Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Naphthoquinone Derivatives Isolated from Plants: Recent Advances in Biological Activity

Author(s): Esmaeil Sheikh Ahmadi, Amir Tajbakhsh, Milad Iranshahy, Javad Asili, Nadine Kretschmer, Abolfazl Shakeri* and Amirhossein Sahebkar

Volume 20, Issue 19, 2020

Page: [2019 - 2035] Pages: 17

DOI: 10.2174/1389557520666200818212020

Price: $65

Abstract

Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.

Keywords: Naphthoquinone, cytotoxic, antibacterial, clinical trial, cancer, biological activity.

Graphical Abstract

[1]
Brandelli, A.; Bizani, D.; Martinelli, M.; Stefani, V.; Gerbase, A.E. Antimicrobial activity of 1, 4-naphthoquinones by metal complexation. Rev. Bras. Cienc. Farm., 2004, 40(2), 247-253.
[http://dx.doi.org/10.1590/S1516-93322004000200014]
[2]
Hook, I.; Mills, C.; Sheridan, H. Bioactive naphthoquinones from higher plants; Studies in Natural Products Chemistry, 2014, pp. 119-160.
[3]
Niamké, F.B.; Amusant, N.; Stien, D.; Chaix, G.; Lozano, Y.; Kadio, A.A. 4′, 5′-Dihydroxy-epiisocatalponol, a new naphthoquinone from Tectona grandis L. f. heartwood, and fungicidal activity. Int. Biodeterior. Biodegradation, 2012, 74, 93-98.
[http://dx.doi.org/10.1016/j.ibiod.2012.03.010]
[4]
Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy secondary metabolites naphthoquinones-their occurrence, pharmacological properties and analysis. Curr. Pharm. Anal., 2009, 5(1), 47-68.
[http://dx.doi.org/10.2174/157341209787314936]
[5]
Hijji, Y.M.; Barare, B.; Zhang, Y. Lawsone (2-hydroxy-1, 4-naphthoquinone) as a sensitive cyanide and acetate sensor. Sens. Actuators B Chem., 2012, 169, 106-112.
[http://dx.doi.org/10.1016/j.snb.2012.03.067]
[6]
Gong, K.; Zhang, Z.; Chen, Y.; Shu, H-B.; Li, W. Extracellular signal-regulated kinase, receptor interacting protein, and reactive oxygen species regulate shikonin-induced autophagy in human hepatocellular carcinoma. Eur. J. Pharmacol., 2014, 738, 142-152.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.034] [PMID: 24886888]
[7]
Pavan, V.; Ribaudo, G.; Zorzan, M.; Redaelli, M.; Pezzani, R.; Mucignat-Caretta, C. Antiproliferative activity of Juglone derivatives on rat glioma. Nat. Prod. Res., 2016, 1-7.
[PMID: 27465779]
[8]
Hafeez, B.B.; Zhong, W.; Fischer, J.W.; Mustafa, A.; Shi, X.; Meske, L.; Hong, H.; Cai, W.; Havighurst, T.; Kim, K.; Verma, A.K. Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model. Mol. Oncol., 2013, 7(3), 428-439.
[http://dx.doi.org/10.1016/j.molonc.2012.12.001] [PMID: 23273564]
[9]
Sunassee, S.N.; Veale, C.G.; Shunmoogam-Gounden, N.; Osoniyi, O.; Hendricks, D.T.; Caira, M.R.; de la Mare, J.A.; Edkins, A.L.; Pinto, A.V.; da Silva Júnior, E.N.; Davies-Coleman, M.T. Cytotoxicity of lapachol, β-lapachone and related synthetic 1,4-naphthoquinones against oesophageal cancer cells. Eur. J. Med. Chem., 2013, 62, 98-110.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.048] [PMID: 23353747]
[10]
Kishore, N.; Binneman, B.; Mahapatra, A.; van de Venter, M.; du Plessis-Stoman, D.; Boukes, G.; Houghton, P.; Marion Meyer, J.J.; Lall, N. Cytotoxicity of synthesized 1,4-naphthoquinone analogues on selected human cancer cell lines. Bioorg. Med. Chem., 2014, 22(17), 5013-5019.
[http://dx.doi.org/10.1016/j.bmc.2014.06.013 PMID: 25059501]
[11]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[12]
Löcken, H.; Clamor, C.; Müller, K. Napabucasin and related heterocycle-fused naphthoquinones as STAT3 inhibitors with antiproliferative activity against cancer cells. J. Nat. Prod., 2018, 81(7), 1636-1644.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00247 PMID: 30003778]
[13]
Isobe, M.; Emanuel, B.S.; Givol, D.; Oren, M.; Croce, C.M. Localization of gene for human p53 tumour antigen to band 17p13. Nature, 1986, 320(6057), 84-85.
[http://dx.doi.org/10.1038/320084a0] [PMID: 3456488]
[14]
Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science, 1991, 253(5015), 49-53.
[http://dx.doi.org/10.1126/science.1905840] [PMID: 1905840]
[15]
Froeling, F.E.M.; Chio, I.I.C.; Yao, M.A.; Lucito, M.; Alagesan, P.; Li, J. Bioactivation of napabucasin triggers reactive oxygen species–mediated cancer cell death. Clin. Cancer Res., 2019, 25(23), 7162-7174.
[16]
Jonker, D.J.; Nott, L.; Yoshino, T.; Gill, S.; Shapiro, J.; Ohtsu, A.; Zalcberg, J.; Vickers, M.M.; Wei, A.C.; Gao, Y.; Tebbutt, N.C.; Markman, B.; Price, T.; Esaki, T.; Koski, S.; Hitron, M.; Li, W.; Li, Y.; Magoski, N.M.; Li, C.J.; Simes, J.; Tu, D.; O’Callaghan, C.J. Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol. Hepatol., 2018, 3(4), 263-270.
[http://dx.doi.org/10.1016/S2468-1253(18)30009-8 PMID: 29397354]
[17]
Guo, XP; Zhang, XY; Zhang, SD Clinical trial on the effects of shikonin mixture on later stage lung cancer. Zhong xi yi jie he za zhi = Chin. J. Modern Develop. Tradit. Med., 1991, 11(10), 598-599.
[18]
Zheng, H.; Huang, Q.; Huang, S.; Yang, X.; Zhu, T.; Wang, W.; Wang, H.; He, S.; Ji, L.; Wang, Y.; Qi, X.; Liu, Z.; Lu, L. Senescence inducer shikonin ROS-Dependently suppressed lung cancer progression. Front. Pharmacol., 2018, 9, 519.
[http://dx.doi.org/10.3389/fphar.2018.00519] [PMID: 29875661]
[19]
Sakpakdeejaroen, I.; Somani, S.; Laskar, P.; Mullin, M.; Dufès, C. Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy. J. Interdiscip. Nanomed., 2019, 4(2), 54-71.
[http://dx.doi.org/10.1002/jin2.56] [PMID: 31341642]
[20]
Vančo, J.; Trávníček, Z.; Hošek, J.; Suchý, P., Jr In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS One, 2017, 12(7)e0181822
[http://dx.doi.org/10.1371/journal.pone.0181822] [PMID: 28742852]
[21]
Tang, J.C.; Ren, Y.G.; Zhao, J.; Long, F.; Chen, J.Y.; Jiang, Z. Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway. Life Sci., 2018, 204, 71-77.
[http://dx.doi.org/10.1016/j.lfs.2018.05.012] [PMID: 29738778]
[22]
Kim, H.J.; Hwang, K.E.; Park, D.S.; Oh, S.H.; Jun, H.Y.; Yoon, K.H.; Jeong, E.T.; Kim, H.R.; Kim, Y.S. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J. Transl. Med., 2017, 15(1), 123.
[http://dx.doi.org/10.1186/s12967-017-1223-7] [PMID: 28569199]
[23]
Lin, H.Y.; Han, H.W.; Sun, W.X.; Yang, Y.S.; Tang, C.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur. J. Med. Chem., 2018, 144, 137-150.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.019] [PMID: 29268130]
[24]
Chen, C.; Xiao, W.; Huang, L.; Yu, G.; Ni, J.; Yang, L.; Wan, R.; Hu, G. Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am. J. Transl. Res., 2017, 9(12), 5507-5517.
[PMID: 29312502]
[25]
Liang, W.; Cui, J.; Zhang, K.; Xi, H.; Cai, A.; Li, J.; Gao, Y.; Hu, C.; Liu, Y.; Lu, Y.; Wang, N.; Wu, X.; Wei, B.; Chen, L. Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget, 2017, 8(65), 109094-109106.
[http://dx.doi.org/10.18632/oncotarget.22618] [PMID: 29312593]
[26]
Arantes, L.M.R.B.; Laus, A.C.; Melendez, M.E.; de Carvalho, A.C.; Sorroche, B.P.; De Marchi, P.R.M.; Evangelista, A.F.; Scapulatempo-Neto, C.; de Souza Viana, L.; Carvalho, A.L. MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget, 2017, 8(6), 9911-9921.
[http://dx.doi.org/10.18632/oncotarget.14253] [PMID: 28039483]
[27]
Ni, F.; Huang, X.; Chen, Z.; Qian, W.; Tong, X. Shikonin exerts antitumor activity in Burkitt’s lymphoma by inhibiting C-MYC and PI3K/AKT/mTOR pathway and acts synergistically with doxorubicin. Sci. Rep., 2018, 8(1), 3317.
[http://dx.doi.org/10.1038/s41598-018-21570-z] [PMID: 29463831]
[28]
Alurappa, R.; Chowdappa, S. Antimicrobial activity and phytochemical analysis of endophytic fungal extracts isolated from ethno-pharmaceutical plant Rauwolfia tetraphylla L. J. Pure Appl. Microbiol., 2018, 12(2), 317-332.
[http://dx.doi.org/10.22207/JPAM.12.1.38]
[29]
Yan, C.; Liu, W.; Li, J.; Deng, Y.; Chen, S.; Liu, H. Bioactive terpenoids from: Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv, 2018, 8(27), 14823-14828.
[http://dx.doi.org/10.1039/C8RA02430H]
[30]
Qiu, H.Y.; Fu, J.Y.; Yang, M.K.; Han, H.W.; Wang, P.F.; Zhang, Y.H.; Lin, H.Y.; Tang, C.Y.; Qi, J.L.; Yang, R.W.; Wang, X.M.; Zhu, H.L.; Yang, Y.H. Identification of new shikonin derivatives as STAT3 inhibitors. Biochem. Pharmacol., 2017, 146, 74-86.
[http://dx.doi.org/10.1016/j.bcp.2017.10.009] [PMID: 29066190]
[31]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Hasegawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[32]
Liu, J.M.; Zhang, D.W.; Zhang, M.; Chen, R.D.; Yan, Z.; Zhao, J.Y. Periconones B–E, new meroterpenoids from endophytic fungus Periconia sp. Chin. Chem. Lett., 2017, 28(2), 248-252.
[http://dx.doi.org/10.1016/j.cclet.2016.07.031]
[33]
Wang, X.; Zhang, F.; Wu, X.R. Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. Sci. Rep., 2017, 7, 45983.
[http://dx.doi.org/10.1038/srep45983] [PMID: 28378811]
[34]
Gara, R.K.; Srivastava, V.K.; Duggal, S.; Bagga, J.K.; Bhatt, M.; Sanyal, S.; Mishra, D.P. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J. Biomed. Sci., 2015, 22, 26.
[http://dx.doi.org/10.1186/s12929-015-0127-1] [PMID: 25879420]
[35]
Tang, J.C.; Zhao, J.; Long, F.; Chen, J.Y.; Mu, B.; Jiang, Z.; Ren, Y.; Yang, J. Efficacy of shikonin against esophageal cancer cells and its possible mechanisms in vitro and in vivo. J. Cancer, 2018, 9(1), 32-40.
[http://dx.doi.org/10.7150/jca.21224] [PMID: 29290767]
[36]
Mao, X.; Yu, C.R.; Li, W.H.; Li, W.X. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive Chronic Myelogenous Leukemia (CML) cells. Cell Res., 2008, 18(8), 879-888.
[http://dx.doi.org/10.1038/cr.2008.86] [PMID: 18663379]
[37]
Yan, W.; Tu, B.; Liu, Y.Y.; Wang, T.Y.; Qiao, H.; Zhai, Z.J.; Li, H.W.; Tang, T.T. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res., 2013, 1(4), 362-370.
[http://dx.doi.org/10.4248/BR201304007] [PMID: 26273514]
[38]
Sinha, S.; Pal, K.; Elkhanany, A.; Dutta, S.; Cao, Y.; Mondal, G.; Iyer, S.; Somasundaram, V.; Couch, F.J.; Shridhar, V.; Bhattacharya, R.; Mukhopadhyay, D.; Srinivas, P. Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int. J. Cancer, 2013, 132(5), 1201-1212.
[http://dx.doi.org/10.1002/ijc.27724] [PMID: 22806981]
[39]
Hafeez, B.B.; Jamal, M.S.; Fischer, J.W.; Mustafa, A.; Verma, A.K. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int. J. Cancer, 2012, 131(9), 2175-2186.
[http://dx.doi.org/10.1002/ijc.27478] [PMID: 22322442]
[40]
Liu, Y.; Cai, Y.; He, C.; Chen, M.; Li, H. Anticancer properties and pharmaceutical applications of plumbagin: A review. Am. J. Chin. Med., 2017, 45(3), 423-441.
[http://dx.doi.org/10.1142/S0192415X17500264] [PMID: 28359198]
[41]
Khong, H.; Dreisbach, L.; Kindler, H.; Trent, D.; Jeziorski, K.; Bonderenko, I. A phase 2 study of ARQ 501 in combination with gemcitabine in adult patients with treatment naive, unresectable pancreatic adenocarcinoma. J. Clin. Oncol., 2007, 25(18), 15017.
[42]
Wu, Y.; Wang, X.; Chang, S.; Lu, W.; Liu, M.; Pang, X. β-Lapachone Induces NAD(P)H:Quinone Oxidoreductase-1- and oxidative stress-dependent heat shock protein 90 cleavage and inhibits tumor growth and angiogenesis. J. Pharmacol. Exp. Ther., 2016, 357(3), 466-475.
[http://dx.doi.org/10.1124/jpet.116.232694] [PMID: 27048660]
[43]
Wang, F.; Yao, X.; Zhang, Y.; Tang, J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia, 2019, 134, 329-339.
[http://dx.doi.org/10.1016/j.fitote.2019.03.005] [PMID: 30858045]
[44]
Yang, Y.; Zhou, X.; Xu, M.; Piao, J.; Zhang, Y.; Lin, Z.; Chen, L. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci. Rep., 2017, 7(1), 2681.
[http://dx.doi.org/10.1038/s41598-017-02937-0] [PMID: 28578385]
[45]
Li, C.J.; Li, Y.Z.; Pinto, A.V.; Pardee, A.B. Potent inhibition of tumor survival in vivo by beta-lapachone plus taxol: Combining drugs imposes different artificial checkpoints. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13369-13374.
[http://dx.doi.org/10.1073/pnas.96.23.13369] [PMID: 10557327]
[46]
Dong, Y; Chin, SF; Blanco, E; Bey, EA; Kabbani, W; Xie, XJ Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy Clinical cancer research: an official journal of the American Association for Cancer Research, 2009, 15(1),131-9..
[47]
Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Advances, 2015, 5(26), 20309-20338.
[http://dx.doi.org/10.1039/C4RA13547D]
[48]
Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Silva, F.C.D.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90(1)(Suppl. 2), 1187-1214.
[http://dx.doi.org/10.1590/0001-3765201820170815 PMID: 29873671]
[49]
Wang, Y-C.; Lin, Y-H. Anti-gastric adenocarcinoma activity of 2-Methoxy-1,4-naphthoquinone, an anti-Helicobacter pylori compound from Impatiens balsamina L. Fitoterapia, 2012, 83(8), 1336-1344.
[http://dx.doi.org/10.1016/j.fitote.2012.04.003] [PMID: 22516543]
[50]
Ong, J.Y.H.; Yong, P.V.C.; Lim, Y.M.; Ho, A.S.H. 2-Methoxy-1,4-naphthoquinone (MNQ) induces apoptosis of A549 lung adenocarcinoma cells via oxidation-triggered JNK and p38 MAPK signaling pathways. Life Sci., 2015, 135, 158-164.
[http://dx.doi.org/10.1016/j.lfs.2015.03.019] [PMID: 25896662]
[51]
Munday, R. Autoxidation of naphthohydroquinones: Effects of pH, naphthoquinones and superoxide dismutase. Free Radic. Res., 2000, 32(3), 245-253.
[http://dx.doi.org/10.1080/10715760000300251] [PMID: 10730823]
[52]
Guo, N.; Miao, R.; Gao, X.; Huang, D.; Hu, Z.; Ji, N.; Nan, Y.; Jiang, F.; Gou, X. Shikonin inhibits proliferation and induces apoptosis in glioma cells via downregulation of CD147. Mol. Med. Rep., 2019, 19(5), 4335-4343.
[http://dx.doi.org/10.3892/mmr.2019.10101] [PMID: 30942433]
[53]
Liew, K.; Yong, P.V.C.; Lim, Y.M.; Navaratnam, V.; Ho, A.S.H. 2-Methoxy-1,4-Naphthoquinone (MNQ) suppresses the invasion and migration of a human metastatic breast cancer cell line (MDA-MB-231). Toxicol. In Vitro, 2014, 28(3), 335-339.
[http://dx.doi.org/10.1016/j.tiv.2013.11.008] [PMID: 24291160]
[54]
Lucena, G.M.; Porto, F.A.; Campos, É.G.; Azevedo, M.S.; Cechinel-Filho, V.; Prediger, R.D.; Ferreira, V.M. Cipura paludosa attenuates long-term behavioral deficits in rats exposed to methylmercury during early development. Ecotoxicol. Environ. Saf., 2010, 73(6), 1150-1158.
[http://dx.doi.org/10.1016/j.ecoenv.2010.04.008] [PMID: 20447691]
[55]
Campos, A.; Barbosa Vendramini-Costa, D.; Francisco Fiorito, G.; Lúcia Tasca Gois Ruiz, A.; Ernesto de Carvalho, J.; Maria Rodrigues de Souza, G.; Delle-Monache, F.; Cechinel Filho, V. Antiproliferative effect of extracts and pyranonaphthoquinones obtained from Cipura paludosa bulbs. Pharm. Biol., 2016, 54(6), 1022-1026.
[http://dx.doi.org/10.3109/13880209.2015.1091847 PMID: 26468762]
[56]
Qiao, S.; Liu, C.; Xu, W. AZhaTi W, Li C, Wang Z. Up-regulated expression of CD147 gene in malignant bone tumor and the possible induction mechanism during osteoclast formation. Braz. J. Med. Biol. Res., 2018, 51, 1-8.
[http://dx.doi.org/10.1590/1414-431x20186948]
[57]
Liu, J.; Liu, Q.; Wang, Y.; Liu, M.; Qi, Y.; Gao, J.; Lin, B. Co-expression of Lewis y antigen and CD147 in epithelial ovarian cancer is correlated with malignant progression and poor prognosis. Int. J. Mol. Med., 2019, 43(4), 1687-1698.
[http://dx.doi.org/10.3892/ijmm.2019.4103] [PMID: 30816446]
[58]
Liu, Y.; Harinantenaina, L.; Brodie, P.J.; Bowman, J.D.; Cassera, M.B.; Slebodnick, C.; Callmander, M.W.; Randrianaivo, R.; Rakotobe, E.; Rasamison, V.E.; Applequist, W.; Birkinshaw, C.; Lewis, G.P.; Kingston, D.G. Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest. Bioorg. Med. Chem., 2013, 21(24), 7591-7594.
[http://dx.doi.org/10.1016/j.bmc.2013.10.038] [PMID: 24239390]
[59]
Galván, I.J.; Mir-Rashed, N.; Jessulat, M.; Atanya, M.; Golshani, A.; Durst, T.; Petit, P.; Amiguet, V.T.; Boekhout, T.; Summerbell, R.; Cruz, I.; Arnason, J.T.; Smith, M.L. Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata. Phytochemistry, 2008, 69(3), 738-746.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.007 PMID: 17950387]
[60]
Ma, W-D.; Zou, Y-P.; Wang, P.; Yao, X-H.; Sun, Y.; Duan, M-H.; Fu, Y.J.; Yu, B. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem. Toxicol., 2014, 70, 1-8.
[http://dx.doi.org/10.1016/j.fct.2014.04.014] [PMID: 24793375]
[61]
Lee, Y.J.; Cui, J.; Lee, J.; Han, A-R.; Lee, E.B.; Jang, H.H.; Seo, E.K. Cytotoxic compounds from Juglans sinensis Dode display anti-proliferative activity by inducing apoptosis in human cancer cells. Molecules, 2016, 21(1)E120
[http://dx.doi.org/10.3390/molecules21010120] [PMID: 26805799]
[62]
Kitagawa, R.R.; Vilegas, W.; Carlos, I.Z.; Raddi, M.S.G. Antitumor and immunomodulatory effects of the naphthoquinone 5-methoxy-3, 4-dehydroxanthomegnin. Rev. Bras. Farmacogn., 2011, 21(6), 1084-1088.
[http://dx.doi.org/10.1590/S0102-695X2011005000136]
[63]
Kitagawa, R.R.; Bonacorsi, C. Fonseca LMd, Vilegas W, Raddi MSG. Anti-Helicobacter pylori activity and oxidative burst inhibition by the naphthoquinone 5-methoxy-3, 4-dehydroxanthomegnin from Paepalanthus latipes. Rev. Bras. Farmacogn., 2012, 22(1), 53-59.
[http://dx.doi.org/10.1590/S0102-695X2011005000193]
[64]
Kitagawa, R.R.; Vilegas, W.; Varanda, E.A.; Raddi, M.S. Evaluation of mutagenicity and metabolism-mediated cytotoxicity of the naphthoquinone 5-methoxy-3, 4-dehydroxanthomegnin from Paepalanthus latipes. Rev. Bras. Farmacogn., 2015, 25(1), 16-21.
[http://dx.doi.org/10.1016/j.bjp.2014.12.001]
[65]
Tung, N.H.; Du, G-J.; Yuan, C-S.; Shoyama, Y.; Wang, C-Z. Isolation and chemopreventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria. Anticancer Drugs, 2013, 24(10), 1058-1068.
[http://dx.doi.org/10.1097/CAD.0000000000000017 PMID: 24025561]
[66]
Huu Tung, N.; Du, G.J.; Wang, C.Z.; Yuan, C.S.; Shoyama, Y. Naphthoquinone components from Alkanna tinctoria (L.) Tausch show significant antiproliferative effects on human colorectal cancer cells. Phytother. Res., 2013, 27(1), 66-70.
[http://dx.doi.org/10.1002/ptr.4680] [PMID: 22473633]
[67]
da S Souza,; L.G.; Almeida, M.C.S.; Lemos, T.L.G.; Ribeiro, P.R.V.; de Brito, E.S.; Silva, V.L.M.; Silva, A.M.S.; Braz-Filho, R.; Costa, J.G.M.; Rodrigues, F.F.G.; Barreto, F.S.; de Moraes, M.O. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes. Bioorg. Med. Chem. Lett., 2016, 26(2), 435-439.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.095] [PMID: 26684850]
[68]
de S Wisintainer, G.G.; Scola, G.; Moura, S.; Lemos, T.L.; Pessoa, C.; de Moraes, M.O.; Souza, L.G.; Roesch-Ely, M.; Henriques, J.A. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines. Genet. Mol. Res., 2015, 14(4), 17472-17481.
[http://dx.doi.org/10.4238/2015.December.21.18] [PMID: 26782390]
[69]
Montenegro, R.C.; de Vasconcellos, M.C. Barbosa, Gdos.S.; Burbano, R.M.; Souza, L.G.; Lemos, T.L.; Costa-Lotufo, L.V.; de Moraes, M.O. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling. Toxicol. In Vitro, 2013, 27(7), 2076-2083.
[http://dx.doi.org/10.1016/j.tiv.2013.07.011] [PMID: 23912027]
[70]
Andrade Carvalho, A.; da Costa, P.M.; Da Silva Souza, L.G.; Lemos, T.L.G.; Alves, A.P.N.N.; Pessoa, C.; de Moraes, M.O. Inhibition of metastatic potential of B16-F10 melanoma cell line in vivo and in vitro by biflorin. Life Sci., 2013, 93(5-6), 201-207.
[http://dx.doi.org/10.1016/j.lfs.2013.05.018] [PMID: 23743169]
[71]
Krolicka, A.; Szpitter, A.; Stawujak, K.; Baranski, R.; Gwizdek-Wisniewska, A.; Skrzypczak, A. Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue Organ Cult., 2010, 103(3), 285-292.
[http://dx.doi.org/10.1007/s11240-010-9778-5]
[72]
Mbaveng, A.T.; Kuete, V. Review of the chemistry and pharmacology of 7-Methyljugulone. Afr. Health Sci., 2014, 14(1), 201-205.
[http://dx.doi.org/10.4314/ahs.v14i1.31] [PMID: 26060480]
[73]
Kawiak, A.; Lojkowska, E. Ramentaceone, a naphthoquinone derived from Drosera sp., induces apoptosis by suppressing PI3K/Akt signaling in breast cancer cells. PLoS One, 2016, 11(2)e0147718
[http://dx.doi.org/10.1371/journal.pone.0147718] [PMID: 26840401]
[74]
Kawiak, A.; Zawacka-Pankau, J.; Wasilewska, A.; Stasilojc, G.; Bigda, J.; Lojkowska, E. Induction of apoptosis in HL-60 cells through the ROS-mediated mitochondrial pathway by ramentaceone from Drosera aliciae. J. Nat. Prod., 2012, 75(1), 9-14.
[http://dx.doi.org/10.1021/np200247g] [PMID: 22250825]
[75]
Li, Q.; Guo, Z.; Wang, K.; Zhang, X.; Lou, Y.; Zhao, Y-q. Two new 1,4-naphthoquinone derivatives from Impatiens balsamina L. flowers. Phytochem. Lett., 2015, 14, 8-11.
[http://dx.doi.org/10.1016/j.phytol.2015.08.011]
[76]
Zhang, H.; Li, C.; Kwok, S-T.; Zhang, Q-W.; Chan, S-W. A review of the pharmacological effects of the dried root of Polygonum cuspidatum (Hu Zhang) and its constituents. Evid. Based Complement. Alternat. Med., 2013.2013208349
[http://dx.doi.org/10.1155/2013/208349] [PMID: 24194779]
[77]
Li, Y.B.; Lin, Z.Q.; Zhang, Z.J.; Wang, M.W.; Zhang, H.; Zhang, Q.W.; Lee, S.M.; Wang, Y.T.; Hoi, P.M. Protective, antioxidative and antiapoptotic effects of 2-methoxy-6-acetyl-7-methyljuglone from Polygonum cuspidatum in PC12 cells. Planta Med., 2011, 77(4), 354-361.
[http://dx.doi.org/10.1055/s-0030-1250385] [PMID: 20922651]
[78]
Sun, W.; Bao, J.; Lin, W.; Gao, H.; Zhao, W.; Zhang, Q.; Leung, C.H.; Ma, D.L.; Lu, J.; Chen, X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic. Biol. Med., 2016, 92, 61-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.01.014 PMID: 26802903]
[79]
Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: an overview. ARKIVOC, 2007, 2, 145-171.
[80]
Fan, J-T.; Chen, Y-S.; Xu, W-Y.; Du, L.; Zeng, G-Z.; Zhang, Y-M. Rubiyunnanins A and B, two novel cyclic hexapeptides from Rubia yunnanensis. Tetrahedron Lett., 2010, 51(52), 6810-6813.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.066]
[81]
Xu, K.; Wang, P.; Wang, L.; Liu, C.; Xu, S.; Cheng, Y.; Wang, Y.; Li, Q.; Lei, H. Quinone derivatives from the genus Rubia and their bioactivities. Chem. Biodivers., 2014, 11(3), 341-363.
[http://dx.doi.org/10.1002/cbdv.201200173] [PMID: 24634067]
[82]
Wang, Z.; Zhao, S-M.; Hu, Y-Y.; Feng, L.; Zhao, L-M.; Di, Y-T.; Tan, N.H. Rubipodanones A-D, naphthohydroquinone dimers from the roots and rhizomes of Rubia podantha. Phytochemistry, 2018, 145, 153-160.
[http://dx.doi.org/10.1016/j.phytochem.2017.11.002 PMID: 29132078]
[83]
Zhao, S-M.; Wang, Z.; Chen, X-Q.; Huang, M-B.; Tan, N-H. (±)-Rubioncolin D, a pair of enantiomeric naphthohydroquinone dimers from Rubia oncotricha. Tetrahedron Lett., 2017, 58(31), 3041-3043.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.063]
[84]
Zhao, S.M.; Wang, Z.; Zeng, G.Z.; Song, W.W.; Chen, X.Q.; Li, X.N.; Tan, N.H. New cytotoxic naphthohydroquinone dimers from Rubia alata. Org. Lett., 2014, 16(21), 5576-5579.
[http://dx.doi.org/10.1021/ol502603f] [PMID: 25310176]
[85]
Quan, L.Q.; Dai, W.F.; Li, F.; Li, Y.H.; Chen, X.Q.; Li, R.T.; Li, H.M. Onosmanones A and B, two novel quinonoid xanthenes from Onosma paniculatum. Nat. Prod. Res., 2018, 32(21), 2571-2576.
[http://dx.doi.org/10.1080/14786419.2018.1428589 PMID: 29359583]
[86]
Ariefta, N.R.; Kristiana, P.; Aboshi, T.; Murayama, T.; Tawaraya, K.; Koseki, T.; Kurisawa, N.; Kimura, K.I.; Shiono, Y. New isocoumarins, naphthoquinones, and a cleistanthane-type diterpene from Nectria pseudotrichia 120-1NP. Fitoterapia, 2018, 127, 356-361.
[http://dx.doi.org/10.1016/j.fitote.2018.03.012] [PMID: 29621598]
[87]
Chen, D.; Qiao, J.; Sun, Z.; Liu, Y.; Sun, Z.; Zhu, N.; Xu, X.; Yang, J.; Ma, G. New naphtoquinones derivatives from the edible bulbs of Eleutherine americana and their protective effect on the injury of human umbilical vein endothelial cells. Fitoterapia, 2019, 132, 46-52.
[http://dx.doi.org/10.1016/j.fitote.2018.11.009] [PMID: 30496808]
[88]
Boonyaketgoson, S.; Rukachaisirikul, V.; Phongpaichit, S.; Trisuwan, K. Naphthoquinones from the leaves of Rhinacanthus nasutus having acetylcholinesterase inhibitory and cytotoxic activities. Fitoterapia, 2018, 124, 206-210.
[http://dx.doi.org/10.1016/j.fitote.2017.11.011] [PMID: 29154868]
[89]
Wang, L.; Li, F.; Liu, X.; Chen, B.; Yu, K.; Wang, M.K. Meroterpenoids and a naphthoquinone from Arnebia euchroma and their cytotoxic activity. Planta Med., 2015, 81(4), 320-326.
[http://dx.doi.org/10.1055/s-0035-1545693] [PMID: 25760383]
[90]
Yuzbasioglu Baran, M.; Guvenalp, Z.; Saracoglu, I.; Kazaz, C.; Salih, B.; Demirezer, L.O. Cytotoxic naphthoquinones from Arnebia densiflora (Nordm.) Ledeb and determining new apoptosis inducers. Nat. Prod. Res., 2020, 34(12), 1669-1677.
[PMID: 30449173]
[91]
Rasol, N.E.; Ahmad, F.B.; Lim, X-Y.; Chung, F.F-L.; Leong, C-O.; Mai, C-W. Cytotoxic lactam and naphthoquinone alkaloids from roots of Goniothalamus lanceolatus Miq. Phytochem. Lett., 2018, 24, 51-55.
[http://dx.doi.org/10.1016/j.phytol.2018.01.009]
[92]
Delarmelina, M.; Daltoé, R.D.; Cerri, M.F.; Madeira, K.P.; Rangel, L.B.A.; Lacerda Júnior, V. Synthesis, antitumor activity and docking of 2,3-(substituted)-1,4-naphthoquinone derivatives containing nitrogen, oxygen and sulfur. J. Braz. Chem. Soc., 2015, 26, 1804-1816.
[http://dx.doi.org/10.5935/0103-5053.20150157]
[93]
Silva, A.S.; Amorim, M.S.; Fonseca, M.M.; Salvador, M.J. Sá ELd, Stefanello MÉA. A new cytotoxic naphthoquinone and other chemical constituents of Sinningia reitzii. J. Braz. Chem. Soc., 2019, 30, 2060-2065.
[94]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[PMID: 28722231]
[95]
Moreira, C.S.; Silva, A.C.; Novais, J.S.; Sá Figueiredo, A.M.; Ferreira, V.F.; da Rocha, D.R.; Castro, H.C. Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. J. Appl. Microbiol., 2017, 122(3), 651-662.
[http://dx.doi.org/10.1111/jam.13369] [PMID: 27930849]
[96]
Sasaki, K.; Abe, H.; Yoshizaki, F. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull., 2002, 25(5), 669-670.
[http://dx.doi.org/10.1248/bpb.25.669] [PMID: 12033513]
[97]
Jang, H-J.; Chung, I-Y.; Lim, C.; Chung, S.; Kim, B-O.; Kim, E.S.; Kim, S.H.; Cho, Y.H. Redirecting an Anticancer to an Antibacterial Hit Against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol., 2019, 10, 350.
[http://dx.doi.org/10.3389/fmicb.2019.00350] [PMID: 30858845]
[98]
Sheng, C.; Zhang, W. New lead structures in antifungal drug discovery. Curr. Med. Chem., 2011, 18(5), 733-766.
[http://dx.doi.org/10.2174/092986711794480113 PMID: 21182484]
[99]
Krychowiak, M.; Kawiak, A.; Narajczyk, M.; Borowik, A.; Królicka, A. Silver nanoparticles combined with naphthoquinones as an effective synergistic strategy against Staphylococcus aureus. Front. Pharmacol., 2018, 9(816), 816.
[http://dx.doi.org/10.3389/fphar.2018.00816] [PMID: 30140226]
[100]
Nair, S.V.; Baranwal, G.; Chatterjee, M.; Sachu, A.; Vasudevan, A.K.; Bose, C.; Banerji, A.; Biswas, R. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int. J. Med. Microbiol., 2016, 306(4), 237-248.
[http://dx.doi.org/10.1016/j.ijmm.2016.05.004] [PMID: 27212459]
[101]
Suyama, Y.; Higashino, Y.; Tanaka, N.; Tatano, Y.; Yagi, H.; Kawazoe, K. Stereochemical assignments of rubiaquinones A–C, naphthoquinone derivatives from Rubia yunnanensis. Tetrahedron Lett., 2017, 58(48), 4568-4571.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.051]
[102]
Wongwanakul, R.; Vardhanabhuti, N.; Siripong, P.; Jianmongkol, S. Effects of rhinacanthin-C on function and expression of drug efflux transporters in Caco-2 cells. Fitoterapia, 2013, 89, 80-85.
[http://dx.doi.org/10.1016/j.fitote.2013.05.019] [PMID: 23742857]
[103]
Zhao, S-M.; Kuang, B.; Zeng, G-Z.; Wang, Z.; Wang, J.; Chen, X-Q. Nematicidal quinone derivatives from three Rubia plants. Tetrahedron, 2018, 74(17), 2115-2120.
[http://dx.doi.org/10.1016/j.tet.2018.02.065]
[104]
Tosun, A.; Akkol, E.K.; Bahadir, O.; Yeşilada, E. Evaluation of anti-inflammatory and antinociceptive activities of some Onosma L. species growing in Turkey. J. Ethnopharmacol., 2008, 120(3), 378-381.
[http://dx.doi.org/10.1016/j.jep.2008.09.007] [PMID: 18852039]
[105]
Guo, H; Sun, J; Li, D; Hu, Y; Yu, X .; Hua, H hikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2019.http://10.1016/j.biopha.2019.108704.
[106]
Pai, SA; Munshi, RP; Panchal, FH; Gaur, IS; Mestry, SN; Gursahani, MS Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2019, 111, 686-94. http://10.1016/j.biopha.2018.12.139.
[107]
Lomba, L.A.; Vogt, P.H.; Souza, V.E.P.; Leite-Avalca, M.C.G.; Verdan, M.H.; Stefanello, M.E.A.; Zampronio, A.R. A Naphthoquinone from Sinningia canescens Inhibits Inflammation and Fever in Mice. Inflammation, 2017, 40(3), 1051-1061.
[http://dx.doi.org/10.1007/s10753-017-0548-y] [PMID: 28332176]
[108]
Dong, M.; Liu, D.; Li, Y-H.; Chen, X-Q.; Luo, K.; Zhang, Y-M.; Li, R.T. Naphthoquinones from Onosma paniculatum with potential anti-inflammatory activity. Planta Med., 2017, 83(7), 631-635.
[http://dx.doi.org/10.1055/s-0043-100122] [PMID: 27852095]
[109]
Soares, A.S.; Barbosa, F.L.; Rüdiger, A.L.; Hughes, D.L.; Salvador, M.J.; Zampronio, A.R.; Stefanello, M.É.A. Naphthoquinones of Sinningia reitzii and Anti-inflammatory/Antinociceptive Activities of 8-Hydroxydehydrodunnione. J. Nat. Prod., 2017, 80(6), 1837-1843.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01186] [PMID: 28598175]
[110]
Ding, Z.S.; Jiang, F.S.; Chen, N.P.; Lv, G.Y.; Zhu, C.G. Isolation and identification of an anti-tumor component from leaves of Impatiens balsamina. Molecules, 2008, 13(2), 220-229.
[http://dx.doi.org/10.3390/molecules13020220] [PMID: 18305414 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy