 2016, 689, 416-424.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.283]
[29]
Sambeth, J.E.; Vijayaprasatha, G.; Murugana, R.; Palanisamy, S.; Prabhu, N.M.; Mahalingam, T.; Hayakawad, Y.; Ravia, G. Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles. Mater. Res. Bull., 2016, 76, 48-61.
[http://dx.doi.org/10.1016/j.materresbull.2015.11.053]
[30]
Mehedi Hassan, M.; Khan, W.; Mishra, P.; Islam, S.S. Naqvi. Enhancement in alcohol vapor sensitivity of Cr doped ZnO gas sensor. Mater. Res. Bull., 2017, 93, 391-400.
[http://dx.doi.org/10.1016/j.materresbull.2017.05.019]
[31]
Khan, S.A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C, 2018, 82, 46-59.
[http://dx.doi.org/10.1016/j.msec.2017.08.071] [PMID: 29025674]
[32]
Kaur, J.; Gupta, K.; Kumar, V.; Bansal, S.; Singhal, S. Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater. Ceram. Int., 2016, 42, 2378-2385.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.035]
[33]
Mustafa, L.; Anjum, S.; Waseem, S.; Javed, S.; Ramay, S.M.; Atiq, S. Effect of Co and Ni codoping on the structural, magnetic, electrical and optical properties of ZnO. Mater. Res. Bull., 2016, 84, 32-38.
[http://dx.doi.org/10.1016/j.materresbull.2016.07.028]
[34]
Mhlongo, G.H.; Shingange, K.; Tshabalala, Z.P.; Dhonge, B.P.; Mahmoud, F.A.; Mwakikunga, B.W.; Motaung, D.E. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci., 2016, 390, 804-815.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.138]
[35]
Li, W.; Wang, G.; Chen, C.; Liao, J.; Li, Z. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials (Basel), 2017, 7(1), 20.
[http://dx.doi.org/10.3390/nano7010020] [PMID: 28336854]
[36]
Kumar, S. Deepika, Tripathi, M.; Vaibhav, P.; Kumar, A.; Kumar, R.; Choudhary, R.J.; Phase, D.M. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties. J. Magn. Magn. Mater., 2016, 419, 68-73.
[http://dx.doi.org/10.1016/j.jmmm.2016.06.007]
[37]
Poornaprakash, B.; Chalapathi, U.; Babu, S.; Parka, S.H. Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles. Physica E, 2017, 93, 111-115.
[http://dx.doi.org/10.1016/j.physe.2017.06.007]
[38]
Himawan, A.; Kurnial, A.A.; Ilham, K.H.; Tahir, D.; Aswad, M.; Arif, A.R. Annealing effect on structural and electronic properties of iron-doped zinc oxide nanomaterials for theranostic Application; Conf. Series, 2019.
[http://dx.doi.org/10.1088/1742-6596/1317/1/012043]
[39]
Ong, C.B.; Mohammad, A.W.; Ng, L.Y. Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous Congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites. Environ. Sci. Pollut. Res. Int., 2019, 26(33), 33856-33869.
[http://dx.doi.org/10.1007/s11356-018-2557-2] [PMID: 29943245]
[40]
Reddy, I.N.; Reddy, C.V.; Sreedhar, M.; Shim, J.; Cho, M.; Kim, D. Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Mater. Sci. Eng. B, 2019, 240, 33-40.
[http://dx.doi.org/10.1016/j.mseb.2019.01.002]
[41]
Prabakar, C.; Muthukumaran, S.; Raja, V. Structural, magnetic and photoluminescence behavior of Ni/Fe doped ZnO nanostructures prepared by co-precipitation method. Optik (Stuttg.), 2020.202163714
[http://dx.doi.org/10.1016/j.ijleo.2019.163714]
[42]
Ramn, M.; Negi, N.S. Effect of (Fe, Co) co-doping on the structural, electrical and magnetic properties of ZnO nanocrystals prepared by solution combustion method. Physica B, 2016, 481, 185-191.
[http://dx.doi.org/10.1016/j.physb.2015.11.014]
[43]
Vijaykumar, Y.; Nagaraju, P.; Yaraani, V.; Reddy Parne, S.; Awwad, N.S. Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia Detection. Physica B: Phys; Conden. Matter, 2020, p. 581411976.
[http://dx.doi.org/10.1016/j.physb.2019.411976]
[44]
Bousslama, W.; Elhouichet, H.; Férid, M. Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Opt.-. Int. J. Light Electron. Opt., 2017, 134, 88-98.
[http://dx.doi.org/10.1016/j.ijleo.2017.01.025]
[45]
Sood, S.; Kumar, A.; Sharma, N. Photocatalytic and antibacterial activity studies of ZnO nanoparticles synthesized by thermal decomposition of mechanochemically processed oxalate precursor. Chem. Select, 2016, 1, 6925-6932.
[http://dx.doi.org/10.1002/slct.201601435]
[46]
Khashif, M. Ali. M.E.; Ali, S.M.U.; Hashim, U. Sol-gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications. Ceram. Int., 2013, 39, 6461-6466.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.075]
[47]
Singh, N.; Singh, P. Cu(I) substituted wurtzite ZnO: a novel room temperature lead free ferroelectric and high-k giant dielectric. RSC Advances, 2020, 10, 11382.
[http://dx.doi.org/10.1039/D0RA00933D]
[48]
Wang, J.; Gao, L. Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem., 2003, 13, 2551-2554.
[http://dx.doi.org/10.1039/b307565f]
[49]
Wang, F.; Qin, X.; Guo, Z.; Meng, Y.; Yang, L.; Ming, Y. Hydrothermal synthesis of dumbbell-shaped ZnO microstructures. Ceram. Int., 2013, 39, 8969-8973.
[http://dx.doi.org/10.1016/j.ceramint.2013.04.096]
[50]
Gawas, S.G.; Gawas, U.B.; Verenkar, V.M.S.; Kothawale, M.M.; Pednekar, R. Structural and Magnetic Studies of Cu-Substituted Nanocrystalline Ni-Zn Ferrites Obtained Via Hexamine–Nitrate Combustion Route. J. Supercond. Nov. Magn., 2017, 30, 1447-1452.
[http://dx.doi.org/10.1007/s10948-016-3927-y]
[51]
Gawas, U.B.; Kothawale, M.M.; Pednekar, R.; Meena, S.S.; Prasad, N.K.; Alla, S.K. Investigation of Resistivity, Magnetic Susceptibility and Dielectric Properties of Nanocrystalline Ni-Mn-Zn Ferrites. J. Supercond. Nov. Magn., 2017, 30, 1287-1292.
[52]
Mahour, L.N.; Choudhary, H.K.; Kumar, R.; Anupama, A.V.; Sahoo, B. Structural, optical and Mössbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO (Zn1-xFexO) ceramics synthesized by solution combustion method. Ceram. Int., 2019, 45, 24625-24634.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.194]
[53]
Patil, K.C.; Aruna, S.T.; Ekambaram, S. Combustion synthesis. Curr. Opin. Solid State Mater. Sci., 1997, 2, 158-165.
[http://dx.doi.org/10.1016/S1359-0286(97)80060-5]
[54]
Patil, K.C. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications; World Scientific, 2008.
[http://dx.doi.org/10.1142/6754]
[55]
Cullity, B.D. Elements of X-ray Diffractions, Addison Wesley Pub; Co. Inc., 1956.
[56]
Glaspell, G.; Dutta, P.; Manivanna, A.A.A. Room-Temperature and Microwave Synthesis of M-Doped ZnO (M= Co, Cr, Fe, Mn & Ni). J. Cluster Sci., 2005, 16, 523-536.
[http://dx.doi.org/10.1007/s10876-005-0024-y]
[57]
Potzger, K.; Zhou, S.; Reuther, H.; Kuepper, K.; Talut, G.; Helm, M.; Fassbender, J.; Denlinger, J.D. Suppression of secondary phase formation in Fe implanted ZnO single crystals. Appl. Phys. Lett., 2007.91062107
[http://dx.doi.org/10.1063/1.2768196]
[58]
Fan, L.; Dongmei, J.; Xueming, M. The influence of annealing on the magnetism of Fe-doped ZnO prepared by mechanical alloying. Physica B, 2010, 405, 1466-1469.
[http://dx.doi.org/10.1016/j.physb.2009.12.010]
[59]
Saleh, R.; Djaja, N.F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct., 2014, 74, 217-233.
[http://dx.doi.org/10.1016/j.spmi.2014.06.013]
[60]
Xiong, G.; Pal, U.; Serrano, J.G.; Ucer, K.B.; Williams, R.T. Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phy. Stat. Sol. C, 2006, 3, 3577-3581.
[http://dx.doi.org/10.1002/pssc.200672164]
[61]
Mardani, H.R.; Forouzani, M.; Ziari, M.; Biparva, P. Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 27-33.
[http://dx.doi.org/10.1016/j.saa.2015.01.034] [PMID: 25659739]
[62]
Fabbiyola, S.; John Kennedy, L.; Dakhel, A.A.; Bououdina, M.; Judith Vijaya, J. Structural, microstructural, optical and magnetic properties of Mn-doped ZnO nanostructures. J. Mol. Struct., 2016, 1109, 89-96.
[http://dx.doi.org/10.1016/j.molstruc.2015.12.071]
[63]
Nava, O.J.; Soto-Robles, C.A.; Gomez-Gutierrez, C.M.; Vilchis-Nestor, A.R.; Castro-Beltran, A.; Olivas, A.; Luque, P.A. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct., 2017, 1147, 1-6.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.078]
[64]
Wagner, K.W. The Distrubution of Relaxation Times in Typical Dielectrics. Ann. Phys., 1973, 40, 817-819.
[65]
Maxwell, J.C. Electric and Magnetism; Oxford University Press: London, 1973, p. 328.
[66]
Koops, C. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev., 1951, 83, 121-124.
[http://dx.doi.org/10.1103/PhysRev.83.121]
[67]
Das, T.; Das, B.K.; Parashar, K.; Kumar, R.; Choudhary, H.K.; Anupama, A.V.; Sahoo, B.; Sahoo, P.K.; Parashar, S.K.S. Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. J. Mater. Sci. Mater. Electron., 2017, 28, 13587-13595.
[http://dx.doi.org/10.1007/s10854-017-7198-6]
[68]
Han, Q.; Setchi, R.; Evans, S.L. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol., 2016, 297, 183-192.
[http://dx.doi.org/10.1016/j.powtec.2016.04.015]
[69]
Mangalaraja, R.V.; Manohar, P.; Gnanam, F.D. Electrical and magnetic properties of Ni0.8Zn0.2Fe2O4/silica composite prepared by sol-gel method. J. Mater. Sci., 2004, 39, 2037-2042.
[http://dx.doi.org/10.1023/B:JMSC.0000017766.07079.80]
[70]
Kumar, A.M.; Kumaran, M.S. Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co doped with Co and Cu. J. Magn. Magn. Mater., 2014, 374, 61-66.
[71]
Dutta, P.; Biswas, S.; De, S.K. Dielectric relaxation in polyaniline-polyvinyl alcohol composites. Mater. Res. Bull., 2002, 37, 193-200.
[http://dx.doi.org/10.1016/S0025-5408(01)00813-3]
[72]
Verma, A.; Goel, T.C.; Mendiratta, R.G.; Gupta, R.G. High-resistivity nickel-zinc ferrites by the citrate precursor method. J. Magn. Magn. Mater., 1999, 192, 271-276.
[http://dx.doi.org/10.1016/S0304-8853(98)00592-7]
[73]
Roy, T.K.; Sanyal, K.; Bhowmick, D.; Chakrabarti, A. Temperature dependent resistivity study on zinc oxide and the role of defects. Mater. Sci. Semicond. Process., 2013, 16, 332-336.
[http://dx.doi.org/10.1016/j.mssp.2012.09.018]
[74]
Cheng, W.; Ma, X. Structural, optical and magnetic properties of Fe-doped ZnO. J. Phys. Conf. Ser., 2009.152012039
[http://dx.doi.org/10.1088/1742-6596/152/1/012039]
[75]
Türkyılmaz, S.S. Güy, N.; Özacar, M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobio. Part A: Chem., 2017, 341, 39-50.
[http://dx.doi.org/10.1016/j.jphotochem.2017.03.027]
[76]
Yi, S.; Cui, J.; Li, S.; Zhang, L.; Wang, D.; Lin, Y. Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties. Appl. Surf. Sci., 2014, 319, 230-236.
[http://dx.doi.org/10.1016/j.apsusc.2014.06.151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy