Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Sol-gel Synthesis of Boron Doped TiO2/hollow Glass Bubbles Composite Powders for Photocatalytic Degradation of Azophloxine

Author(s): Wenjie Zhang* and Yuxuan Liu

Volume 17, Issue 3, 2021

Published on: 19 August, 2020

Page: [475 - 483] Pages: 9

DOI: 10.2174/1573413716999200819200603

Price: $65

Abstract

Background: B-TiO2 was supported on the surface of iM16K glass bubbles to achieve a suitable density for the B-TiO2/iM16K composite hollow spheres. Aeration or stirring in the wastewater can lead to thorough mixing of photocatalyst and wastewater. Solid-water separation is relatively easy because the materials can float on the water surface while stopping aeration or stirring.

Methods: The iM16K glass bubbles were used to prepare boron-doped B-TiO2/iM16K composite hollow spheres through a sol-gel route. The materials were characterized by X-ray diffraction, scanning electron microscope, Fourier transforms infrared spectroscopy, UV-Visible diffuse reflectance spectrometry, and N2 adsorption-desorption techniques. The photocatalytic degradation of azophloxine on the composites was determined.

Results: The bandgap energy of the B-TiO2/iM16K composite was slightly less than 3.0 eV when the calcination temperature was below 500°C. The sample calcined at 350°C had a BET surface area of 88.6 m2/g, while the value of the sample calcined at 800°C was 1.2 m2/g. The maximum photocatalytic degradation efficiency was obtained for the sample calcined at 450°C, and nearly all of the original azophloxine molecules were decomposed after 120 min of irradiation. Photocatalytic degradation efficiency after 30 min of irradiation was enhanced from 18.8% to 47.9% when the B-TiO2 dosage increased from 100 to 800 mg/L.

Conclusion: Crystallization of anatase TiO2 was temperature-dependent, and the properties of BTiO2/ iM16K composite hollow spheres were affected by the phase composition of the boron-doped TiO2 layer. The change in calcination temperature can have a significant effect on the photocatalytic degradation of azophloxine. The production of hydroxyl radical depended on the photocatalytic activity of the B-TiO2/iM16K composite hollow spheres.

Keywords: Photocatalytic, hollow sphere, TiO2, calcination, azophloxine, composite.

Graphical Abstract

[1]
Sharifi, S.; Faritovna, G.L.; Azarpour, A. Photophysical and nonlinear optical properties of azophloxine in reverse micelles. J. Fluoresc., 2018, 28(6), 1439-1450.
[http://dx.doi.org/10.1007/s10895-018-2319-z] [PMID: 30338428]
[2]
Bicer, E.; Arat, C. A voltammetric study on the aqueous electrochemistry of acid Red 1 (Azophloxine). Croat. Chem. Acta, 2009, 82, 583-592.
[3]
Mehrizad, A.; Behnajady, M.A.; Gharbani, P.; Sabbagh, S. Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies. J. Clean. Prod., 2019, 215, 1341-1350.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.172]
[4]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95, 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[5]
Fujishima, A.; Rao, T.; Tryk, D. Titanium dioxide photocatalysis. J. Photochem. Photobiol. Photochem. Rev., 2000, 1, 1-21.
[http://dx.doi.org/10.1016/S1389-5567(00)00002-2]
[6]
Ray, S.K.; Dhakal, D.; Lee, S.W. Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst. J. Photochem. Photobiol. Chem., 2018, 364, 686-695.
[http://dx.doi.org/10.1016/j.jphotochem.2018.07.007]
[7]
Wang, H.; Zhang, Y.; Ma, Z.; Zhang, W. Role of PEG2000 on sol-gel preparation of porous La2Ti2O7 for enhanced photocatalytic activity on ofloxacin degradation. Mater. Sci. Semicond. Process., 2019, 91, 151-158.
[http://dx.doi.org/10.1016/j.mssp.2018.11.025]
[8]
Koltsakidou, A.; Katsiloulis, C.; Evgenidou, E.; Lambropoulou, D.A. Photolysis and photocatalysis of the non-steroidal anti-inflammatory drug Nimesulide under simulated solar irradiation: Kinetic studies, transformation products and toxicity assessment. Sci. Total Environ., 2019, 689, 245-257.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.172] [PMID: 31271990]
[9]
Kermani, M.; Kakavandi, B.; Farzadkia, M.; Esrafili, A. FallahJokandan, S.; Shahsavani, A. Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies. J. Clean. Prod., 2018, 192, 597-607.
[http://dx.doi.org/10.1016/j.jclepro.2018.04.274]
[10]
Bellardita, M.; Paola, A.D.; Megna, B.; Palmisano, L. Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl. Catal. B, 2017, 201, 150-158.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.012]
[11]
Wang, X.T.; Zhou, J.Q.; Zhao, S.; Chen, X.; Yu, Y. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Appl. Surf. Sci., 2018, 453, 394-404.
[http://dx.doi.org/10.1016/j.apsusc.2018.05.073]
[12]
Enesca, A.; Yamaguchi, Y.; Terashima, C.; Fujishima, A.; Nakata, K.; Duta, A. Enhanced UV–Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination. J. Catal., 2017, 350, 174-181.
[http://dx.doi.org/10.1016/j.jcat.2017.02.015]
[13]
Habibi-Yangjeh, A.; Mousavi, M. Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv. Powder Technol., 2018, 29, 1379-1392.
[http://dx.doi.org/10.1016/j.apt.2018.02.034]
[14]
Kakavandi, B.; Bahari, N.; Rezaei Kalantary, R.; Dehghani Fard, E. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: A new hybrid system. Ultrason. Sonochem., 2019, 55, 75-85.
[http://dx.doi.org/10.1016/j.ultsonch.2019.02.026] [PMID: 31084793]
[15]
Jo, W.K.; Kumar, S.; Isaacs, M.A.; Lee, A.F.; Karthikeyan, S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl. Catal. B, 2017, 201, 159-168.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.022]
[16]
Wang, P.; Jia, C.C.; Li, J.; Yang, P. Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance. J. Alloys Compd., 2019, 780, 660-670.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.398]
[17]
Du, J.; Li, X.Y.; Li, K.; Gu, X.; Qi, W.Q.; Zhang, K. High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition. J. Alloys Compd., 2016, 687, 893-897.
[http://dx.doi.org/10.1016/j.jallcom.2016.06.182]
[18]
Nasseri, S.; Omidvar Borna, M.; Esrafili, A.; Kalantary, R.R.; Kakavandi, B.; Sillanpää, M.; Asadi, A. Photocatalytic degradation of malathion using Zn2+-doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters. Appl. Phys., A Mater. Sci. Process., 2018, 124, 175.
[http://dx.doi.org/10.1007/s00339-018-1599-0]
[19]
Zhang, W.J.; Pei, X.B.; Yang, B.; He, H.B. Effects of boron content and calcination temperature on properties of B-TiO2 photocatalyst prepared by solvothermal method. J. Adv. Oxid. Technol., 2014, 17, 66-72.
[http://dx.doi.org/10.1515/jaots-2014-0109]
[20]
Yang, L.L.; Zhao, Y.; Li, J.; Zhou, Y.W.; Xiao, X.; Zhang, W. Effects of calcination on sol-gel synthesis of hollow spherical 8%B-TiO2 for photocatalytic degradation of RBR X-3B. Curr. Nanosci., 2019, 15, 289-295.
[http://dx.doi.org/10.2174/1573413714666180717112803]
[21]
Zhang, W.; Liu, Y.; Xin, H. Sol-gel preparation of hollow spherical x%B-TiO2 photocatalyst: the effect of boron content on RBR X-3B decoloration. Curr. Nanosci., 2018, 14, 209-215.
[http://dx.doi.org/10.2174/1573413713666171117160154]
[22]
Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. J. Clean. Prod., 2018, 205, 930-954.
[http://dx.doi.org/10.1016/j.jclepro.2018.08.189]
[23]
Hayati, F.; Isari, A.A.; Anvaripour, B.; Fattahi, M.; Kakavandi, B. Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: Effective factors, pathway and biodegradability studies. Chem. Eng. J., 2020, 38, 122636.
[http://dx.doi.org/10.1016/j.cej.2019.122636]
[24]
Rezaei, S.S.; Dehghanifard, E.; Noorisepehr, M.; Ghadirinejad, K.; Kakavandi, B.; Esfahani, A.R. Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure. J. Environ. Manage., 2019, 250, 109472.
[http://dx.doi.org/10.1016/j.jenvman.2019.109472] [PMID: 31521031]
[25]
Tsuchiya, Y.; Urakami, T. Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer-Lambert law. Opt. Commun., 1997, 144, 269-280.
[http://dx.doi.org/10.1016/S0030-4018(97)00469-0]
[26]
Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Sajadi, S.M.; Barzinjy, A.A. Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium(VI), nitro compounds and organic dyes. Mater. Res. Bull., 2018, 102, 24-35.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.032]
[27]
Naresh, P.; Raju, G.N.; Kumar, V.R.; Piasecki, M.; Kiytyk, I.V.; Veeraiah, N. Optical and dielectric features of zinc oxy fluoro borate glass ceramics with TiO2 as crystallizing agent. Ceram. Int., 2014, 40, 2249-2260.
[http://dx.doi.org/10.1016/j.ceramint.2013.07.143]
[28]
Mohini, G.J.; Baskaran, G.S.; Kumar, V.R.; Piasecki, M.; Veeraiah, N. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses. Mater. Sci. Eng. C, 2015, 57, 240-248.
[http://dx.doi.org/10.1016/j.msec.2015.07.048]
[29]
Zangeneh, H.; Zinatizadeh, A.A.; Feyzi, M.; Zinadini, S.; Bahnemann, D.W. Application of a novel triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for photocatalytic degradation of Linear Alkyl Benzene (LAB) industrial wastewater under visible light. Mater. Sci. Semicond. Process., 2018, 75, 193-205.
[http://dx.doi.org/10.1016/j.mssp.2017.11.040]
[30]
Butler, M.A. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys., 1977, 48, 1914-1920.
[http://dx.doi.org/10.1063/1.323948]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy