Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Biological Properties of Yeast-based Mannoprotein for Prospective Biomedical Applications

Author(s): Motaharesadat Hosseini and Anoosheh Sharifan*

Volume 24, Issue 6, 2021

Published on: 18 August, 2020

Page: [831 - 840] Pages: 10

DOI: 10.2174/1386207323999200818162030

Price: $65

Abstract

Background: Natural products constitute more than half of all biomolecules lately being used in clinical settings. Mannoprotein derived from the yeast cell wall has found full biotechnological applications.

Objective: This study was intended to investigate the antioxidant, anticancer, and toxicological properties of Kluyveromyces marxianus mannoprotein (KM).

Methods: The KM extract was obtained through a sequence of operations, including centrifugation for cell isolation, precipitation with potassium citrate/sodium metabisulfite, and recovery and purification. Its antioxidant, growth inhibition, macrophage mitogenic, and toxic activities were evaluated for its future use in the biomedical field.

Results: Significant inhibitory effects of KM were obtained on reactive species. It showed antiproliferative activity against HeLa (human cervical adenocarcinoma) and MCF-7 (human breast cancer) cell lines with no toxic effects on HUVECs (human umbilical vein endothelial cells). The in vitro model of CHO-K1 (Chinese hamster ovary) cell lines did not show the cytotoxic and genotoxic of KM. Moreover, it enhanced macrophage activity in terms of nitric oxide (NO) production and viability. No sign of acute toxicity was found in BALB/c mice, and body weight remained unchanged in guinea pigs over three months.

Conclusion: Comprehensive biological evaluations in this study are expected to expand the potential of KM as a natural material.

Keywords: Yeasts, polysaccharide, macrophage, tumour cell line, guinea pigs, BALB/c mice.

[1]
Medina-Córdova, N.; Reyes-Becerril, M.; Ascencio, F.; Castellanos, T.; Campa-Córdova, A.I.; Angulo, C. Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes. Int. J. Biol. Macromol., 2018, 116, 599-606.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.061] [PMID: 29763702]
[2]
Mehnath, S.; Arjama, M.; Rajan, M.; Premkumar, K.; Karthikeyan, K.; Jeyaraj, M. Mineralization of bioactive marine sponge and electrophoretic deposition on Ti-6Al-4V implant for osteointegration. Surf. Coat. Tech., 2020, 392125727
[http://dx.doi.org/10.1016/j.surfcoat.2020.125727]
[3]
Mehnath, S.; Ayisha Sithika, M.A.; Arjama, M.; Rajan, M.; Amarnath Praphakar, R.; Jeyaraj, M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int. J. Biol. Macromol., 2019, 122, 174-184.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.167] [PMID: 30393136]
[4]
Mehnath, S.; Chitra, K.; Karthikeyan, K.; Jeyaraj, M. Localized delivery of active targeting micelles from nanofibers patch for effective breast cancer therapy. Int. J. Pharm., 2020, 584119412
[http://dx.doi.org/10.1016/j.ijpharm.2020.119412] [PMID: 32418898]
[5]
Caridi, A. Enological functions of parietal yeast mannoproteins. Antonie van Leeuwenhoek, 2006, 89(3-4), 417-422.
[http://dx.doi.org/10.1007/s10482-005-9050-x] [PMID: 16622788]
[6]
Chae, H.J.; Joo, H.; In, M.J. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol., 2001, 76(3), 253-258.
[http://dx.doi.org/10.1016/S0960-8524(00)00102-4] [PMID: 11198178]
[7]
Lipke, P.N.; Ovalle, R. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol., 1998, 180(15), 3735-3740.
[http://dx.doi.org/10.1128/JB.180.15.3735-3740.1998] [PMID: 9683465]
[8]
Nakanishi-Shindo, Y.; Nakayama, K.; Tanaka, A.; Toda, Y.; Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem., 1993, 268(35), 26338-26345.
[PMID: 8253757]
[9]
Quirós, M.; Morales, P.; Pérez-Través, L.; Barcenilla, J.M.; Gonzalez, R. A new methodology to determine cell wall mannoprotein content and release in wine yeasts. Food Chem., 2011, 125(2), 760-766.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.066]
[10]
de Melo, A.N.F.; de Souza, E.L.; da Silva Araujo, V.B.; Magnani, M. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast. Lebensm. Wiss. Technol., 2015, 62(1), 771-774.
[http://dx.doi.org/10.1016/j.lwt.2014.06.050]
[11]
da Silva Araújo, V.B.; de Melo, A.N.F.; Costa, A.G.; Castro-Gomez, R.H.; Madruga, M.S.; de Souza, E.L.; Magnani, M. Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov. Food Sci. Emerg. Technol., 2014, 23, 164-170.
[http://dx.doi.org/10.1016/j.ifset.2013.12.013]
[12]
Galinari, É.; Almeida-Lima, J.; Macedo, G.R.; Mantovani, H.C.; Rocha, H.A.O. Antioxidant, antiproliferative, and immunostimulatory effects of cell wall α-d-mannan fractions from Kluyveromyces marxianus. Int. J. Biol. Macromol., 2018, 109, 837-846.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.053] [PMID: 29133101]
[13]
Liu, Y.; Huang, G. The derivatization and antioxidant activities of yeast mannan. Int. J. Biol. Macromol., 2018, 107(Pt A), 755-761.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.055] [PMID: 28928062]
[14]
Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell. Longev., 2016, 2016, 5692852.
[http://dx.doi.org/10.1155/2016/5692852] [PMID: 26682009]
[15]
Kogan, G.; Pajtinka, M.; Babincova, M.; Miadokova, E.; Rauko, P.; Slamenova, D.; Korolenko, T.A. Yeast cell wall polysaccharides as antioxidants and antimutagens: can they fight cancer? Neoplasma, 2008, 55(5), 387-393.
[PMID: 18665748]
[16]
Ganan, M.; Carrascosa, A.V.; de Pascual-Teresa, S.; Martinez-Rodriguez, A.J. Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria. J. Food Sci., 2012, 77(3), M176-M180.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02602.x] [PMID: 22384965]
[17]
Ganan, M.; Carrascosa, A.V.; de Pascual-Teresa, S.; Martínez-Rodríguez, A.J. Inhibition by yeast-derived mannoproteins of adherence to and invasion of CaCO2 cells by Campylobacter jejuni. J. Food Prot., 2009, 72(1), 55-59.
[http://dx.doi.org/10.4315/0362-028X-72.1.55] [PMID: 19205464]
[18]
Fonseca, G.G.; Heinzle, E.; Wittmann, C.; Gombert, A.K. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol., 2008, 79(3), 339-354.
[http://dx.doi.org/10.1007/s00253-008-1458-6] [PMID: 18427804]
[19]
Lane, M.M.; Morrissey, J.P. Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol. Rev., 2010, 24(1-2), 17-26.
[http://dx.doi.org/10.1016/j.fbr.2010.01.001]
[20]
Torabizadeh, H.; Shojaosadati, S.; Tehrani, H. Preparation and characterisation of bioemulsifier fromsaccharomyces cerevisiaeand its application in food products. Lebensm. Wiss. Technol., 1996, 29(8), 734-737.
[http://dx.doi.org/10.1006/fstl.1996.0114]
[21]
Nakajima, T.; Ballou, C.E. Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J. Biol. Chem., 1974, 249(23), 7679-7684.
[PMID: 4612040]
[22]
Bacha, U.; Nasir, M.; Iqbal, S.; Anjum, A.A. Nutraceutical, anti-inflammatory, and immune modulatory effects of β-glucan isolated from yeast. BioMed Res. Int., 2017, 2017, 8972678.
[http://dx.doi.org/10.1155/2017/8972678] [PMID: 28913359]
[23]
Melo-Silveira, R.F.; Fidelis, G.P.; Costa, M.S.S.P.; Telles, C.B.S.; Dantas-Santos, N.; de Oliveira Elias, S.; Ribeiro, V.B.; Barth, A.L.; Macedo, A.J.; Leite, E.L.; Rocha, H.A. In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. Int. J. Mol. Sci., 2012, 13(1), 409-426.
[http://dx.doi.org/10.3390/ijms13010409] [PMID: 22312261]
[24]
Khatua, S.; Ghosh, S.; Acharya, K. A simplified method for microtiter based analysis of in vitro antioxidant activity. Asian J Pharmacol., 2017, 11(2), S327-S35.
[25]
Dasgupta, N.; De, B. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem., 2007, 101(2), 471-474.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.003]
[26]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[27]
Justo, O.R.; Simioni, P.U.; Gabriel, D.L.; Tamashiro, W.M.S.C.; Rosa, Pde.T.; Moraes, Â.M. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type. BMC Complement. Altern. Med., 2015, 15, 390.
[http://dx.doi.org/10.1186/s12906-015-0896-9] [PMID: 26511466]
[28]
Oliveira, R.J.; Matuo, R.; da Silva, A.F.; Matiazi, H.J.; Mantovani, M.S.; Ribeiro, L.R. Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicol. In Vitro, 2007, 21(1), 41-52.
[http://dx.doi.org/10.1016/j.tiv.2006.07.018] [PMID: 17055696]
[29]
Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A. Are antioxidants helpful for disease prevention? Res. Pharm. Sci., 2010, 5(1), 1-8.
[PMID: 21589762]
[30]
Shahidi, F. Natural Antioxidants: Chemistry, Health Effects, and Applications; , 1997.
[31]
Mzoughi, Z.; Chaouch, M.A.; Hammi, K.M.; Hafsa, J.; Le Cerf, D.; Ksouri, R.; Majdoub, H. Optimization of antioxidant and antiglycated activities of polysaccharides from Arthrocnemum indicum leaves. Int. J. Biol. Macromol., 2018, 113, 774-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.008] [PMID: 29505873]
[32]
Pristov, J.B.; Mitrović, A.; Spasojević, I. A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr. Res., 2011, 346(14), 2255-2259.
[http://dx.doi.org/10.1016/j.carres.2011.07.015] [PMID: 21880306]
[33]
Machová, E.; Bystrický, S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int. J. Biol. Macromol., 2013, 61, 308-311.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.016] [PMID: 23916650]
[34]
Tang, Q.; Huang, G.; Zhao, F.; Zhou, L.; Huang, S.; Li, H. The antioxidant activities of six (1→3)-β-d-glucan derivatives prepared from yeast cell wall. Int. J. Biol. Macromol., 2017, 98, 216-221.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.132] [PMID: 28161534]
[35]
Mello, L.D.; Kisner, A.; Goulart, M.O.; Kubota, L.T. Biosensors for antioxidant evaluation in biological systems. Comb. Chem. High Throughput Screen., 2013, 16(2), 109-120.
[PMID: 23092169]
[36]
Du, X.; Mu, H.; Zhou, S.; Zhang, Y.; Zhu, X. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia. Int. J. Biol. Macromol., 2013, 62, 691-696.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.016] [PMID: 24145301]
[37]
Liu, Y.; Huang, G.; Lv, M. Extraction, characterization and antioxidant activities of mannan from yeast cell wall. Int. J. Biol. Macromol., 2018, 118(Pt A), 952-956.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.145] [PMID: 29972767]
[38]
Wu, C.; Wang, X.; Wang, H.; Shen, B.; He, X.; Gu, W.; Wu, Q. Extraction optimization, isolation, preliminary structural characterization and antioxidant activities of the cell wall polysaccharides in the petioles and pedicels of Chinese herbal medicine Qian (Euryale ferox Salisb.). Int. J. Biol. Macromol., 2014, 64, 458-467.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.025] [PMID: 24370477]
[39]
Fan, J.; Wu, Z.; Zhao, T.; Sun, Y.; Ye, H.; Xu, R.; Zeng, X. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb. Carbohydr. Polym., 2014, 101, 990-997.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.037] [PMID: 24299866]
[40]
Huang, Q-L.; Siu, K-C.; Wang, W-Q.; Cheung, Y-C.; Wu, J-Y. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem., 2013, 48(2), 380-386.
[http://dx.doi.org/10.1016/j.procbio.2013.01.001]
[41]
Zhang, L.; Zhao, S.; Xiong, S.; Huang, Q.; Shen, S. Chemical structure and antioxidant activity of the biomacromolecules from paddlefish cartilage. Int. J. Biol. Macromol., 2013, 54, 65-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.030] [PMID: 23219891]
[42]
Khan, T.; Date, A.; Chawda, H.; Patel, K. Polysaccharides as potential anticancer agents-A review of their progress. Carbohydr. Polym., 2019, 210, 412-428.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.064] [PMID: 30732778]
[43]
Yang, S.; Jin, L.; Ren, X.; Lu, J.; Meng, Q. Optimization of fermentation process of Cordyceps militaris and antitumor activities of polysaccharides in vitro. J. Food Drug Anal., 2014, 22(4), 468-76.
[44]
Magnani, M.; Calliari, C.M.; de Macedo, F.C.; Mori, M.P.; de Syllos Cólus, I.M.; Castro-Gomez, R.J.H. Optimized methodology for extraction of (1→3)(1→6)-β-d-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr. Polym., 2009, 78(4), 658-665.
[http://dx.doi.org/10.1016/j.carbpol.2009.05.023]
[45]
Brown, G.D.; Gordon, S. Immune recognition. A new receptor for β-glucans. Nature, 2001, 413(6851), 36-37.
[http://dx.doi.org/10.1038/35092620] [PMID: 11544516]
[46]
Chao, Y.; Karmali, P.P.; Simberg, D. Role of carbohydrate receptors in themacrophage uptake of dextran-coated iron oxide nanoparticles.Nano-Biotechnology for Biomedical and Diagnostic Research; Zahavy, E.; Ordentlich, A.; Yitzhaki, S.; Shafferman, A., Eds.; Springer-Verlag Berlin Heidelberg: New York, 2012, pp. 115-123.
[http://dx.doi.org/10.1007/978-94-007-2555-3_11]
[47]
Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine, 2012, 7, 5577-5591.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[48]
Zhang, X.; Mosser, D.M. Macrophage activation by endogenous danger signals. J. Pathol., 2008, 214(2), 161-178.
[http://dx.doi.org/10.1002/path.2284] [PMID: 18161744]
[49]
Braga, T.T.; Agudelo, J.S.H.; Camara, N.O.S. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol., 2015, 6, 602.
[http://dx.doi.org/10.3389/fimmu.2015.00602] [PMID: 26635814]
[50]
Byeon, S.E.; Lee, J.; Kim, J.H.; Yang, W.S.; Kwak, Y-S.; Kim, S.Y.; Choung, E.S.; Rhee, M.H.; Cho, J.Y. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm., 2012, 2012, 732860.
[http://dx.doi.org/10.1155/2012/732860] [PMID: 22474399]
[51]
Kim, J.Y.; Byeon, S.E.; Lee, Y.G.; Lee, J.Y.; Park, J.; Hong, E.K.; Cho, J.Y. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J. Microbiol. Biotechnol., 2008, 18(1), 95-103.
[PMID: 18239423]
[52]
Jung, K.; Ha, Y.; Ha, S.K.; Han, D.U.; Kim, D.W.; Moon, W.K.; Chae, C. Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B Infect. Dis. Vet. Public Health, 2004, 51(2), 72-76.
[http://dx.doi.org/10.1111/j.1439-0450.2004.00732.x] [PMID: 15030604]
[53]
Olive, P.L.; Banáth, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc., 2006, 1(1), 23-29.
[http://dx.doi.org/10.1038/nprot.2006.5] [PMID: 17406208]
[54]
Forchhammer, L.; Ersson, C.; Loft, S.; Möller, L.; Godschalk, R.W.; van Schooten, F.J.; Jones, G.D.; Higgins, J.A.; Cooke, M.; Mistry, V.; Karbaschi, M.; Collins, A.R.; Azqueta, A.; Phillips, D.H.; Sozeri, O.; Routledge, M.N.; Nelson-Smith, K.; Riso, P.; Porrini, M.; Matullo, G.; Allione, A.; Stępnik, M.; Komorowska, M.; Teixeira, J.P.; Costa, S.; Corcuera, L.A.; López de Cerain, A.; Laffon, B.; Valdiglesias, V.; Møller, P. Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis, 2012, 27(6), 665-672.
[http://dx.doi.org/10.1093/mutage/ges032] [PMID: 22844078]
[55]
Amaeze, N.H.; Schnell, S.; Sozeri, O.; Otitoloju, A.A.; Egonmwan, R.I.; Arlt, V.M.; Bury, N.R. Cytotoxic and genotoxic responses of the RTgill-W1 fish cells in combination with the yeast oestrogen screen to determine the sediment quality of Lagos lagoon, Nigeria. Mutagenesis, 2015, 30(1), 117-127.
[http://dx.doi.org/10.1093/mutage/geu032] [PMID: 25527734]
[56]
Chorvatovicová, D.; Navarová, J. Suppressing effects of glucan on micronuclei induced by cyclophosphamide in mice. Mutat. Res., 1992, 282(3), 147-150.
[http://dx.doi.org/10.1016/0165-7992(92)90088-Y] [PMID: 1378546]
[57]
Chorvatovicová, D.; Kováciková, Z.; Šandula, J.; Navarová, J. Protective effect of sulfoethylglucan against hexavalent chromium. Mutat. Res., 1993, 302(4), 207-211.
[http://dx.doi.org/10.1016/0165-7992(93)90106-6] [PMID: 7688859]
[58]
Chorvatovicová, D.; Machová, E.; Šandula, J. Ultrasonication: the way to achieve antimutagenic effect of carboxymethyl-chitin-glucan by oral administration. Mutat. Res., 1998, 412(1), 83-89.
[http://dx.doi.org/10.1016/S1383-5718(97)00176-9] [PMID: 9508367]
[59]
Oliveira, R.J.; Ribeiro, L.R.; da Silva, A.F.; Matuo, R.; Mantovani, M.S. Evaluation of antimutagenic activity and mechanisms of action of beta-glucan from barley, in CHO-k1 and HTC cell lines using the micronucleus test. Toxicol. In Vitro, 2006, 20(7), 1225-1233.
[http://dx.doi.org/10.1016/j.tiv.2006.04.001] [PMID: 16716562]
[60]
Oliveira, R.J.; Pesarini, J.R.; Sparça Salles, M.J.; Nakamura Kanno, T.Y.; Dos Santos Lourenço, A.C.; da Silva Leite, V.; da Silva, A.F.; Matiazi, H.J.; Ribeiro, L.R.; Mantovani, M.S. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide. Genet. Mol. Biol., 2014, 37(1), 111-119.
[http://dx.doi.org/10.1590/S1415-47572014000100017] [PMID: 24688298]
[61]
Slamenová, D.; Lábaj, J.; Krizková, L.; Kogan, G.; Sandula, J.; Bresgen, N.; Eckl, P. Protective effects of fungal (1-->3)-β-D-glucan derivatives against oxidative DNA lesions in V79 hamster lung cells. Cancer Lett., 2003, 198(2), 153-160.
[http://dx.doi.org/10.1016/S0304-3835(03)00336-7] [PMID: 12957353]
[62]
Madrigal-Bujaidar, E.; Morales-González, J.A.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Reyes-Arellano, A.; Álvarez-González, I.; Pérez-Pasten, R.; Madrigal-Santillán, E. Prevention of Aflatoxin B1-Induced DNA Breaks by β-D-Glucan. Toxins (Basel), 2015, 7(6), 2145-2158.
[http://dx.doi.org/10.3390/toxins7062145] [PMID: 26110504]
[63]
Krizková, L.; Zitnanová, I.; Mislovicová, D.; Masárová, J.; Sasinková, V.; Duracková, Z.; Krajcovic, J. Antioxidant and antimutagenic activity of mannan neoglycoconjugates: mannan-human serum albumin and mannan-penicillin G acylase. Mutat. Res., 2006, 606(1-2), 72-79.
[http://dx.doi.org/10.1016/j.mrgentox.2006.03.003] [PMID: 16677851]
[64]
Madrigal-Santillán, E.; Alvarez-González, I.; Márquez-Márquez, R.; Velázquez-Guadarrama, N.; Madrigal-Bujaidar, E. Inhibitory effect of mannan on the toxicity produced in mice fed aflatoxin B1 contaminated corn. Arch. Environ. Contam. Toxicol., 2007, 53(3), 466-472.
[http://dx.doi.org/10.1007/s00244-006-0074-7] [PMID: 17657450]
[65]
Madrigal-Santillán, E.; Morales-González, J.A.; Sánchez-Gutiérrez, M.; Reyes-Arellano, A.; Madrigal-Bujaidar, E. Investigation on the protective effect of α-mannan against the DNA damage induced by aflatoxin B₁in mouse hepatocytes. Int. J. Mol. Sci., 2009, 10(2), 395-406.
[http://dx.doi.org/10.3390/ijms10020395] [PMID: 19333414]
[66]
Chorvatovicová, D.; Machová, E.; Šandula, J.; Kogan, G. Protective effect of the yeast glucomannan against cyclophosphamide-induced mutagenicity. Mutat. Res., 1999, 444(1), 117-122.
[http://dx.doi.org/10.1016/S1383-5718(99)00102-3] [PMID: 10477345]
[67]
Toklu, H.Z.; Şehirli, A.Ö.; Velioğlu-Oğünç, A.; Çetinel, S.; Şener, G. Acetaminophen-induced toxicity is prevented by β-D-glucan treatment in mice. Eur. J. Pharmacol., 2006, 543(1-3), 133-140.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.033] [PMID: 16822497]
[68]
Chen, S.N.; Nan, F.H.; Chen, S.; Wu, J.F.; Lu, C.L.; Soni, M.G. Safety assessment of mushroom β-glucan: subchronic toxicity in rodents and mutagenicity studies. Food Chem. Toxicol., 2011, 49(11), 2890-2898.
[http://dx.doi.org/10.1016/j.fct.2011.08.007] [PMID: 21856366]
[69]
Zhang, J.; Gao, X.; Pan, Y.; Xu, N.; Jia, L. Toxicology and immunology of Ganoderma lucidum polysaccharides in Kunming mice and Wistar rats. Int. J. Biol. Macromol., 2016, 85, 302-310.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.090] [PMID: 26763176]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy