Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Research Article

Chaotic Butterfly Optimization Algorithm Applied to Multi-objective Economic and Emission Dispatch in Modern Power System

Author(s): Arun Kumar Sahoo, Tapas Kumar Panigrahi, Soumya Ranjan Das* and Aurobinda Behera

Volume 15, Issue 2, 2022

Published on: 18 August, 2020

Page: [170 - 185] Pages: 16

DOI: 10.2174/2666255813999200818140528

Price: $65

Abstract

Aims: To optimize the economic and emission dispatch of the thermal power plant.

Background: Considering both the economic and environmental aspects, a combined approach has been developed to attain a solution for a problem known as the combined economic and emission dispatch problem. The CEED problem is a non-linear bi-objective problem with conflicting behaviour having all the practical constraints.

Objective: A new optimization method is improvised by applying the chaotic mapping to the butterfly optimization algorithm. This method is applied to the Combined Economic and Emission Dispatch (CEED) problem for optimizing consumed fuel cost and produced environment pollutants.

Methods: Improved Chaotic Butterfly algorithm is applied to the optimization problem to optimize combined economic and emission dispatch.

Results: The proposed technique is tested on four different test systems with various practical constraints like valve point loading, ramp rate limit and prohibited operating zones. The obtained results from the chaotic butterfly optimization algorithm (CBOA) are compared with other optimization techniques providing an optimum solution for the CEED problem.

Conclusion Considering the environmental impact, the novel metaheuristic swarm intelligence technique is applied. Different test systems with different practical operational constraints like valve-point loading, prohibited operating zones and ramp rate limits and emission dispatch have been analyzed to validate the implementation of the proposed algorithm in real life CEED problem situations.

Keywords: Economic Dispatch (ED), Chaotic Butterfly Optimization Algorithm (CBOA), Combined Economic and Emission Dispatch (CEED), Penalty Factor, Valve Point Loading Effect, Transmission Loss, Prohibited Operating Zones.

Graphical Abstract

[1]
J.S. Dhillon, and D.P. Kothari, "Power system optimization", In 2012 2nd National Conference on Computational Intelligence and Signal Processing (CISP), 2012pp. 18-21
[2]
J.H. Talaq, F. El-Hawary, and M.E. El-Hawary, "A summary of environmental/economic dispatch algorithms", IEEE Trans. Power Syst., vol. 9, no. 3, pp. 1508-1516, 1994.
[http://dx.doi.org/10.1109/59.336110]
[3]
J.Y. Fan, and L. Zhang, "Real-time economic dispatch with line flow and emission constraints using quadratic programming", IEEE Trans. Power Syst., vol. 13, no. 2, pp. 320-325, 1998.
[http://dx.doi.org/10.1109/59.667345]
[4]
J. Nanda, L. Hari, and M.L. Kothari, "Economic emission load dispatch with line flow constraints using a classical technique", IEE Proc., Gener. Transm. Distrib., vol. 141, no. 1, pp. 1-10, 1994.
[http://dx.doi.org/10.1049/ip-gtd:19949770]
[5]
P. Aravindhababu, and K.R. Nayar, "Economic dispatch based on optimal lambda using radial basis function network", Int. J. Electr. Power Energy Syst., vol. 24, no. 7, pp. 551-556, 2002.
[http://dx.doi.org/10.1016/S0142-0615(01)00063-1]
[6]
A.L. Devi, and O.V. Krishna, "Combined economic and emission dispatch using evolutionary algorithms-a case study", J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), vol. 3, no. 6, pp. 28-35, 2008.
[7]
D. Aydin, S. Özyön, C. Yaşar, and T. Liao, "Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem", Int. J. Electr. Power Energy Syst., vol. 54, pp. 144-153, 2014.
[http://dx.doi.org/10.1016/j.ijepes.2013.06.020]
[8]
S. Özyön, and D. Aydin, "Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones", Energy Convers. Manage., vol. 65, pp. 397-407, 2013.
[http://dx.doi.org/10.1016/j.enconman.2012.07.005]
[9]
A.Y. Abdelaziz, E.S. Ali, and S.M. Abd Elazim, "Combined economic and emission dispatch solution using flower pollination algorithm", Int. J. Electr. Power Energy Syst., vol. 80, pp. 264-274, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2015.11.093]
[10]
H. Rezaie, M.H. Kazemi-Rahbar, B. Vahidi, and H. Rastegar, "Solution of combined economic and emission dispatch problem using a novel chaotic improved harmony search algorithm", J. Comput. Des. Eng., vol. 6, no. 3, pp. 447-467, 2019.
[http://dx.doi.org/10.1016/j.jcde.2018.08.001]
[11]
A. Bhattacharya, and P.K. Chattopadhyay, "Hybrid differential evolution with biogeography-based optimization algorithm for solution of economic emission load dispatch problemsm", Expert Syst. Appl., vol. 38, no. 11, pp. 14001-14010, 2011.
[12]
B. Jeddi, and V. Vahidinasab, "A modified harmony search method for environmental/economic load dispatch of real-world power systems", Energy Convers. Manage., vol. 78, pp. 661-675, 2014.
[http://dx.doi.org/10.1016/j.enconman.2013.11.027]
[13]
H. Hamedi, "Solving the combined economic load and emission dispatch problems using new heuristic algorithm", Int. J. Electr. Power Energy Syst., vol. 46, pp. 10-16, 2013.
[http://dx.doi.org/10.1016/j.ijepes.2012.09.021]
[14]
L. Benasla, A. Belmadani, and M. Rahli, "Spiral optimization algorithm for solving combined economic and emission dispatch", Int. J. Electr. Power Energy Syst., vol. 62, pp. 163-174, 2014.
[http://dx.doi.org/10.1016/j.ijepes.2014.04.037]
[15]
Y.A. Gherbi, H. Bouzeboudja, and F.Z. Gherbi, "The combined economic environmental dispatch using new hybrid metaheuristic", Energy, vol. 115, pp. 468-477, 2016.
[http://dx.doi.org/10.1016/j.energy.2016.08.079]
[16]
S. Agrawal, B.K. Panigrahi, and M.K. Tiwari, "Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch", IEEE Trans. Evol. Comput., vol. 12, no. 5, pp. 529-541, 2008.
[http://dx.doi.org/10.1109/TEVC.2007.913121]
[17]
P.K. Hota, A.K. Barisal, and R. Chakrabarti, "Economic emission load dispatch through fuzzy based bacterial foraging algorithm", Int. J. Electr. Power Energy Syst., vol. 32, no. 7, pp. 794-803, 2010.
[http://dx.doi.org/10.1016/j.ijepes.2010.01.016]
[18]
M.A. Abido, "A niched Pareto genetic algorithm for multi objective environmental/economic dispatch", Int. J. Electr. Power Energy Syst., vol. 25, no. 2, pp. 97-105, 2003.
[http://dx.doi.org/10.1016/S0142-0615(02)00027-3]
[19]
R. Zhang, J. Zhou, L. Mo, S. Ouyang, and X. Liao, "Economic environmental dispatch using an enhanced multi-objective cultural algorithm", Electr. Power Syst. Res., vol. 99, pp. 18-29, 2013.
[http://dx.doi.org/10.1016/j.epsr.2013.01.010]
[20]
S. Dhanalakshmi, S. Kannan, K. Mahadevan, and S. Baskar, "Application of modified NSGA-II algorithm to combined economic and emission dispatch problem", Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 992-1002, 2011.
[http://dx.doi.org/10.1016/j.ijepes.2011.01.014]
[21]
M. Modiri-Delshad, and N. Abd Rahim, "Multi-objective backtracking search algorithm for economic emission dispatch problem", Appl. Soft Comput., vol. 40, pp. 479-494, 2016.
[http://dx.doi.org/10.1016/j.asoc.2015.11.020]
[22]
S. Arora, and S. Singh, "Butterfly optimization algorithm: A novel approach for global optimization", Soft Comput., vol. 23, no. 3, pp. 715-734, 2019.
[http://dx.doi.org/10.1007/s00500-018-3102-4]
[23]
G. Li, F. Shuang, Z. Pan, and Le. Chengyi, "An improved butterfly optimization algorithm for engineering design problems using the cross-entropy method", Symmetry, vol. 11, no. 8, p. 1049, 2019.
[http://dx.doi.org/10.3390/sym11081049]
[24]
S.K. Baliarsingh, and S. Vipsita, "Chaotic emperor penguin optimised extreme learning machine for microarray cancer classification", IET Syst. Biol., vol. 14, no. 2, pp. 85-95, 2020.
[PMID: 32196467]
[25]
Z.L. Gaing, "Particle swarm optimization to solving the economic dispatch considering the generator constraints", IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1187-1195, 2003.
[http://dx.doi.org/10.1109/TPWRS.2003.814889]
[26]
A.I. Selvakumar, and K. Thanushkodi, "A new particle swarm optimization solution to nonconvex economic dispatch problems", IEEE Trans. Power Syst., vol. 22, no. 1, pp. 42-51, 2007.
[http://dx.doi.org/10.1109/TPWRS.2006.889132]
[27]
J.Q. James, and O.K. Victor, "Li, “A social spider algorithm for solving the non-convex economic load dispatch problem", Neurocomputing, vol. 171, pp. 955-965, 2016.
[http://dx.doi.org/10.1016/j.neucom.2015.07.037]
[28]
T. Ding, R. Bo, F. Li, and H. Sun, "A bi-level branch and bound method for economic dispatch with disjoint prohibited zones considering network losses", IEEE Trans. Power Syst., vol. 30, no. 6, pp. 2841-2855, 2014.
[http://dx.doi.org/10.1109/TPWRS.2014.2375322]
[29]
P.K. Roy, S. Bhui, and C. Paul, "Solution of economic load dispatch using hybrid chemical reaction optimization approach", Appl. Soft Comput., vol. 24, pp. 109-125, 2014.
[http://dx.doi.org/10.1016/j.asoc.2014.07.013]
[30]
W. Sa-Ngiamvibool, S. Pothiya, and I. Ngamroo, "Multiple TABU search algorithm for economic dispatch problem considering valve-point effects", Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 846-854, 2011.
[http://dx.doi.org/10.1016/j.ijepes.2010.11.011]
[31]
T. Niknam, H.D. Mojarrad, and H.Z. Meymand, "Non-smooth economic dispatch computation by fuzzy and self-adaptive particle swarm optimization", Appl. Soft Comput., vol. 11, no. 2, pp. 2805-2817, 2011.
[http://dx.doi.org/10.1016/j.asoc.2010.11.010]
[32]
N. Sinha, R. Chakrabarti, and P.K. Chattopadhyay, "Evolutionary programming techniques for economic load dispatch", IEEE Trans. Evol. Comput., vol. 7, no. 1, pp. 83-94, 2003.
[http://dx.doi.org/10.1109/TEVC.2002.806788]
[33]
K. Bhattacharjee, A. Bhattacharya, and S.H. Nee Dey, "Oppositional real coded chemical reaction optimization for different economic dispatch problems", Int. J. Electr. Power Energy Syst., vol. 55, pp. 378-391, 2014.
[http://dx.doi.org/10.1016/j.ijepes.2013.09.033]
[34]
N. Ghorbani, and E. Babaei, "Exchange market algorithm for economic load dispatch", Int. J. Electr. Power Energy Syst., vol. 75, pp. 19-27, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2015.08.013]
[35]
G. Xiong, and D. Shi, "Orthogonal learning competitive swarm optimizer for economic dispatch problems", Appl. Soft Comput., vol. 66, pp. 134-148, 2018.
[http://dx.doi.org/10.1016/j.asoc.2018.02.019]
[36]
S. Sayah, and A. Hamouda, "A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems", Appl. Soft Comput., vol. 13, no. 4, pp. 1608-1619, 2013.
[http://dx.doi.org/10.1016/j.asoc.2012.12.014]
[37]
H. Barati, and M. Sadeghi, "An efficient hybrid MPSO-GA algorithm for solving non-smooth/non-convex economic dispatch problem with practical constraints", Ain Shams Eng. J., vol. 9, no. 4, pp. 1279-1287, 2018.
[38]
V. Hosseinnezhad, and E. Babaei, "Economic load dispatch using θ-PSO", Int. J. Electr. Power Energy Syst., vol. 49, pp. 160-169, 2013.
[http://dx.doi.org/10.1016/j.ijepes.2013.01.002]
[39]
E. Afzalan, and M. Joorabian, "An improved cuckoo search algorithm for power economic load dispatch", Int. Trans. Electr. Energy Syst., vol. 25, no. 6, pp. 958-975, 2015.
[http://dx.doi.org/10.1002/etep.1878]
[40]
G. Binetti, A. Davoudi, F.L. Lewis, D. Naso, and B. Turchiano, "Distributed consensus-based economic dispatch with transmission losses", IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1711-1720, 2014.
[http://dx.doi.org/10.1109/TPWRS.2014.2299436]
[41]
Y. Labbi, D.B. Attous, H.A. Gabbar, B. Mahdad, and A. Zidan, "A new rooted tree optimization algorithm for economic dispatch with valve-point effect", Int. J. Electr. Power Energy Syst., vol. 79, pp. 298-311, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2016.01.028]
[42]
G. Xiong, D. Shi, and X. Duan, "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems", Appl. Energy, vol. 111, pp. 801-811, 2013.
[http://dx.doi.org/10.1016/j.apenergy.2013.04.095]
[43]
D.C. Secui, "A new modified artificial bee colony algorithm for the economic dispatch problem", Energy Convers. Manage., vol. 89, pp. 43-62, 2015.
[http://dx.doi.org/10.1016/j.enconman.2014.09.034]
[44]
A.S. Reddy, and K. Vaisakh, "Shuffled differential evolution for economic dispatch with valve point loading effects", Int. J. Electr. Power Energy Syst., vol. 46, pp. 342-352, 2013.
[http://dx.doi.org/10.1016/j.ijepes.2012.10.012]
[45]
B.R. Adarsh, T. Raghunathan, T. Jayabarathi, and X.S. Yang, "Economic dispatch using chaotic bat algorithm", Energy, vol. 96, pp. 666-675, 2016.
[http://dx.doi.org/10.1016/j.energy.2015.12.096]
[46]
X.S. Yang, S.S. Hosseini, and A.H. Gandomi, "Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect", Appl. Soft Comput., vol. 12, no. 3, pp. 1180-1186, 2012.
[http://dx.doi.org/10.1016/j.asoc.2011.09.017]
[47]
G. Chen, and X. Ding, "Optimal economic dispatch with valve loading effect using self-adaptive firefly algorithm", Appl. Intell., vol. 42, no. 2, pp. 276-288, 2015.
[http://dx.doi.org/10.1007/s10489-014-0593-2]
[48]
T.T. Nguyen, and D.N. Vo, "The application of one rank cuckoo search algorithm for solving economic load dispatch problems", Appl. Soft Comput., vol. 37, pp. 763-773, 2015.
[http://dx.doi.org/10.1016/j.asoc.2015.09.010]
[49]
D. He, F. Wang, and Z. Mao, "A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect", Int. J. Electr. Power Energy Syst., vol. 30, no. 1, pp. 31-38, 2008.
[http://dx.doi.org/10.1016/j.ijepes.2007.06.023]
[50]
L. dos Santos Coelho, T.C. Bora, and V.C. Mariani, "Differential evolution based on truncated levy-type flights and population diversity measure to solve economic load dispatch problems", Int. J. Electr. Power Energy Syst., vol. 57, pp. 178-188, 2014.
[http://dx.doi.org/10.1016/j.ijepes.2013.11.024]
[51]
J.X. Neto, G. Reynoso-Meza, T.H. Ruppel, V.C. Mariani, and L. dos Santos Coelho, "Solving non-smooth economic dispatch by a new combination of continuous GRASP algorithm and differential evolution", Int. J. Electr. Power Energy Syst., vol. 84, pp. 13-24, 2017.
[http://dx.doi.org/10.1016/j.ijepes.2016.04.012]
[52]
M.A. Al-Betar, M.A. Awadallah, A.T. Khader, A.L. Bolaji, and A. Almomani, "Economic load dispatch problems with valve-point loading using natural updated harmony search", Neural Comput. Appl., vol. 29, no. 10, pp. 767-781, 2018.
[http://dx.doi.org/10.1007/s00521-016-2611-2]
[53]
D.I. Boussaï, J. Lepagnot, and P. Siarry, "A survey on optimization metaheuristics", Inf. Sci., vol. 237, pp. 82-117, 2013.
[http://dx.doi.org/10.1016/j.ins.2013.02.041]
[54]
T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, "A survey on new generation metaheuristic algorithms", Comput. Ind. Eng., vol. 137, p. 106040.
[http://dx.doi.org/10.1016/j.cie.2019.106040]
[55]
M. Modiri-Delshad, S.H. Kaboli, E. Taslimi-Renani, and N. Abd Rahim, "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options", Energy, vol. 116, pp. 637-649, 2016.
[http://dx.doi.org/10.1016/j.energy.2016.09.140]
[56]
A. Pourdaryaei, H. Mokhlis, H.A. Illias, S.H. Kaboli, S. Ahmad, and S.P. Ang, "Hybrid ANN and artificial cooperative search algorithm to forecast short-term electricity price in de-regulated electricity market", IEEE Access, vol. 7, pp. 125369-125386, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2938842]
[57]
M. Modiri-Delshad, S.H. Kaboli, E. Taslimi, J. Selvaraj, and N.A. Rahim, "An iterated-based optimization method for economic dispatch in power system", In: 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013, pp. 88-92.
[http://dx.doi.org/10.1109/CEAT.2013.6775605]
[58]
A. Pourdaryaei, H. Mokhlis, H.A. Illias, S.H. Kaboli, and S. Ahmad, "Short-term electricity price forecasting via hybrid backtracking search algorithm and ANFIS approach", IEEE Access, vol. 7, pp. 77674-77691, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2922420S]
[59]
I.M. Hlal, and V.K. Ramachandaramurthya, S. K, Padmanaban, H. R. Kaboli, A. Pouryekta, T. A. Abdullah and T. Ab Rashid, "NSGA-II and MOPSO based optimization for sizing of hybrid PV/wind/battery energy storage system", Int. J. Power Electron. Drive Syst, vol. 10, no. 1, pp. 463-478, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy