Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Fate and Applications of Superporous Hydrogel Systems: A Review

Author(s): Vikas Jhawat*, Monika Gulia, Balaji Maddiboyina, Rohit Dutt and Sumeet Gupta

Volume 10, Issue 4, 2020

Page: [326 - 341] Pages: 16

DOI: 10.2174/2468187310999200819201555

Price: $65

Abstract

Hydrogels are a class of biomaterial that can “take in” large quantities of aqueous media and swells many times larger than its original size without dissolving in the media. SPHs are a new generation of hydrogels containing a 3D network of cross-linked polymers having pore size more than 100 μm as compared to 10 nm to 10 μm pores of conventional gels. These are more complex in nature than conventional hydrogels and prepared by using a suitable blend of monomers and different additives. SPHs have been extensively employed in sustained and control drug delivery systems along with many recent biomedical applications such as in tissue engineering, immunotherapy, arthritis and ophthalmic drug delivery. Scientists are constantly working on improving the features and properties of SPHs to enable them more suitable for therapeutic and biomedical applications. The present study briefly reviews the composition, evaluation and applications of SPHs in different areas. Applications are facilitated by the fact that SPHs are generally biocompatible in nature and resemble natural living tissue more than any other class of synthetic biomaterial.

Keywords: Biocompatible polymers, biodegradable polymers, biomedical, polymer gels, superporous hydrogel, therapeutic.

Graphical Abstract

[1]
Chavda H, Modhia I, Mehta A, Patel R, Patel C. Development of bioadhesive chitosan superporous hydrogel composite particles based intestinal drug delivery system. BioMed Res Int 2013.563651
[http://dx.doi.org/10.1155/2013/563651 ] [PMID: 23984380]
[2]
Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 2016; 24(4): 413-28.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[3]
Bajpai AK, Giri A. Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 2002; 53: 125-41.
[http://dx.doi.org/10.1016/S1381-5148(02)00168-2]
[4]
Sheldon RA. Enzyme immobilization: The quest for optimum performance. Adv Synth Catal 2007; 349: 1289-307.
[http://dx.doi.org/10.1002/adsc.200700082]
[5]
Nagpal M, Singh SK, Mishra D. Superporous hydrogels as gastro-retentive devices. Acta Pharm Sci 2011; 53: 7-24.
[6]
Chen L, Tian Z, Du Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004; 25(17): 3725-32.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.100] [PMID: 15020148]
[7]
St’astný M, Plocová D, Etrych T, Kovár M, Ulbrich K, Ríhová B. HPMA-hydrogels containing cytostatic drugs. Kinetics of the drug release and in vivo efficacy. J Control Release 2002; 81(1-2): 101-11.
[http://dx.doi.org/10.1016/S0168-3659(02)00047-0] [PMID: 11992683]
[8]
Lowman AM, Peppas NA. HydrogelsEnclyclopedia of Controlled Drug Delivery. New York: Wiley 1991; pp. 397-418.
[9]
Tang C, Yin C, Pei Y, Zhang M, Lifang W. New superporous hydrogels composites based on aqueous carbopol solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur J Polym 2005; 41: 557-62.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.10.017]
[10]
Park K, Chen J, Park H. Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties. US 2001; p. 6271278.
[11]
Yang S, Park K, Rocca JG. Semi interpenetrating polymer network superporous hydrogels based on poly (3-sulfopropyl acrylate, potassium salt) and poly (vinyl alcohol): Synthesis and characterization. J Bioact Compat Polym 2004; 19: 81-100.
[http://dx.doi.org/10.1177/0883911504042641]
[12]
Omidian H, Qiu Y, Yang S, Kim D, Park H, Park K. Hydrogels having enhanced elasticity and mechanical strength properties. US Patent 2005; 6960617..
[13]
Park H, Park K, Kim D. Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mat Res 2005; A76A: 144-50..
[14]
Gemeinhart RA, Park H, Park K. Pore structure of superporous hydrogels. Polym Adv Technol 2000; 11: 617-25.
[http://dx.doi.org/10.1002/1099-1581(200008/12)11:8/12<617:AID-PAT12>3.0.CO;2-L]
[15]
Liu Chao L, Na W, Wang S, Xu Y. Preparation and characterization super porous hydroxyl propyl methylcellulose gel beads. Carbohydr Polym 2009; 78(1): 1-4.
[http://dx.doi.org/10.1016/j.carbpol.2009.02.024]
[16]
Gils PS, Ray D, Sahoo PK. Controlled release of doxofylline from biopolymer based hydrogels. Am J Biomed Sci 2010; 2(4): 373-83.
[http://dx.doi.org/10.5099/aj100400373]
[17]
Omidian H, Rocca JG, Park K. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 2006; 6(9): 703-10.
[http://dx.doi.org/10.1002/mabi.200600062] [PMID: 16967483]
[18]
Qiu Y, Park K. Superporous IPN hydrogels having enhanced mechanical properties. AAPS PharmSciTech 2003; 4(4)E51
[http://dx.doi.org/10.1208/pt040451]] [PMID: 15198546]
[19]
Mahdavinia GR, Mousavi SB, Karimi F, Marandi GB, Garabaghi H, Shahabvand S. Synthesis of porous poly (acrylamide) hydrogels using Synthesis of porous poly(acrylamide) hydrogels using potassium nitrate. Express Polym Lett 2009; 3: 279-85.
[http://dx.doi.org/10.3144/expresspolymlett.2009.35]
[20]
Kumar A, Pandey M, Koshy MK, Saraf SA. Synthesis of fast swelling superporous hydrogel: effect of concentration of cross linker and acdisol on swelling ratio and mechanical strength. Int J Drug Deliv 2010; 2: 135-40.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02022]
[21]
Chavda H, Patel C. Chitosan superporous hydrogel composite-based floating drug delivery system: A newer formulation approach. J Pharm Bioallied Sci 2010; 2(2): 124-31.
[http://dx.doi.org/10.4103/0975-7406.67010] [PMID: 21814446]
[22]
Gupta NV, Shivakumar HG. Development of a Gastroretentive drug delivery system based on Superporous hydrogel. Trop J Pharm Res 2010; 9: 257-64.
[http://dx.doi.org/10.4314/tjpr.v9i3.56286]
[23]
Gemeinhart RA, Chen J, Park H, Park K. pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 2000; 11(12): 1371-80.
[http://dx.doi.org/10.1163/156856200744390] [PMID: 11261878]
[24]
Chavda HV, Patel CN. Preparation and characterization of swellable polymer-based superporous hydrogel composite of poly (Acrylamide-co-Acrylic Acid). Trends Biomater Artif Organs 2010; 24: 83-9.
[25]
Çetin D, Kahraman AS, Gümüşderelioğlu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J Biomater Sci Polym Ed 2011; 22(9): 1157-78.
[PMID: 20615330]
[26]
Bagadiya A, Kapadiya M, Mehta K. Superporous hydrogel: a promising tool for gastoretentive drug delivery system. Int J Pharm Tech 2011; 3: 1556-71.
[27]
Yan, Hoffman AS. Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules. Polym Commun (Guildf) 1995; 36: 887-9.
[http://dx.doi.org/10.1016/0032-3861(95)93123-4]
[28]
Smith SJ, Lind EJ. Superabsorbent polymer having improved absorption rate and absorption under pressure. US Patent No US08405680;1995.
[29]
Chen J, Park H, Park K. Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 1999; 44(1): 53-62.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199901)44:1<53:AID-JBM6>3.0.CO;2-W] [PMID: 10397904]
[30]
Badiger MV, McNeill ME, Graham NB. Porogens in the preparation of microporous hydrogels based on poly(ethylene oxides). Biomaterials 1993; 14(14): 1059-63.
[http://dx.doi.org/10.1016/0142-9612(93)90206-H] [PMID: 8312460]
[31]
Doorkoosh FA, Brussee J, Verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Superporous hydrogel: A promising tool for gastoretentive drug delivery system. J Control Release 2001; 71: 307-18.
[32]
Dorkoosh FA, Coos Verhoef J, Ambagts MH, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin. Eur J Pharm Sci 2002; 15(5): 433-9.
[http://dx.doi.org/10.1016/S0928-0987(02)00028-3] [PMID: 12036720]
[33]
Chavda HV, Patel CN. A newer formulation approach: Superporous hydrogel composite-based bioadhesive drug-delivery system. Asian J Pharm Sci 2010; 5(6): 239-50.
[34]
Polnok A, Verhoef JC, Borchard G, Sarisuta N, Junginger HE. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels. Int J Pharm 2004; 269(2): 303-10.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.022] [PMID: 14706242]
[35]
Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J Control Release 2005; 102(1): 3-12.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.028] [PMID: 15653129]
[36]
Omidian H, Park K, Rocca JG. Recent developments in superporous hydrogels. J Pharm Pharmacol 2007; 59(3): 317-27.
[http://dx.doi.org/10.1211/jpp.59.3.0001 ] [PMID: 17331335]
[37]
Dorkoosh FA, Verhoef JC, Verheijden JHM, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers. Pharm Res 2002; 19(10): 1532-6.
[http://dx.doi.org/10.1023/A:1020416918624] [PMID: 12425472]
[38]
Park K, Chen J, Park H. Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties. US Patent No 6271278; 2001.
[39]
Sharma PK, Asthana GS, Asthana A. Formulation development and evaluation of hydrogel based gastro retentive drug delivery system of antihypertensive drug. Int J Pharm Clin Res 2016; 8: 1396-401.
[40]
Chavda H, Patel C. Effect of crosslinker concentration on characteristics of superporous hydrogel. Int J Pharm Investig 2011; 1(1): 17-21.
[http://dx.doi.org/10.4103/2230-973X.76724] [PMID: 23071915]
[41]
Chen J, Blevins WE, Park H, Park K. Gastric retention properties of superporous hydrogel composites. J Control Release 2000; 64(1-3): 39-51.
[http://dx.doi.org/10.1016/S0168-3659(99)00139-X] [PMID: 10640644]
[42]
Chen J, Park K. Synthesis and characterization of superporous hydrogel composites. J Control Release 2000; 65(1-2): 73-82.
[http://dx.doi.org/10.1016/S0168-3659(99)00238-2] [PMID: 10699272]
[43]
Bajpai SK, Bajpai M, Sharma L. Prolonged gastric delivery of vitamin B2 from a floating drug delivery system: an in vitro study. Iran Polym J 2007; 16: 521-7.
[44]
Bagadiya A, Kapadiya M, Mehta K. Superporos Hydrogels: A Promising tool for gastroretentive drug delivery system. Int J Pharm Tech 2011; 3: 1556-71.
[45]
Rosa M, Zia H, Rhodes T. Dosing and testing in-vitro of a bioadhesive and floating drug delivery system for oral application. Int J Pharm 1994; 105: 65-7.
[http://dx.doi.org/10.1016/0378-5173(94)90236-4]
[46]
Vishal Gupta N, Shivakumar HG. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. Daru 2010; 18(3): 200-10.
[PMID: 22615618]
[47]
Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001; 13(2): 123-33.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[48]
Rocca JG, Omidian H, Shah K. Progresses in gastroretentive drug delivery systems. PharmaTech 2003; pp. 152-6.
[49]
Achilleos EC, Prudhomme RK, Christodoulou KN, Gee KR, Kevrekidis IG. Dynamic deformation visualization in swelling of polymer gels. Chem Eng Sci 2000; 55: 3335-40.
[http://dx.doi.org/10.1016/S0009-2509(00)00002-6]
[50]
Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Ir Pol J 2010; 19: 375-98.
[51]
Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Verheijden JH, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm 2002; 247(1-2): 47-55.
[http://dx.doi.org/10.1016/S0378-5173(02)00361-7] [PMID: 12429484]
[52]
Swanson DR, Barclay BL, Wong PS, Theeuwes F. Nifedipine gastrointestinal therapeutic system. Am J Med 1987; 83(6B): 3-9.
[http://dx.doi.org/10.1016/0002-9343(87)90629-2] [PMID: 3503595]
[53]
Dorkoosh FA, Setyaningsih D, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers. Int J Pharm 2002; 241(1): 35-45.
[http://dx.doi.org/10.1016/S0378-5173(02)00115-1] [PMID: 12086719]
[54]
Park K. Superporous hydrogels for pharmaceutical and other applications. Drug Deliv Technol 2002; 2: 38-44.
[55]
Yang S, Fu Y, Jeong SH, Park K. Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets. J Pharm Pharmacol 2004; 56(4): 429-36.
[http://dx.doi.org/10.1211/0022357023015] [PMID: 15099437]
[56]
Jayakrishnan A, Mohanty M, Mandalam R, Rao VRK, Gupta AK, Joseph S. Endovascular emoblization using hydrogel microspheres. J Mater Sci Mater Med 1994; 5: 723-7.
[http://dx.doi.org/10.1007/BF00120364]
[57]
Tellez C, Benson AB III, Lyster MT, et al. Phase II trial of chemoembolization for the treatment of metastatic colorectal carcinoma to the liver and review of the literature. Cancer 1998; 82(7): 1250-9.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980401)82:7<1250:AID-CNCR7>3.0.CO;2-J] [PMID: 9529016]
[58]
Moskowitz RW. The burden of osteoarthritis: clinical and quality-of-life issues. Am J Manag Care 2009; 15(8)(Suppl.): S223-9.
[PMID: 19817508]
[59]
Herrero-Beaumont G, Roman-Blas JA, Bruyère O, et al. Clinical settings in knee osteoarthritis: Pathophysiology guides treatment. Maturitas 2017; 96: 54-7.
[http://dx.doi.org/10.1016/j.maturitas.2016.11.013] [PMID: 28041596]
[60]
Brien S, Prescott P, Lewith G. Meta-analysis of the related nutritional supplements dimethyl sulfoxide and methylsulfonylmethane in the treatment of osteoarthritis of the knee. Evid Based Complement Alternat Med 2011; 2011528403
[http://dx.doi.org/10.1093/ecam/nep045 ] [PMID: 19474240]
[61]
Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013; 15(Suppl. 3): S2.
[http://dx.doi.org/10.1186/ar4174] [PMID: 24267197]
[62]
da Costa BR, Reichenbach S, Keller N, et al. RETRACTED: Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 2016; 387(10033): 2093-105.
[http://dx.doi.org/10.1016/S0140-6736(16)30002-2] [PMID: 26997557]
[63]
Iannitti T, Lodi D, Palmieri B. Intra-articular injections for the treatment of osteoarthritis: focus on the clinical use of hyaluronic acid. Drugs R D 2011; 11(1): 13-27.
[http://dx.doi.org/10.2165/11539760-000000000-00000] [PMID: 21142290]
[64]
Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord 2015; 16: 321.
[http://dx.doi.org/10.1186/s12891-015-0775-z] [PMID: 26503103]
[65]
Ayhan E, Kesmezacar H, Akgun I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 2014; 5(3): 351-61.
[http://dx.doi.org/10.5312/wjo.v5.i3.351 ] [PMID: 25035839]
[66]
Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering: A review. Carbohydr Polym 2013; 92(2): 1262-79.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.028] [PMID: 23399155]
[67]
Yoshioka K, Yasuda Y, Kisukeda T, Nodera R, Tanaka Y, Miyamoto K. Pharmacological effects of novel cross-linked hyaluronate, Gel-200, in experimental animal models of osteoarthritis and human cell lines. Osteoarthritis Cartilage 2014; 22(6): 879-87.
[http://dx.doi.org/10.1016/j.joca.2014.04.019] [PMID: 24792209]
[68]
Sun SF, Hsu CW, Lin HS, Liou IH, Chen YH, Hung CL. Comparison of single intra-articular injection of novel hyaluronan (HYA-JOINT Plus) with synvisc-one for knee osteoarthritis: A randomized, controlled, double-blind trial of efficacy and safety. J Bone Joint Surg Am 2017; 99(6): 462-71.
[http://dx.doi.org/10.2106/JBJS.16.00469] [PMID: 28291178]
[69]
Strom A, Larsson A, Okay O. Preparation and physical properties of hyaluronic acid-based cryogels. J Appl Polym Sci 2015; 1-11.
[http://dx.doi.org/10.1002/app.42194]
[70]
Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter KV, Sherman NE, et al. Towards an arthritis flare-responsive drug delivery system Nature comm 2018;9: 1275..
[http://dx.doi.org/10.1038/s41467-018-03691-1]
[71]
Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y. Anatomy and physiology of the human eye: Effects of mucopolysaccharidoses disease on structure and function: A review. Clin Exp Ophthalmol 2010; 38: 2-11.
[http://dx.doi.org/10.1111/j.1442-9071.2010.02363.x]
[72]
Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery: impact of in vitro cell culture models. J Ophthalmic Vis Res 2009; 4(4): 238-52.
[PMID: 23198080]
[73]
Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL. Injectable hydrogels. J Polym Sci, B, Polym Phys 2012; 50: 881-903.
[http://dx.doi.org/10.1002/polb.23081]
[74]
Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014; 39: 1973-86.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[75]
Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems--recent advances. Prog Retin Eye Res 1998; 17(1): 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[76]
Lee YP, Liu HY, Lin PC, et al. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf B Biointerfaces 2019; 175: 26-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.013] [PMID: 30513471]
[77]
Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019; 225115210
[http://dx.doi.org/10.1016/j.carbpol.2019.115210]] [PMID: 31521316]
[78]
Gilmore KA, Lampley MW, Boyer C, Harth E. Matrices for combined delivery of proteins and synthetic molecules. Adv Drug Deliv Rev 2016; 98: 77-85.
[http://dx.doi.org/10.1016/j.addr.2015.11.018] [PMID: 26656604]
[79]
He C, Tang Z, Tian H, Chen X. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev 2016; 98: 64-76.
[http://dx.doi.org/10.1016/j.addr.2015.10.021] [PMID: 26546464]
[80]
Bryant SJ, Cuy JL, Hauch KD, Ratner BD. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 2007; 28(19): 2978-86.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.033] [PMID: 17397918]
[81]
Kubinová S, Horák D, Syková E. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 2009; 30(27): 4601-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.007] [PMID: 19500833]
[82]
Wichterle O, Lím D. Hydrophilic gels for biological use. Nature 1960; 185: 117-8.
[http://dx.doi.org/10.1038/185117a0]
[83]
Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 1997; 101: 11007-28.
[http://dx.doi.org/10.1021/jp972167t]
[84]
Prince JT, McGrath KP, DiGirolamo CM, Kaplan DL. Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 1995; 34(34): 10879-85.
[http://dx.doi.org/10.1021/bi00034a022 ] [PMID: 7662669]
[85]
Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 2006; 18: 1345-60.
[http://dx.doi.org/10.1002/adma.200501612]
[86]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002; 54(1): 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[87]
Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24(24): 4337-51.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[88]
Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials 2007; 28(34): 5185-92..
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.044] [PMID: 17697712]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy