Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

New Developments in Anti-Angiogenic Therapy of Cancer, Review and Update

Author(s): Samaneh Ghasemali, Safar Farajnia*, Abolfazl Barzegar, Mohammad Rahmati-Yamchi, Roghayyeh Baghban, Leila Rahbarnia and Hamid R.Y. Nodeh

Volume 21, Issue 1, 2021

Published on: 17 August, 2020

Page: [3 - 19] Pages: 17

DOI: 10.2174/1871520620666200817103219

Price: $65

Abstract

Background: Angiogenesis is one of the critical physiological processes, by which the new blood vessels are generated from the pre-existing vessels in the early stage of vasculogenesis. While normal angiogenesis is critical for development and tissue growth, pathologic angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen as well as providing a conduit for distant metastasis. In the last two decades, angiogenesis has been the area of extensive researches, indicating antiangiogenic target therapy as an effective strategy for cancer therapy. At present, this field has become a major avenue for research and development of novel therapeutics.

Objective: This review is dedicated to an updated review of the most prominent antiangiogenic agents, emphasizing the novel advancements and their applications, in particular, in the fields of antibodies, peptides, vaccines, endogenous inhibitors, Nanoparticles (NPs), antiangiogenic oligonucleotides and small molecules. Also, the potential role of 3D microfluidic models as an affordable and time-saving tool for angiogenesis investigations are discussed.

Methods: Firstly, we collected and summarized new developments that have occurred in all review and research articles in databases. Then, we used important keywords related to antiangiogenic target therapy and their applications for retrieval of most relevant data.

Results: This review is based on recent research and review articles and intended to cover all newly discovered agents inhibiting tumor angiogenesis and in particular, VEGF.

Conclusion: New research studies have shown that anti-angiogenesis agents especially, in the form of combination therapy are effective in various cancers treatment.

Keywords: Angiogenesis, VEGF, VEGFR, cancer, angiogenesis-dependent diseases, target therapy.

Graphical Abstract

[1]
Ikeuchi, T.; de Vega, S.; Forcinito, P.; Doyle, A.D.; Amaral, J.; Rodriguez, I.R.; Arikawa-Hirasawa, E.; Yamada, Y. Extracellular protein fibulin-7 and its C-terminal fragment have in vivo antiangiogenic activity. Sci. Rep., 2018, 8(1), 17654.
[http://dx.doi.org/10.1038/s41598-018-36182-w] [PMID: 30518776]
[2]
Kong, D.H.; Kim, M.R.; Jang, J.H.; Na, H.J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8), 1786.
[http://dx.doi.org/10.3390/ijms18081786] [PMID: 28817103]
[3]
Gacche, R.N. Compensatory angiogenesis and tumor refractoriness. Oncogenesis, 2015, 4(6)e153
[http://dx.doi.org/10.1038/oncsis.2015.14] [PMID: 26029827]
[4]
Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol., 2011, 27, 563-584.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154002] [PMID: 21756109]
[5]
Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427.
[http://dx.doi.org/10.1038/nrd3455] [PMID: 21629292]
[6]
Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest., 2013, 123(8), 3190-3200.
[http://dx.doi.org/10.1172/JCI70212] [PMID: 23908119]
[7]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[8]
Nguyen, E.H.; Dombroe, M.J.; Fisk, D.L.; Daly, W.T.; Sorenson, C.M.; Murphy, W.L.; Sheibani, N. Neurovascular organotypic culture models using induced pluripotent stem cells to assess adverse chemical exposure outcomes. Appl. In Vitro Toxicol., 2019, 5(2), 92-110.
[http://dx.doi.org/10.1089/aivt.2018.0025] [PMID: 32292797]
[9]
Ferrara, N. From the discovery of vascular endothelial growth factor to the introduction of avastin in clinical trials - an interview with Napoleone Ferrara by Domenico Ribatti. Int. J. Dev. Biol., 2011, 55(4-5), 383-388.
[http://dx.doi.org/10.1387/ijdb.103216dr] [PMID: 21858763]
[10]
Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med., 2001, 7(9), 987-989.
[http://dx.doi.org/10.1038/nm0901-987] [PMID: 11533692]
[11]
Salgaller, M.L. Technology evaluation: Bevacizumab, Genentech/Roche. Curr. Opin. Mol. Ther., 2003, 5(6), 657-667.
[PMID: 14755893]
[12]
Ma, S.; Pradeep, S.; Hu, W.; Zhang, D.; Coleman, R.; Sood, A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000 Res., 2018, 7, 326.
[http://dx.doi.org/10.12688/f1000research.11771.1] [PMID: 29560266]
[13]
Ye, W. The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev. Cell, 2016, 37(2), 114-125.
[http://dx.doi.org/10.1016/j.devcel.2016.03.015] [PMID: 27093081]
[14]
Michaelson, M.D.; Oudard, S.; Ou, Y.C.; Sengeløv, L.; Saad, F.; Houede, N.; Ostler, P.; Stenzl, A.; Daugaard, G.; Jones, R.; Laestadius, F.; Ullèn, A.; Bahl, A.; Castellano, D.; Gschwend, J.; Maurina, T.; Chow Maneval, E.; Wang, S.L.; Lechuga, M.J.; Paolini, J.; Chen, I. Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J. Clin. Oncol., 2014, 32(2), 76-82.
[http://dx.doi.org/10.1200/JCO.2012.48.5268] [PMID: 24323035]
[15]
Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.H.; Tak, W.Y.; Lee, H.C.; Song, T.; Roayaie, S.; Bolondi, L.; Lee, K.S.; Makuuchi, M.; Souza, F.; Berre, M.A.; Meinhardt, G.; Llovet, J.M. STORM investigators. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2015, 16(13), 1344-1354.
[http://dx.doi.org/10.1016/S1470-2045(15)00198-9] [PMID: 26361969]
[16]
Cainap, C.; Qin, S.; Huang, W.T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y.K.; Chen, P.J.; Toh, H.C.; Gorbunova, V.; Eskens, F.A.; Qian, J.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; El-Nowiem, S. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial. J. Clin. Oncol., 2015, 33(2), 172-179.
[http://dx.doi.org/10.1200/JCO.2013.54.3298] [PMID: 25488963]
[17]
Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; Jeraj, R.; Brown, P.D.; Jaeckle, K.A.; Schiff, D.; Stieber, V.W.; Brachman, D.G.; Werner-Wasik, M.; Tremont-Lukats, I.W.; Sulman, E.P.; Aldape, K.D.; Curran, W.J., Jr; Mehta, M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 699-708.
[http://dx.doi.org/10.1056/NEJMoa1308573] [PMID: 24552317]
[18]
Chu, C.; Shang, W.; Sun, Y.; Zhang, X. Anlotinib is effective in patients with advanced oral cancer? Med. Hypotheses, 2020, 137109578
[http://dx.doi.org/10.1016/j.mehy.2020.109578] [PMID: 32001416]
[19]
Pujade-Lauraine, E.; Hilpert, F.; Weber, B.; Reuss, A.; Poveda, A.; Kristensen, G.; Sorio, R.; Vergote, I.; Witteveen, P.; Bamias, A.; Pereira, D.; Wimberger, P.; Oaknin, A.; Mirza, M.R.; Follana, P.; Bollag, D.; Ray-Coquard, I. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J. Clin. Oncol., 2014, 32(13), 1302-1308.
[http://dx.doi.org/10.1200/JCO.2013.51.4489] [PMID: 24637997]
[20]
Tewari, K.S.; Sill, M.W.; Long, H.J., III; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; Monk, B.J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med., 2014, 370(8), 734-743.
[http://dx.doi.org/10.1056/NEJMoa1309748] [PMID: 24552320]
[21]
Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; Sherman, S.I.; Smit, J.W.; Chung, J.; Kappeler, C.; Peña, C.; Molnár, I.; Schlumberger, M.J. DECISION investigators. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940), 319-328.
[http://dx.doi.org/10.1016/S0140-6736(14)60421-9] [PMID: 24768112]
[22]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. REGARD Trial Investigators. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[23]
Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; Cunningham, D.; Rougier, P.; Komatsu, Y.; Ajani, J.; Emig, M.; Carlesi, R.; Ferry, D.; Chandrawansa, K.; Schwartz, J.D.; Ohtsu, A. RAINBOW Study Group. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol., 2014, 15(11), 1224-1235.
[http://dx.doi.org/10.1016/S1470-2045(14)70420-6] [PMID: 25240821]
[24]
Bennouna, J.; Sastre, J.; Arnold, D.; Österlund, P.; Greil, R.; Van Cutsem, E.; von Moos, R.; Viéitez, J.M.; Bouché, O.; Borg, C.; Steffens, C.C.; Alonso-Orduña, V.; Schlichting, C.; Reyes-Rivera, I.; Bendahmane, B.; André, T.; Kubicka, S. ML18147 Study Investigators. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): A randomised phase 3 trial. Lancet Oncol., 2013, 14(1), 29-37.
[http://dx.doi.org/10.1016/S1470-2045(12)70477-1] [PMID: 23168366]
[25]
Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; Adenis, A.; Tabernero, J.; Yoshino, T.; Lenz, H.J.; Goldberg, R.M.; Sargent, D.J.; Cihon, F.; Cupit, L.; Wagner, A.; Laurent, D. CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 303-312.
[http://dx.doi.org/10.1016/S0140-6736(12)61900-X] [PMID: 23177514]
[26]
Hutson, T.E.; Escudier, B.; Esteban, E.; Bjarnason, G.A.; Lim, H.Y.; Pittman, K.B.; Senico, P.; Niethammer, A.; Lu, D.R.; Hariharan, S.; Motzer, R.J. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2014, 32(8), 760-767.
[http://dx.doi.org/10.1200/JCO.2013.50.3961] [PMID: 24297950]
[27]
Rini, B.I.; Bellmunt, J.; Clancy, J.; Wang, K.; Niethammer, A.G.; Hariharan, S.; Escudier, B. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J. Clin. Oncol., 2014, 32(8), 752-759.
[http://dx.doi.org/10.1200/JCO.2013.50.5305] [PMID: 24297945]
[28]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[29]
Liang, W.; Wu, X.; Hong, S.; Zhang, Y.; Kang, S.; Fang, W.; Qin, T.; Huang, Y.; Zhao, H.; Zhang, L. Multi-targeted antiangiogenic tyrosine kinase inhibitors in advanced non-small cell lung cancer: Meta-analyses of 20 randomized controlled trials and subgroup analyses. PLoS One, 2014, 9(10)e109757
[http://dx.doi.org/10.1371/journal.pone.0109757] [PMID: 25329056]
[30]
Lu, J.; Zhong, H.; Chu, T.; Zhang, X.; Li, R.; Sun, J.; Zhong, R.; Yang, Y.; Alam, M.S.; Lou, Y.; Xu, J.; Zhang, Y.; Wu, J.; Li, X.; Zhao, X.; Li, K.; Lu, L.; Han, B. Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur. Respir. J., 2019, 53(3)1801562
[http://dx.doi.org/10.1183/13993003.01562-2018] [PMID: 30578392]
[31]
Kindler, H.L.; Niedzwiecki, D.; Hollis, D.; Sutherland, S.; Schrag, D.; Hurwitz, H.; Innocenti, F.; Mulcahy, M.F.; O’Reilly, E.; Wozniak, T.F.; Picus, J.; Bhargava, P.; Mayer, R.J.; Schilsky, R.L.; Goldberg, R.M. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol., 2010, 28(22), 3617-3622.
[http://dx.doi.org/10.1200/JCO.2010.28.1386] [PMID: 20606091]
[32]
Joosten, S.C.; Hamming, L.; Soetekouw, P.M.; Aarts, M.J.; Veeck, J.; van Engeland, M.; Tjan-Heijnen, V.C. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta, 2015, 1855(1), 1-16.
[PMID: 25446042]
[33]
Arkin, M.R.; Wells, J.A. Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov., 2004, 3(4), 301-317.
[http://dx.doi.org/10.1038/nrd1343] [PMID: 15060526]
[34]
Sulaiman, R.S.; Merrigan, S.; Quigley, J.; Qi, X.; Lee, B.; Boulton, M.E.; Kennedy, B.; Seo, S.Y.; Corson, T.W. A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy. Sci. Rep., 2016, 6(1), 25509.
[http://dx.doi.org/10.1038/srep25509] [PMID: 27148944]
[35]
Herbst, R.S.; Sandler, A.B. Non-small cell lung cancer and antiangiogenic therapy: What can be expected of bevacizumab? Oncologist, 2004, 9(Suppl. 1), 19-26.
[http://dx.doi.org/10.1634/theoncologist.9-suppl_1-19] [PMID: 15178812]
[36]
Penniman, L.; Parmar, S.; Patel, K. Olaratumab (Lartruvo): An innovative treatment for soft tissue sarcoma. P&T, 2018, 43(5), 267-270.
[PMID: 29719366]
[37]
Atkins, M.B.; Yasothan, U.; Kirkpatrick, P. Everolimus. Nat. Rev. Drug Discov., 2009, 8(7), 535-536.
[http://dx.doi.org/10.1038/nrd2924] [PMID: 19568281]
[38]
Kaiser, P.K.; Do, D.V. Ranibizumab for the treatment of neovascular AMD. Int. J. Clin. Pract., 2007, 61(3), 501-509.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01299.x] [PMID: 17313620]
[39]
Rodriguez, M. Ziv-aflibercept use in metastatic colorectal cancer. J. Adv. Pract. Oncol., 2013, 4(5), 348-352.
[PMID: 25032013]
[40]
Kane, R.C.; Farrell, A.T.; Saber, H.; Tang, S.; Williams, G.; Jee, J.M.; Liang, C.; Booth, B.; Chidambaram, N.; Morse, D.; Sridhara, R.; Garvey, P.; Justice, R.; Pazdur, R. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res., 2006, 12(24), 7271-7278.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1249] [PMID: 17189398]
[41]
Rock, E.P.; Goodman, V.; Jiang, J.X.; Mahjoob, K.; Verbois, S.L.; Morse, D.; Dagher, R.; Justice, R.; Pazdur, R. Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist, 2007, 12(1), 107-113.
[http://dx.doi.org/10.1634/theoncologist.12-1-107] [PMID: 17227905]
[42]
Tyler, T. Axitinib: Newly approved for renal cell carcinoma. J. Adv. Pract. Oncol., 2012, 3(5), 333-335.
[PMID: 25031963]
[43]
McCormack, P.L. Nintedanib: First global approval. Drugs, 2015, 75(1), 129-139.
[http://dx.doi.org/10.1007/s40265-014-0335-0] [PMID: 25430078]
[44]
Majithia, N.; Grothey, A. Regorafenib in the treatment of colorectal cancer. Expert Opin. Pharmacother., 2016, 17(1), 137-145.
[http://dx.doi.org/10.1517/14656566.2016.1118054] [PMID: 26559195]
[45]
Ward, J.E.; Stadler, W.M. Pazopanib in renal cell carcinoma. Clin. Cancer Res., 2010, 16(24), 5923-5927.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0728] [PMID: 21059813]
[46]
Nix, N.M.; Braun, K. Cabozantinib for the treatment of metastatic medullary thyroid carcinoma. J. Adv. Pract. Oncol., 2014, 5(1), 47-50.
[PMID: 25032033]
[47]
Vozniak, J.M.; Jacobs, J.M. Vandetanib. J. Adv. Pract. Oncol., 2012, 3(2), 112-116.
[PMID: 25031937]
[48]
Fala, L. Lenvima (Lenvatinib), a multireceptor tyrosine kinase inhibitor, approved by the FDA for the treatment of patients with differentiated thyroid cancer. Am. Health. Drug. Benefits 2015, 8(Spec Feature), 176-179.
[49]
Fallah, A.; Sadeghinia, A.; Kahroba, H.; Samadi, A.; Heidari, H.R.; Bradaran, B.; Zeinali, S.; Molavi, O. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother., 2019, 110, 775-785.
[http://dx.doi.org/10.1016/j.biopha.2018.12.022] [PMID: 30554116]
[50]
Al-Husein, B.; Abdalla, M.; Trepte, M.; Deremer, D.L.; Somanath, P.R. Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 2012, 32(12), 1095-1111.
[http://dx.doi.org/10.1002/phar.1147] [PMID: 23208836]
[51]
Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med., 2011, 17(7), 347-362.
[http://dx.doi.org/10.1016/j.molmed.2011.01.015] [PMID: 21481637]
[52]
Yang, H.; Wang, Y.; Cheryan, V.T.; Wu, W.; Cui, C.Q.; Polin, L.A.; Pass, H.I.; Dou, Q.P.; Rishi, A.K.; Wali, A. Correction: Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One, 2013, 8(2)
[http://dx.doi.org/10.1371/annotation/1f7766a6-35da-4d34-b07b-4c06667bdbec]
[53]
Curtis, V.F.; Wang, H.; Yang, P.; McLendon, R.E.; Li, X.; Zhou, Q.Y.; Wang, X.F.A.A. PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer. PLoS One, 2013, 8(1)e54916
[http://dx.doi.org/10.1371/journal.pone.0054916] [PMID: 23372791]
[54]
Shojaei, F.; Wu, X.; Zhong, C.; Yu, L.; Liang, X.H.; Yao, J.; Blanchard, D.; Bais, C.; Peale, F.V.; van Bruggen, N.; Ho, C.; Ross, J.; Tan, M.; Carano, R.A.; Meng, Y.G.; Ferrara, N. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 2007, 450(7171), 825-831.
[http://dx.doi.org/10.1038/nature06348] [PMID: 18064003]
[55]
Zhang, Y.; Griffith, E.C.; Sage, J.; Jacks, T.; Liu, J.O. Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6427-6432.
[http://dx.doi.org/10.1073/pnas.97.12.6427] [PMID: 10841547]
[56]
Sartore-Bianchi, A.; Zeppellini, A.; Amatu, A.; Ricotta, R.; Bencardino, K.; Siena, S. Regorafenib in metastatic colorectal cancer. Expert Rev. Anticancer Ther., 2014, 14(3), 255-265.
[http://dx.doi.org/10.1586/14737140.2014.894887] [PMID: 24559322]
[57]
Zhang, T.; Li, J.; He, Y.; Yang, F.; Hao, Y.; Jin, W.; Wu, J.; Sun, Z.; Li, Y.; Chen, Y.; Yi, Z.; Liu, M. A small molecule targeting myoferlin exerts promising anti-tumor effects on breast cancer. Nat. Commun., 2018, 9(1), 3726.
[http://dx.doi.org/10.1038/s41467-018-06179-0] [PMID: 30213946]
[58]
Su, M.; Huang, J.; Liu, S.; Xiao, Y.; Qin, X.; Liu, J.; Pi, C.; Luo, T.; Li, J.; Chen, X.; Luo, Z. The anti-angiogenic effect and novel mechanisms of action of Combretastatin A-4. Sci. Rep., 2016, 6, 28139.
[http://dx.doi.org/10.1038/srep28139] [PMID: 27338725]
[59]
Sulochana, K.N.; Ge, R. Developing antiangiogenic peptide drugs for angiogenesis-related diseases. Curr. Pharm. Des., 2007, 13(20), 2074-2086.
[http://dx.doi.org/10.2174/138161207781039715] [PMID: 17627540]
[60]
Zahiri, J.; Khorsand-Ghaffari, B.; Zade, R.S.H.; Kargar, M.; Yousefi, A.A. AntAngioCOOL: An R package for computational detection of anti-angiogenic peptides. bioRxiv, 2017.
[61]
Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309(5963), 30-33.
[http://dx.doi.org/10.1038/309030a0] [PMID: 6325925]
[62]
Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol., 1996, 12(1), 697-715.
[http://dx.doi.org/10.1146/annurev.cellbio.12.1.697] [PMID: 8970741]
[63]
Miyauchi, A.; Alvarez, J.; Greenfield, E.M.; Teti, A.; Grano, M.; Colucci, S.; Zambonin-Zallone, A.; Ross, F.P.; Teitelbaum, S.L.; Cheresh, D. Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J. Biol. Chem., 1991, 266(30), 20369-20374.
[PMID: 1939092]
[64]
Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998, 279(5349), 377-380.
[http://dx.doi.org/10.1126/science.279.5349.377] [PMID: 9430587]
[65]
Majumder, P. Integrin-mediated delivery of drugs and nucleic acids for anti-angiogenic cancer therapy: Current landscape and remaining challenges. Bioengineering (Basel), 2018, 5(4), 76.
[http://dx.doi.org/10.3390/bioengineering5040076] [PMID: 30241287]
[66]
Thevenard, J.; Floquet, N.; Ramont, L.; Prost, E.; Nuzillard, J.M.; Dauchez, M.; Yezid, H.; Alix, A.J.; Maquart, F.X.; Monboisse, J.C.; Brassart-Pasco, S. Structural and antitumor properties of the YSNSG cyclopeptide derived from tumstatin. Chem. Biol., 2006, 13(12), 1307-1315.
[http://dx.doi.org/10.1016/j.chembiol.2006.10.007] [PMID: 17185226]
[67]
Thevenard, J.; Ramont, L.; Devy, J.; Brassart, B.; Dupont-Deshorgue, A.; Floquet, N.; Schneider, L.; Ouchani, F.; Terryn, C.; Maquart, F.X.; Monboisse, J.C.; Brassart-Pasco, S. The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int. J. Cancer, 2010, 126(5), 1055-1066.
[PMID: 19551865]
[68]
Rosca, E.V.; Koskimaki, J.E.; Rivera, C.G.; Pandey, N.B.; Tamiz, A.P.; Popel, A.S. Anti-angiogenic peptides for cancer therapeutics. Curr. Pharm. Biotechnol., 2011, 12(8), 1101-1116.
[http://dx.doi.org/10.2174/138920111796117300] [PMID: 21470139]
[69]
Lee, T.Y.; Folkman, J.; Javaherian, K. HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS One, 2010, 5(4)e9945
[http://dx.doi.org/10.1371/journal.pone.0009945] [PMID: 20376344]
[70]
Trochon-Joseph, V.; Martel-Renoir, D.; Mir, L.M.; Thomaïdis, A.; Opolon, P.; Connault, E.; Li, H.; Grenet, C.; Fauvel-Lafève, F.; Soria, J.; Legrand, C.; Soria, C.; Perricaudet, M.; Lu, H. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res., 2004, 64(6), 2062-2069.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3272] [PMID: 15026344]
[71]
Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm., 2012, 9(11), 2961-2973.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287]
[72]
Daugimont, L.; Vandermeulen, G.; Defresne, F.; Bouzin, C.; Mir, L.M.; Bouquet, C.; Feron, O.; Préat, V. Antitumoral and antimetastatic effect of antiangiogenic plasmids in B16 melanoma: Higher efficiency of the recombinant disintegrin domain of ADAM 15. Eur. J. Pharm. Biopharm., 2011, 78(3), 314-319.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.001] [PMID: 21316447]
[73]
Santos, R.A.; Campagnole-Santos, M.J.; Baracho, N.C.; Fontes, M.A.; Silva, L.C.; Neves, L.A.; Oliveira, D.R.; Caligiorne, S.M.; Rodrigues, A.R.; Gropen Júnior, C.; Carvalho, W.S. Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): Evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res. Bull., 1994, 35(4), 293-298.
[http://dx.doi.org/10.1016/0361-9230(94)90104-X] [PMID: 7850477]
[74]
Nareshkumar, R.N.; Sulochana, K.N.; Coral, K. Inhibition of angiogenesis in endothelial cells by Human Lysyl oxidase propeptide. Sci. Rep., 2018, 8(1), 10426.
[http://dx.doi.org/10.1038/s41598-018-28745-8] [PMID: 29993014]
[75]
Zhang, X.; Feng, S.; Liu, J.; Li, Q.; Zheng, L.; Xie, L.; Li, H.; Huang, D. Novel small peptides derived from VEGF 125-136: Potential drugs for radioactive diagnosis and therapy in A549 tumor-bearing nude mice. Sci. Rep., 2017, 7(1), 1-13.
[PMID: 28127051]
[76]
Behelgardi, M.F.; Zahri, S.; Mashayekhi, F.; Mansouri, K.; Asghari, S.M. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci. Rep., 2018, 8(1), 1-13.
[http://dx.doi.org/10.1038/s41598-018-36394-0] [PMID: 29311619]
[77]
Zanella, S.; Bocchinfuso, G.; De Zotti, M.; Arosio, D.; Marino, F.; Raniolo, S.; Pignataro, L.; Sacco, G.; Palleschi, A.; Siano, A.S.; Piarulli, U.; Belvisi, L.; Formaggio, F.; Gennari, C.; Stella, L. Rational design of antiangiogenic helical oligopeptides targeting the vascular endothelial growth factor receptors. Front Chem., 2019, 7, 170.
[http://dx.doi.org/10.3389/fchem.2019.00170] [PMID: 30984741]
[78]
Zhang, Y.; He, B.; Liu, K.; Ning, L.; Luo, D.; Xu, K.; Zhu, W.; Wu, Z.; Huang, J.; Xu, X. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduct. Target. Ther., 2017, 2, 17010.
[http://dx.doi.org/10.1038/sigtrans.2017.10] [PMID: 29263914]
[79]
Ahmadkhani, L.; Mostafavi, E.; Ghasemali, S.; Baghban, R.; Pazoki-Toroudi, H.; Davaran, S.; Malakootikhah, J.; Asadi, N.; Mammadova, L.; Saghfi, S.; Webster, T.J.; Akbarzadeh, A. Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the treatment of cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 873-881.
[http://dx.doi.org/10.1080/21691401.2019.1575839] [PMID: 30873875]
[80]
Gacche, R.N.; Meshram, R.J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys. Acta, 2014, 1846(1), 161-179.
[PMID: 24836679]
[81]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[http://dx.doi.org/10.1038/nature03794] [PMID: 16049491]
[82]
Gorur, A.; Shanmugasundaram, S.; Shanmugasundaram, S. Preparation of agar bionanoparticles. IP Patent 376MAS200 3A 2007.
[83]
Jadhav, N.R.; Powar, T.; Shinde, S.; Nadaf, S. Herbal nanoparticles: A patent review. AJP, 2014, 8(1), 1-12.
[http://dx.doi.org/10.4103/0973-8398.134101]
[84]
Benny, O.; Fainaru, O.; Adini, A.; Cassiola, F.; Bazinet, L.; Adini, I.; Pravda, E.; Nahmias, Y.; Koirala, S.; Corfas, G.; D’Amato, R.J.; Folkman, J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat. Biotechnol., 2008, 26(7), 799-807.
[http://dx.doi.org/10.1038/nbt1415] [PMID: 18587385]
[85]
Siegler, E.L.; Kim, Y.J.; Wang, P. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. J. Cell. Immunother., 2016, 2(2), 69-78.
[http://dx.doi.org/10.1016/j.jocit.2016.08.002]
[86]
Li, Y.; Wu, Y.; Huang, L.; Miao, L.; Zhou, J.; Satterlee, A.B.; Yao, J. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. J. Control. Release, 2016, 228, 107-119.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.044] [PMID: 26941036]
[87]
Wang, J.S.; Ren, T.N.; Xi, T. Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells. Med. Oncol., 2012, 29(1), 10-15.
[http://dx.doi.org/10.1007/s12032-010-9777-8] [PMID: 21191671]
[88]
Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018, 8(2), 533-548.
[http://dx.doi.org/10.7150/thno.21674] [PMID: 29290825]
[89]
Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I.M.; Neves-Petersen, M.T.; Sarmento, B. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Sci. Rep., 2017, 7(1), 3736.
[http://dx.doi.org/10.1038/s41598-017-03959-4] [PMID: 28623267]
[90]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1)W449-454
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[91]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[92]
Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep., 2019, 9(1), 1614.
[http://dx.doi.org/10.1038/s41598-018-38214-x] [PMID: 30733560]
[93]
Ferrara, N.; Hillan, K.J.; Gerber, H.P.; Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov., 2004, 3(5), 391-400.
[http://dx.doi.org/10.1038/nrd1381] [PMID: 15136787]
[94]
Arjaans, M.; Oude Munnink, T.H.; Oosting, S.F.; Terwisscha van Scheltinga, A.G.; Gietema, J.A.; Garbacik, E.T.; Timmer-Bosscha, H.; Lub-de Hooge, M.N.; Schröder, C.P.; de Vries, E.G. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res., 2013, 73(11), 3347-3355.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3518] [PMID: 23580572]
[95]
Konecny, G.E.; Meng, Y.G.; Untch, M.; Wang, H.J.; Bauerfeind, I.; Epstein, M.; Stieber, P.; Vernes, J.M.; Gutierrez, J.; Hong, K.; Beryt, M.; Hepp, H.; Slamon, D.J.; Pegram, M.D. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin. Cancer Res., 2004, 10(5), 1706-1716.
[http://dx.doi.org/10.1158/1078-0432.CCR-0951-3] [PMID: 15014023]
[96]
Izumi, Y.; Xu, L.; di Tomaso, E.; Fukumura, D.; Jain, R.K. Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature, 2002, 416(6878), 279-280.
[http://dx.doi.org/10.1038/416279b] [PMID: 11907566]
[97]
Rugo, H.S. Bevacizumab in the treatment of breast cancer: Rationale and current data. Oncologist, 2004, 9(Suppl. 1), 43-49.
[http://dx.doi.org/10.1634/theoncologist.9-suppl_1-43] [PMID: 15178815]
[98]
Hodi, F.S.; Lawrence, D.; Lezcano, C.; Wu, X.; Zhou, J.; Sasada, T.; Zeng, W.; Giobbie-Hurder, A.; Atkins, M.B.; Ibrahim, N.; Friedlander, P.; Flaherty, K.T.; Murphy, G.F.; Rodig, S.; Velazquez, E.F.; Mihm, M.C., Jr; Russell, S.; DiPiro, P.J.; Yap, J.T.; Ramaiya, N.; Van den Abbeele, A.D.; Gargano, M.; McDermott, D. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res., 2014, 2(7), 632-642.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0053] [PMID: 24838938]
[99]
Sturrock, M.; Miller, I.S.; Kang, G.; Arba’ie, N.H.; O’Farrell, A.C.; Barat, A.; Marston, G.; Coletta, P.L.; Byrne, A.T.; Prehn, J.H. Anti-angiogenic drug scheduling optimisation with application to colorectal cancer. Sci. Rep., 2018, 8(1), 1-16.
[PMID: 29311619]
[100]
Yavari, K. Anti-angiogenesis therapy of cancer cells using 153Sm-bevasesomab. Emerg. Sci. J., 2018, 2(3), 130-139.
[101]
Solecki, G.; Osswald, M.; Weber, D.; Glock, M.; Ratliff, M.; Müller, H.J.; Krieter, O.; Kienast, Y.; Wick, W.; Winkler, F. Differential effects of Ang-2/VEGF-A inhibiting antibodies in combination with radio- or chemotherapy in glioma. Cancers (Basel), 2019, 11(3), 314.
[http://dx.doi.org/10.3390/cancers11030314] [PMID: 30845704]
[102]
Amann, A.; Zwierzina, M.; Koeck, S.; Gamerith, G.; Pechriggl, E.; Huber, J.M.; Lorenz, E.; Kelm, J.M.; Hilbe, W.; Zwierzina, H.; Kern, J. Development of a 3D angiogenesis model to study tumour–endothelial cell interactions and the effects of anti-angiogenic drugs. Sci. Rep., 2017, 7(1), 1-3.
[http://dx.doi.org/10.1038/s41598-017-03010-6] [PMID: 28127051]
[103]
Rao, N.; Lee, Y.F.; Ge, R. Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol. Sin., 2015, 36(10), 1177-1190.
[http://dx.doi.org/10.1038/aps.2015.73] [PMID: 26364800]
[104]
O’Reilly, M.S.; Boehm, T.; Shing, Y.; Fukai, N.; Vasios, G.; Lane, W.S.; Flynn, E.; Birkhead, J.R.; Olsen, B.R.; Folkman, J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88(2), 277-285.
[105]
Ling, Y.; Yang, Y.; Lu, N.; You, Q.D.; Wang, S.; Gao, Y.; Chen, Y.; Guo, Q.L. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochem. Biophys. Res. Commun., 2007, 361(1), 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.155] [PMID: 17644065]
[106]
Tjin Tham Sjin, R.M.; Satchi-Fainaro, R.; Birsner, A.E.; Ramanujam, V.M.; Folkman, J.; Javaherian, K.A. 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity. Cancer Res., 2005, 65(9), 3656-3663.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1833] [PMID: 15867360]
[107]
Morbidelli, L.; Donnini, S.; Chillemi, F.; Giachetti, A.; Ziche, M. Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin. Cancer Res., 2003, 9(14), 5358-5369.
[PMID: 14614021]
[108]
Cattaneo, M.G.; Pola, S.; Francescato, P.; Chillemi, F.; Vicentini, L.M. Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo. Exp. Cell Res., 2003, 283(2), 230-236.
[http://dx.doi.org/10.1016/S0014-4827(02)00057-5] [PMID: 12581742]
[109]
Olsson, A.K.; Johansson, I.; Åkerud, H.; Einarsson, B.; Christofferson, R.; Sasaki, T.; Timpl, R.; Claesson-Welsh, L. The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization. Cancer Res., 2004, 64(24), 9012-9017.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2172] [PMID: 15604266]
[110]
Wickström, S.A.; Alitalo, K.; Keski-Oja, J. An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J. Biol. Chem., 2004, 279(19), 20178-20185.
[http://dx.doi.org/10.1074/jbc.M312921200] [PMID: 14973128]
[111]
Qin, R.S.; Zhang, Z.H.; Zhu, N.P.; Chen, F.; Guo, Q.; Hu, H.W.; Fu, S.Z.; Liu, S.S.; Chen, Y.; Fan, J.; Han, Y.W. Enhanced antitumor and anti-angiogenic effects of metronomic Vinorelbine combined with Endostar on Lewis lung carcinoma. BMC Cancer, 2018, 18(1), 967.
[http://dx.doi.org/10.1186/s12885-018-4738-2] [PMID: 30305062]
[112]
Meng, F.J.; Wang, S.; Yan, Y.J.; Wang, C.Y.; Guan, Z.Y.; Zhang, J. Recombined humanized endostatin-induced suppression of HMGB1 expression inhibits proliferation of NSCLC cancer cells. Thorac. Cancer, 2019, 10(1), 90-95.
[http://dx.doi.org/10.1111/1759-7714.12905] [PMID: 30485686]
[113]
Li, D.; Finley, S.D. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment. Integr. Biol., 2018, 10(4), 253-269.
[http://dx.doi.org/10.1039/C8IB00019K] [PMID: 29623971]
[114]
Ahmadzada, T.; Reid, G.; McKenzie, D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev., 2018, 10(1), 69-86.
[http://dx.doi.org/10.1007/s12551-017-0392-1] [PMID: 29327101]
[115]
Mardin, W.A.; Mees, S.T. MicroRNAs: Novel diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma? Ann. Surg. Oncol., 2009, 16(11), 3183-3189.
[http://dx.doi.org/10.1245/s10434-009-0623-1] [PMID: 19636633]
[116]
Voutila, J.; Reebye, V.; Roberts, T.C.; Protopapa, P.; Andrikakou, P.; Blakey, D.C.; Habib, R.; Huber, H.; Saetrom, P.; Rossi, J.J.; Habib, N.A. Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol. Ther., 2017, 25(12), 2705-2714.
[http://dx.doi.org/10.1016/j.ymthe.2017.07.018] [PMID: 28882451]
[117]
Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941-962.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[118]
Zhou, Q.; Anderson, C.; Hanus, J.; Zhao, F.; Ma, J.; Yoshimura, A.; Wang, S. Strand and cell type-specific function of microRNA-126 in angiogenesis. Mol. Ther., 2016, 24(10), 1823-1835.
[http://dx.doi.org/10.1038/mt.2016.108] [PMID: 27203443]
[119]
Laham-Karam, N.; Lalli, M.; Leinonen, N.; Ylä-Herttuala, S. Differential regulation of vascular endothelial growth factors by promoter-targeted shRNAs. Mol. Ther. Nucleic Acids, 2015, 4e243
[http://dx.doi.org/10.1038/mtna.2015.16] [PMID: 25988242]
[120]
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release, 2006, 116(2), 123-129.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.023] [PMID: 16831481]
[121]
Xu, X.; Yan, Y.; Xun, Q.; Shi, J.; Kong, X.; Wu, J.; Zhou, H. Combined silencing of VEGF-A and angiopoietin-2, a more effective way to inhibit the Ishikawa endometrial cancer cell line. OncoTargets Ther., 2019, 12, 1215-1223.
[http://dx.doi.org/10.2147/OTT.S194064] [PMID: 30863089]
[122]
Choi, S.; Uehara, H.; Wu, Y.; Das, S.; Zhang, X.; Archer, B.; Carroll, L.; Ambati, B.K. RNA activating-double stranded RNA targeting flt-1 promoter inhibits endothelial cell proliferation through soluble FLT-1 upregulation. PLoS One, 2018, 13(3)e0193590
[http://dx.doi.org/10.1371/journal.pone.0193590] [PMID: 29509796]
[123]
Zhang, L.; Lv, Z.; Xu, J.; Chen, C.; Ge, Q.; Li, P.; Wei, D.; Wu, Z.; Sun, X. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway. FEBS J., 2018, 285(7), 1359-1371.
[http://dx.doi.org/10.1111/febs.14416] [PMID: 29474747]
[124]
Lu, T.; Wu, B.; Yu, Y.; Zhu, W.; Zhang, S.; Zhang, Y.; Guo, J.; Deng, N. Blockade of ONECUT2 expression in ovarian cancer inhibited tumor cell proliferation, migration, invasion and angiogenesis. Cancer Sci., 2018, 109(7), 2221-2234.
[http://dx.doi.org/10.1111/cas.13633] [PMID: 29737581]
[125]
Egorova, A.; Petrosyan, M.; Maretina, M.; Balashova, N.; Polyanskih, L.; Baranov, V.; Kiselev, A. Anti-angiogenic treatment of endometriosis via anti-VEGFA siRNA delivery by means of peptide-based carrier in a rat subcutaneous model. Gene Ther., 2018, 25(8), 548-555.
[http://dx.doi.org/10.1038/s41434-018-0042-7] [PMID: 30254304]
[126]
Wang, S.; Zhou, H.; Wu, D.; Ni, H.; Chen, Z.; Chen, C.; Xiang, Y.; Dai, K.; Chen, X.; Li, X. MicroRNA let-7a regulates angiogenesis by targeting TGFBR3 mRNA. J. Cell. Mol. Med., 2019, 23(1), 556-567.
[http://dx.doi.org/10.1111/jcmm.13960] [PMID: 30467960]
[127]
Ng, E.W.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[128]
Trujillo, C.A.; Nery, A.A.; Alves, J.M.; Martins, A.H.; Ulrich, H. Development of the anti-VEGF aptamer to a therapeutic agent for clinical ophthalmology. Clin. Ophthalmol., 2007, 1(4), 393-402.
[PMID: 19668516]
[129]
Camorani, S.; Crescenzi, E.; Gramanzini, M.; Fedele, M.; Zannetti, A.; Cerchia, L. Aptamer-mediated impairment of EGFR-integrin αvβ3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Sci. Rep., 2017, 7, 46659.
[http://dx.doi.org/10.1038/srep46659] [PMID: 28425453]
[130]
Camorani, S.; Hill, B.S.; Collina, F.; Gargiulo, S.; Napolitano, M.; Cantile, M.; Di Bonito, M.; Botti, G.; Fedele, M.; Zannetti, A.; Cerchia, L. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 2018, 8(18), 5178-5199.
[http://dx.doi.org/10.7150/thno.27798] [PMID: 30429893]
[131]
Lokhov, P.G.; Mkrtichyan, M.; Mamikonyan, G.; Balashova, E.E. SANTAVACTM: Summary of research and development. Vaccines (Basel), 2019, 7(4), 186.
[http://dx.doi.org/10.3390/vaccines7040186] [PMID: 31744189]
[132]
Gavilondo, J.V.; Hernández-Bernal, F.; Ayala-Ávila, M.; de la Torre, A.V.; de la Torre, J.; Morera-Díaz, Y.; Bequet-Romero, M.; Sánchez, J.; Valenzuela, C.M.; Martín, Y.; Selman-Housein, K.H.; Garabito, A.; Lazo, O.C. CENTAURO Group of Investigators. Specific active immunotherapy with a VEGF vaccine in patients with advanced solid tumors. Results of the CENTAURO antigen dose escalation phase I clinical trial. Vaccine, 2014, 32(19), 2241-2250.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.102] [PMID: 24530151]
[133]
Wagner, S.C.; Ichim, T.E.; Ma, H.; Szymanski, J.; Perez, J.A.; Lopez, J.; Bogin, V.; Patel, A.N.; Marincola, F.M.; Kesari, S. Cancer anti-angiogenesis vaccines: Is the tumor vasculature antigenically unique? J. Transl. Med., 2015, 13(1), 340.
[http://dx.doi.org/10.1186/s12967-015-0688-5] [PMID: 26510973]
[134]
Brossa, A.; Buono, L.; Fallo, S.; Fiorio Pla, A.; Munaron, L.; Bussolati, B. Alternative strategies to inhibit tumor vascularization. Int. J. Mol. Sci., 2019, 20(24), 6180.
[http://dx.doi.org/10.3390/ijms20246180] [PMID: 31817884]
[135]
Sparkes, J.; Guest, N.; Csizer, Z.; Barreto, L. Stability of BCG vaccine (intravesical) Theracys/BCG therapeutic ImmuCyst and its importance in clinical efficacy. Dev. Biol. Stand., 1992, 77, 217-222.
[PMID: 1426665]
[136]
Cheever, M.A.; Higano, C.S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res., 2011, 17(11), 3520-3526.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3126] [PMID: 21471425]
[137]
Rehman, H.; Silk, A.W.; Kane, M.P.; Kaufman, H.L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer, 2016, 4(1), 53.
[http://dx.doi.org/10.1186/s40425-016-0158-5] [PMID: 27660707]
[138]
Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J. Adv. Res., 2017, 8(6), 591-605.
[http://dx.doi.org/10.1016/j.jare.2017.06.006] [PMID: 28808589]
[139]
Tamura, R.; Fujioka, M.; Morimoto, Y.; Ohara, K.; Kosugi, K.; Oishi, Y.; Sato, M.; Ueda, R.; Fujiwara, H.; Hikichi, T.; Noji, S.; Oishi, N.; Ogawa, K.; Kawakami, Y.; Ohira, T.; Yoshida, K.; Toda, M. A VEGF receptor vaccine demonstrates preliminary efficacy in neurofibromatosis type 2. Nat. Commun., 2019, 10(1), 5758.
[http://dx.doi.org/10.1038/s41467-019-13640-1] [PMID: 31848332]
[140]
Li, Z.; Ding, J.; Zhao, X.; Qi, G. Combination therapy of hepatocellular carcinoma by DNA shuffling-based VEGF vaccine and doxorubicin. Immunotherapy, 2018, 10(11), 951-969.
[http://dx.doi.org/10.2217/imt-2017-0194] [PMID: 30114953]
[141]
Soltanpour Gharibdousti, F.; Fazeli Delshad, B.; Falak, R.; Shayanfar, N.; Ganjalikhani Hakemi, M.; Andalib, A.; Kardar, G.A. Induction of humoral immune responses and inhibition of metastasis in mice by a VEGF peptide-based vaccine. Iran. J. Basic Med. Sci., 2020, 23(4), 507-514.
[PMID: 32489566]
[142]
Yadav, P.K.; Gupta, S.K.; Kumar, S.; Ghosh, M.; Yadav, B.S.; Kumar, D.; Kumar, A.; Saini, M.; Kataria, M. IL-18 immunoadjuvanted xenogeneic canine MMP-7 DNA vaccine overcomes immune tolerance and supresses the growth of murine mammary tumor. Int. Immunopharmacol., 2020, 82106370
[http://dx.doi.org/10.1016/j.intimp.2020.106370] [PMID: 32155464]
[143]
Xu, M.; Zhang, Y.; Dong, W.; Jiang, L.; Zhang, J.; Yu, P.; Xie, S.; Zhou, L. Two tandem repeats of mHSP70407-426 enhance therapeutic antitumor effects of a recombined Vascular Endothelial Growth Factor (VEGF) protein vaccine. Life Sci., 2018, 201, 102-110.
[http://dx.doi.org/10.1016/j.lfs.2018.03.039] [PMID: 29572180]
[144]
Zhang, Q.; Xie, C.; Wang, D.; Yang, Y.; Liu, H.; Liu, K.; Zhao, J.; Chen, X.; Zhang, X.; Yang, W.; Li, X.; Tian, F.; Dong, Z.; Lu, J. Improved antitumor efficacy of combined vaccine based on the induced HUVECs and DC-CT26 against colorectal carcinoma. Cells, 2019, 8(5), 494.
[http://dx.doi.org/10.3390/cells8050494] [PMID: 31121964]
[145]
Wagner, S.C.; Ichim, T.E.; Bogin, V.; Min, W.P.; Silva, F.; Patel, A.N.; Kesari, S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget, 2017, 8(17), 28595-28613.
[http://dx.doi.org/10.18632/oncotarget.15563] [PMID: 28404894]
[146]
Mougel, A.; Terme, M.; Tanchot, C. Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front. Immunol., 2019, 10, 467.
[http://dx.doi.org/10.3389/fimmu.2019.00467] [PMID: 30923527]
[147]
Maracle, C.X.; Jeucken, K.C.M.; Helder, B.; van Gulik, T.M.; Steins, A.; van Laarhoven, H.W.M.; Tas, S.W. Silencing NIK potentiates anti-VEGF therapy in a novel 3D model of colorectal cancer angiogenesis. Oncotarget, 2018, 9(47), 28445-28455.
[http://dx.doi.org/10.18632/oncotarget.25442] [PMID: 29983872]
[148]
Cheng, J.; Yang, H.L.; Gu, C.J.; Liu, Y.K.; Shao, J.; Zhu, R.; He, Y.Y.; Zhu, X.Y.; Li, M.Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med., 2019, 43(2), 945-955.
[PMID: 30569127]
[149]
Lan, H.; Guan, Z.; Jin, K.; Chen, Y. Synergistic anti-tumor effects of Danshen injections in combination with chemotherapy and antiangiogenic therapy via alleviating tumor stroma fibrosis state. Int. J. Clin. Exp. Med., 2019, 12(3), 2618-2622.
[150]
Liang, L.; Hui, K.; Hu, C.; Wen, Y.; Yang, S.; Zhu, P.; Wang, L.; Xia, Y.; Qiao, Y.; Sun, W.; Fei, J.; Chen, T.; Zhao, F.; Yang, B.; Jiang, X. Autophagy inhibition potentiates the anti-angiogenic property of multikinase inhibitor anlotinib through JAK2/STAT3/VEGFA signaling in non-small cell lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 71.
[http://dx.doi.org/10.1186/s13046-019-1093-3] [PMID: 30755242]
[151]
Wagner, J.; Kline, C.L.; Zhou, L.; Khazak, V.; El-Deiry, W.S. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms. J. Exp. Clin. Cancer Res., 2018, 37(1), 11.
[http://dx.doi.org/10.1186/s13046-018-0671-0] [PMID: 29357916]
[152]
Adriani, G.; Bai, J.; Wong, S.C.; Kamm, R.D.; Thiery, J.P. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Macrophage, 2016, 3e1222
[153]
Adriani, G.; Pavesi, A.; Tan, A.T.; Bertoletti, A.; Thiery, J.P.; Kamm, R.D. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov. Today, 2016, 21(9), 1472-1478.
[http://dx.doi.org/10.1016/j.drudis.2016.05.006] [PMID: 27185084]
[154]
Adriani, G.; Penny, H.L.; Sieow, J.L.; Wong, S.C.; Kamm, R.D. Proceedings of the AACR 107th Annual Meeting 2016, New Orleans, LAApril 16-20, 2016, pp. 1578-1578.
[155]
Lee, S.W.L.; Adriani, G.; Ceccarello, E.; Pavesi, A.; Tan, A.T.; Bertoletti, A.; Kamm, R.D.; Wong, S.C. Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front. Immunol., 2018, 9, 416.
[http://dx.doi.org/10.3389/fimmu.2018.00416] [PMID: 29559973]
[156]
Liu, L.; Xie, Z.; Zhang, W.; Fang, S.; Kong, J.; Jin, D.; Li, J.; Li, X.; Yang, X.; Luo, Y.; Lin, B. Biomimetic tumor-induced angiogenesis and anti-angiogenic therapy in a microfluidic model. RSC Adv, 2016, 6(42), 35248-35256.
[157]
Theberge, A.B.; Yu, J.; Young, E.W.; Ricke, W.A.; Bushman, W.; Beebe, D.J. Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis. Anal. Chem., 2015, 87(6), 3239-3246.
[http://dx.doi.org/10.1021/ac503700f] [PMID: 25719435]
[158]
Huang, X.; Lee, R.J.; Qi, Y.; Li, Y.; Lu, J.; Meng, Q.; Teng, L.; Xie, J. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget, 2017, 8(57), 96826-96836.
[http://dx.doi.org/10.18632/oncotarget.18281] [PMID: 29228574]
[159]
Chin, C.H.; Chiu, Y.L.; Lee, K.Y.; Liu, C.H. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), USA2015, pp. 363-366.
[160]
Mercurio, A.; Sharples, L.; Corbo, F.; Franchini, C.; Vacca, A.; Catalano, A.; Carocci, A.; Kamm, R.D.; Pavesi, A.; Adriani, G. Phthalimide derivative shows anti-angiogenic activity in a 3D microfluidic model and no teratogenicity in Zebrafish embryos. Front. Pharmacol., 2019, 10, 349.
[http://dx.doi.org/10.3389/fphar.2019.00349] [PMID: 31057399]
[161]
Kim, H.S.; Won, Y.J.; Shim, J.H.; Kim, H.J.; Kim, J.; Hong, H.N.; Kim, B.S. Morphological characteristics of vasculogenic mimicry and its correlation with EphA2 expression in gastric adenocarcinoma. Sci. Rep., 2019, 9(1), 3414.
[http://dx.doi.org/10.1038/s41598-019-40265-7] [PMID: 30833656]
[162]
Ribatti, D.; Vacca, A.; Dammacco, F. New non-angiogenesis dependent pathways for tumour growth. Eur. J. Cancer, 2003, 39(13), 1835-1841.
[http://dx.doi.org/10.1016/S0959-8049(03)00267-3] [PMID: 12932660]
[163]
Martin, J.D.; Seano, G.; Jain, R.K. Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annu. Rev. Physiol., 2019, 81, 505-534.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114700] [PMID: 30742782]
[164]
Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005, 307(5706), 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[165]
von Baumgarten, L.; Brucker, D.; Tirniceru, A.; Kienast, Y.; Grau, S.; Burgold, S.; Herms, J.; Winkler, F. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin. Cancer Res., 2011, 17(19), 6192-6205.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1868] [PMID: 21788357]
[166]
Qian, C.N.; Tan, M.H.; Yang, J.P.; Cao, Y. Revisiting tumor angiogenesis: Vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. Chin. J. Cancer, 2016, 35(1), 10.
[http://dx.doi.org/10.1186/s40880-015-0070-2] [PMID: 26747273]
[167]
Qin, L.; Bromberg-White, J.L.; Qian, C.N. Opportunities and challenges in tumor angiogenesis research: Back and forth between bench and bed. Adv. Cancer Res., 2012, 113, 191-239.
[http://dx.doi.org/10.1016/B978-0-12-394280-7.00006-3] [PMID: 22429856]
[168]
Qian, C.N. Hijacking the vasculature in ccRCC--co-option, remodelling and angiogenesis. Nat. Rev. Urol., 2013, 10(5), 300-304.
[http://dx.doi.org/10.1038/nrurol.2013.26] [PMID: 23459032]
[169]
Motiejūnaitė, R.; Aranda, J.; Kazlauskas, A. Pericytes prevent regression of endothelial cell tubes by accelerating metabolism of lysophosphatidic acid. Microvasc. Res., 2014, 93, 62-71.
[http://dx.doi.org/10.1016/j.mvr.2014.03.003] [PMID: 24681425]
[170]
Schrimpf, C.; Xin, C.; Campanholle, G.; Gill, S.E.; Stallcup, W.; Lin, S.L.; Davis, G.E.; Gharib, S.A.; Humphreys, B.D.; Duffield, J.S. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol., 2012, 23(5), 868-883.
[http://dx.doi.org/10.1681/ASN.2011080851] [PMID: 22383695]
[171]
Hendrix, M.J.; Seftor, E.A.; Hess, A.R.; Seftor, R.E. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat. Rev. Cancer, 2003, 3(6), 411-421.
[http://dx.doi.org/10.1038/nrc1092] [PMID: 12778131]
[172]
Maniotis, A.J.; Folberg, R.; Hess, A.; Seftor, E.A.; Gardner, L.M.; Pe’er, J.; Trent, J.M.; Meltzer, P.S.; Hendrix, M.J. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am. J. Pathol., 1999, 155(3), 739-752.
[http://dx.doi.org/10.1016/S0002-9440(10)65173-5] [PMID: 10487832]
[173]
Hendrix, M.J.; Seftor, E.A.; Seftor, R.E.; Chao, J.T.; Chien, D.S.; Chu, Y.W. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol. Ther., 2016, 159, 83-92.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.006] [PMID: 26808163]
[174]
Liu, R.; Yang, K.; Meng, C.; Zhang, Z.; Xu, Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol. Ther., 2012, 13(7), 527-533.
[http://dx.doi.org/10.4161/cbt.19602] [PMID: 22407030]
[175]
Sun, T.; Zhao, N.; Zhao, X.L.; Gu, Q.; Zhang, S.W.; Che, N.; Wang, X.H.; Du, J.; Liu, Y.X.; Sun, B.C. Expression and functional significance of Twist1 in hepatocellular carcinoma: Its role in vasculogenic mimicry. Hepatology, 2010, 51(2), 545-556.
[http://dx.doi.org/10.1002/hep.23311] [PMID: 19957372]
[176]
Scully, S.; Francescone, R.; Faibish, M.; Bentley, B.; Taylor, S.L.; Oh, D.; Schapiro, R.; Moral, L.; Yan, W.; Shao, R. Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J. Neurosci., 2012, 32(37), 12950-12960.
[http://dx.doi.org/10.1523/JNEUROSCI.2017-12.2012] [PMID: 22973019]
[177]
Li, M.; Gu, Y.; Zhang, Z.; Zhang, S.; Zhang, D.; Saleem, A.F.; Zhao, X.; Sun, B. Vasculogenic mimicry: A new prognostic sign of gastric adenocarcinoma. Pathol. Oncol. Res., 2010, 16(2), 259-266.
[http://dx.doi.org/10.1007/s12253-009-9220-7] [PMID: 20016961]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy