Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Comparison of the Effect of Adipocyte-derived Stem Cells and Curcumin Nanoliposomes with Phenytoin on Open Cutaneous Wound Healing in Rats

Author(s): Mohammadreza Ebrahimzade, Mohammad Mirdoraghi, Ameneh Alikarami, Sahar Heidari, Tayebeh Rastegar, Ali R. Partoazar and Nasrin Takzaree*

Volume 21, Issue 5, 2021

Published on: 17 August, 2020

Page: [866 - 877] Pages: 12

DOI: 10.2174/1871530320999200817172200

Price: $65

Abstract

Background: Reducing the healing time of wounds can decrease the patient's immobility time and their medical costs, leading a faster return of the patients to daily work.

Objective: The aim of the present study is to compare the effect of adipose-derived stem cells and curcumin- containing liposomal nanoparticles with phenytoin on wound healing.

Methods: After anesthesia of the rats, open skin ulcers were made by a bistoury blade. Subsequently, stem cells were removed from the adipose tissue of the upper border of the epididymis. The originality of stem cells was then confirmed by the flow cytometry. The fusion method was used to prepare the liposome; and also, nanoliposomal particles were confirmed by using the DLS microscope. The percentage of recovery and the cell count was measured with IMAGEJ. The expression of genes was assessed by PCR. The number of fibroblasts was counted by immunohistochemistry techniques. The amount of collagen was determined by Tri-chromosome staining, and the number of capillaries was enumerated by H & E staining.

Results: The expression of the TGF-β1 gene, vascular number, wound healing rate and the number of fibroblasts increased significantly in adipose tissue-derived stem cells and curcumin nanoliposome groups (p<0.05); the wound surface was also decreased significantly (p<0.05).

Conclusion: Based on the results of our research, adipose tissue-derived stem cells and curcumin nanoliposomes can heal wounds efficiently.

Keywords: Angiogenesis, stem cells, collagen, flow cytometry, immunohistochemistry, scar.

Graphical Abstract

[1]
Dan, M.M.; Sarmah, P.; Vana, D.R.; Dattatreya, A. Wound Healing: Concepts and Updates in Herbal Medicine. Int. J. Med. Res. Health Sci., 2018, 7(1), 170-181.
[2]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[3]
Kirsner, R.S.; Eaglstein, W.H. The wound healing process. Dermatol. Clin., 1993, 11(4), 629-640.
[http://dx.doi.org/10.1016/S0733-8635(18)30216-X] [PMID: 8222347]
[4]
Pierce, G.F.; Mustoe, T.A.; Altrock, B.W.; Deuel, T.F.; Thomason, A. Role of platelet-derived growth factor in wound healing. J. Cell. Biochem., 1991, 45(4), 319-326.
[http://dx.doi.org/10.1002/jcb.240450403] [PMID: 2045423]
[5]
Martin, P. Wound healing--aiming for perfect skin regeneration. Science, 1997, 276(5309), 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[6]
Schultz, G.S.; White, M.; Mitchell, R.; Brown, G.; Lynch, J.; Twardzik, D.R.; Todaro, G.J. Epithelial wound healing enhanced by transforming growth factor-alpha and vaccinia growth factor. Science, 1987, 235(4786), 350-352.
[http://dx.doi.org/10.1126/science.3492044] [PMID: 3492044]
[7]
Eming, S.A.; Brachvogel, B.; Odorisio, T.; Koch, M. Regulation of angiogenesis: wound healing as a model. Prog. Histochem. Cytochem., 2007, 42(3), 115-170.
[http://dx.doi.org/10.1016/j.proghi.2007.06.001] [PMID: 17980716]
[8]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2008, 26(2), 31-37.
[http://dx.doi.org/10.1016/j.mpsur.2007.11.005]
[9]
Bennett, N.T.; Schultz, G.S. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am. J. Surg., 1993, 165(6), 728-737.
[http://dx.doi.org/10.1016/S0002-9610(05)80797-4] [PMID: 8506974]
[10]
Leask, A.; Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J., 2004, 18(7), 816-827.
[http://dx.doi.org/10.1096/fj.03-1273rev] [PMID: 15117886]
[11]
Schiller, M.; Javelaud, D.; Mauviel, A. TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J. Dermatol. Sci., 2004, 35(2), 83-92.
[http://dx.doi.org/10.1016/j.jdermsci.2003.12.006] [PMID: 15265520]
[12]
Takzaree, N.; Hadjiakhondi, A.; Hassanzadeh, G.; Rouini, M.R.; Manayi, A.; Zolbin, M.M. Transforming growth factor-β (TGF-β) activation in cutaneous wounds after topical application of aloe vera gel. Can. J. Physiol. Pharmacol., 2016, 94(12), 1285-1290.
[http://dx.doi.org/10.1139/cjpp-2015-0460] [PMID: 27660884]
[13]
Yan, Z.; Dai, Y.; Fu, H.; Zheng, Y.; Bao, D.; Yin, Y.; Chen, Q.; Nie, X.; Hao, Q.; Hou, D.; Cui, Y. Curcumin exerts a protective effect against premature ovarian failure in mice. J. Mol. Endocrinol., 2018, 60(3), 261-271.
[http://dx.doi.org/10.1530/JME-17-0214] [PMID: 29437881]
[14]
Teng, M.; Huang, Y.; Zhang, H. Application of stems cells in wound healing--an update. Wound Repair Regen., 2014, 22(2), 151-160.
[http://dx.doi.org/10.1111/wrr.12152] [PMID: 24635168]
[15]
Hassan, W.U.; Greiser, U.; Wang, W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen., 2014, 22(3), 313-325.
[http://dx.doi.org/10.1111/wrr.12173] [PMID: 24844331]
[16]
Kilroy, G.E.; Foster, S.J.; Wu, X.; Ruiz, J.; Sherwood, S.; Heifetz, A.; Ludlow, J.W.; Stricker, D.M.; Potiny, S.; Green, P.; Halvorsen, Y.D.; Cheatham, B.; Storms, R.W.; Gimble, J.M. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol., 2007, 212(3), 702-709.
[http://dx.doi.org/10.1002/jcp.21068] [PMID: 17477371]
[17]
Salgado, A.J.; Reis, R.L.; Sousa, N.J.; Gimble, J.M. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther., 2010, 5(2), 103-110.
[http://dx.doi.org/10.2174/157488810791268564] [PMID: 19941460]
[18]
Rubio, D.; Garcia-Castro, J.; Martín, M.C.; de la Fuente, R.; Cigudosa, J.C.; Lloyd, A.C.; Bernad, A. Spontaneous human adult stem cell transformation. Cancer Res., 2005, 65(8), 3035-3039.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4194] [PMID: 15833829]
[19]
Bailey, A.M.; Kapur, S.; Katz, A.J. Characterization of adipose-derived stem cells: an update. Curr. Stem Cell Res. Ther., 2010, 5(2), 95-102.
[http://dx.doi.org/10.2174/157488810791268555] [PMID: 19941461]
[20]
Lee, S.H.; Lee, J.H.; Cho, K.H. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann. Dermatol., 2011, 23(2), 150-155.
[http://dx.doi.org/10.5021/ad.2011.23.2.150] [PMID: 21747612]
[21]
Gregoriadis, G. Liposome technology Volume III: Targeted drug delivery and biological interaction, CRC Press, 1984.
[22]
Moghimipour, E.; Aghel, N.; Zarei Mahmoudabadi, A.; Ramezani, Z.; Handali, S. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf. Jundishapur J. Nat. Pharm. Prod., 2012, 7(3), 117-122.
[http://dx.doi.org/10.5812/jjnpp.5261] [PMID: 24624167]
[23]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[24]
Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[25]
Sidhu, G.S.; Singh, A.K.; Thaloor, D.; Banaudha, K.K.; Patnaik, G.K.; Srimal, R.C.; Maheshwari, R.K. Enhancement of wound healing by curcumin in animals. Wound Repair Regen., 1998, 6(2), 167-177.
[http://dx.doi.org/10.1046/j.1524-475X.1998.60211.x] [PMID: 9776860]
[26]
Thangapazham, R.L.; Sharad, S.; Maheshwari, R.K. Skin regenerative potentials of curcumin. Biofactors, 2013, 39(1), 141-149.
[http://dx.doi.org/10.1002/biof.1078] [PMID: 23315856]
[27]
He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules, 2015, 20(5), 9183-9213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[28]
Sewall, G.K.; Robertson, K.M.; Connor, N.P.; Heisey, D.M.; Hartig, G.K. Effect of topical mitomycin on skin wound contraction. Arch. Facial Plast. Surg., 2003, 5(1), 59-62.
[http://dx.doi.org/10.1001/archfaci.5.1.59] [PMID: 12533141]
[29]
Allah Tavakoli, M; Khaksari Haddad, M Comparison of topical applicationof Mummify and Phenytoin cream on skin wound healing in rat 2003, 5(2), 7-13. Available at: https://www.sid.ir/en/journal/ViewPaper.aspx?id=25064
[30]
Council, N.R. Guide for the care and use of laboratory animals8th National Academies Press; Washington, DC, 2011.
[31]
Eom, J; Feisst, V; Ranjard, L; Loomes, K; Damani, T; Jackson-Patel, V Visualization and quantification of mesenchymal cell adipogenic differentiation potential with a lineage specific marker J. Vis. Exp., 2018, (133), e57153.
[http://dx.doi.org/10.3791/57153] [PMID: 29658914]
[32]
Nadri, S.; Soleimani, M. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell. Dev. Biol. Anim., 2007, 43(8-9), 276-282.
[http://dx.doi.org/10.1007/s11626-007-9041-5] [PMID: 17851725]
[33]
Kenarkoohi, A.; Soleimani, M.; Bamdad, T.; Soleimanjahi, H.; Estiri, H.; Razavi-Nikoo, M.H. Efficient lentiviral transduction of adipose tissue-derived mouse mesenchymal stem cells and assessment of their penetration in female mice cervical tumor model. Iran. J. Cancer Prev., 2014, 7(4), 225-231.
[PMID: 25628843]
[34]
Kianvash, N.; Bahador, A.; Pourhajibagher, M.; Ghafari, H.; Nikoui, V.; Rezayat, S.M.; Dehpour, A.R.; Partoazar, A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res., 2017, 7(5), 654-663.
[http://dx.doi.org/10.1007/s13346-017-0405-4] [PMID: 28707264]
[35]
Takzare, A.; Maleki, A.; Goudarzi, M.; Soltani, A.E.; Sepehr, I.G. A Comparative Study on the Effect of Low-Dose Oral Ketamine and Subcutaneous Ketamine on Post General Anesthesia Delirium and Pain in Children Undergoing Inguinal Hernia Surgery. J. Mol. Biol. Res., 2019, 9(1), 1-6.
[http://dx.doi.org/10.5539/jmbr.v9n1p1]
[36]
Takzare, N.; Hosseini, M.J.; Hasanzadeh, G.; Mortazavi, H.; Takzare, A.; Habibi, P. Influence of Aloe Vera gel on dermal wound healing process in rat. Toxicol. Mech. Methods, 2009, 19(1), 73-77.
[http://dx.doi.org/10.1080/15376510802442444] [PMID: 19778236]
[37]
Takzaree, N.; Hassanzadeh, G.; Rouini, M.R.; Manayi, A.; Hadjiakhondi, A.; Zolbin, M.M. Evaluation of the effects of local application of thyme honey in open cutaneous wound healing. Iran. J. Public Health, 2017, 46(4), 545-551.
[PMID: 28540272]
[38]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9(7), 671-675.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[39]
Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ceber, M.; Topcu, B.; Ozen, O.A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol., 2013, 44(1), 83-90.
[http://dx.doi.org/10.1007/s10735-012-9452-9] [PMID: 23054142]
[40]
Kant, V.; Gopal, A.; Kumar, D.; Pathak, N.N.; Ram, M.; Jangir, B.L.; Tandan, S.K.; Kumar, D. Curcumin-induced angiogenesis hastens wound healing in diabetic rats. J. Surg. Res., 2015, 193(2), 978-988.
[http://dx.doi.org/10.1016/j.jss.2014.10.019] [PMID: 25454972]
[41]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[42]
Chen, X.; Zou, L-Q.; Niu, J.; Liu, W.; Peng, S-F.; Liu, C-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 2015, 20(8), 14293-14311.
[http://dx.doi.org/10.3390/molecules200814293] [PMID: 26251892]
[43]
Partoazar, A.; Nasoohi, S.; Rezayat, S.M.; Gilani, K.; Mehr, S.E.; Amani, A.; Rahimi, N.; Dehpour, A.R. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat. Fundam. Clin. Pharmacol., 2017, 31(2), 185-193.
[http://dx.doi.org/10.1111/fcp.12244] [PMID: 27616018]
[44]
Mizuno, H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J. Nippon Med. Sch., 2009, 76(2), 56-66.
[http://dx.doi.org/10.1272/jnms.76.56] [PMID: 19443990]
[45]
Kim, W-S.; Park, B-S.; Sung, J-H.; Yang, J-M.; Park, S-B.; Kwak, S-J.; Park, J.S. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci., 2007, 48(1), 15-24.
[http://dx.doi.org/10.1016/j.jdermsci.2007.05.018] [PMID: 17643966]
[46]
Choi, J.S.; Ryu, H.A.; Cheon, S.H.; Kim, S-W. Human Adipose Derived Stem Cells Exhibit Enhanced Liver Regeneration in Acute Liver Injury by Controlled Releasing Hepatocyte Growth Factor. Cell. Physiol. Biochem., 2019, 52(4), 935-950.
[http://dx.doi.org/10.33594/000000065] [PMID: 30964610]
[47]
Gomathysankar, S; Halim, AS; Makhtar, WRW; Saad, AZM; Yaacob, NS Skin Substitutes in Wound Healing and the Stimulatory Effects of Adipose-Derived Stem Cells for the Proliferation of Keratinocytes on Chitosan In: Chronic Wounds, Wound Dressings and Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, Springer, Cham. 2018, 6, pp. 379-394.
[http://dx.doi.org/10.1007/15695_2017_104]
[48]
Clayton, Z.E.; Tan, R.P.; Miravet, M.M.; Lennartsson, K.; Cooke, J.P.; Bursill, C.A.; Wise, S.G.; Patel, S. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci. Rep., 2018, 38(4)BSR20180563
[http://dx.doi.org/10.1042/BSR20180563] [PMID: 29976773]
[49]
Forbes, D. Adipose-derived stem cells improve tissue quality in a murine model of delayed wound healing; University of British Columbia, 2019.
[50]
Na, Y.K.; Ban, J-J.; Lee, M.; Im, W.; Kim, M. Wound healing potential of adipose tissue stem cell extract. Biochem. Biophys. Res. Commun., 2017, 485(1), 30-34.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.103] [PMID: 28137582]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy