Abstract
Background: A novel type of control strategy is presented for the control of chaotic systems, particularly a chaotic robot in joint and workspace, which is the result of applying fractional calculus to dynamic sliding mode control.
Objectives: To guarantee the sliding mode condition, a control law is introduced based on the Lyapunov stability theory.
Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in the presence of system matched disturbances.
Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.
Conclusion: In addition, all of the chaotic robot’s qualitative and quantitative characteristics have been investigated. Numerical simulations indicate the viability of our control method.
Keywords: Fractional dynamic sliding mode control, chaotic robot system, lyapunov exponent, bifurcation diagram, poincaré map, numerical simulations.
Graphical Abstract
[http://dx.doi.org/10.1016/0005-1098(92)90014-7]
[http://dx.doi.org/10.1016/j.jprocont.2010.06.015]
[http://dx.doi.org/10.1016/j.simpat.2009.04.004]
[http://dx.doi.org/10.1016/j.arcontrol.2007.08.001]
[http://dx.doi.org/10.1080/00207179308934429]
[http://dx.doi.org/10.1109/TIE.2016.2633530]
[http://dx.doi.org/10.1016/j.automatica.2006.12.001]
[http://dx.doi.org/10.1016/j.automatica.2011.02.023]
[http://dx.doi.org/10.1016/j.pnucene.2011.04.029]
[http://dx.doi.org/10.1016/j.amc.2006.08.163]
[http://dx.doi.org/10.1023/A:1016504620249]
[http://dx.doi.org/10.1016/j.sigpro.2006.02.020]
[http://dx.doi.org/10.1109/TSMCB.2008.928227] [PMID: 19022726]
[http://dx.doi.org/10.1007/s11071-006-0159-x]
[http://dx.doi.org/10.1016/j.cnsns.2012.02.028]
[http://dx.doi.org/10.1016/S0005-1098(00)00011-X]
[http://dx.doi.org/10.1016/j.sigpro.2006.02.011]
[http://dx.doi.org/10.1017/CBO9780511803260]
[http://dx.doi.org/10.1007/978-3-642-97149-5]
[http://dx.doi.org/10.1002/9783527617500]
[http://dx.doi.org/10.1299/jsmec.48.640 ]