Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Microwave Irradiation: Synthesis and Characterization of Substituted Pyranoquinolines

Author(s): Maharajan Abirami, Senniappan Thamarai Selvi* and Vetrivel Nadaraj

Volume 18, Issue 2, 2021

Published on: 12 August, 2020

Page: [156 - 159] Pages: 4

DOI: 10.2174/1570178617999200812135156

Price: $65

Abstract

A new series of pyrano[2,3-b]quinolines were synthesized from 3-formylquinolin-2(1H)- ones via Knoevenagel condensation followed by cyclization reaction of ethyl cyanoacetate using DMSO as solvent. This methodology is a simple; clean, fast, efficient, eco-friendly method with less reaction time, an improvement in the yield and purity of the product. The structures of newly synthesized compounds were confirmed by IR, NMR, Mass and elemental analysis.

Keywords: Knoevenagel, ethyl cyanoacetate, pyrano, microwave, quinoline, synthesis.

Graphical Abstract

[1]
Bennacef, I.; Perrio, C.; Lasne, M.C.; Barré, L. J. Org. Chem., 2007, 72(6), 2161-2165.
[http://dx.doi.org/10.1021/jo062285p] [PMID: 17319724]
[2]
Ibrahim, M.A.; Hassanin, H.M.; Alnamer, Y.A. Synth. Commun., 2014, 44, 3470-3482.
[http://dx.doi.org/10.1080/00397911.2014.949775]
[3]
Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.; Bhattacharya, A. RSC Advances, 2016, 6, 46073.
[http://dx.doi.org/10.1039/C6RA03187K]
[4]
Myers, A.G.; Tom, N.J.; Fraley, M.E.; Cohen, S.B.; Madar, D.J. J. Am. Chem. Soc., 1997, 119, 6072-6094.
[http://dx.doi.org/10.1021/ja9703741]
[5]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[6]
Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Bioorg. Med. Chem. Lett., 2016, 26(24), 5960-5966.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.082] [PMID: 27839684]
[7]
Ramesh, M.; Mohan, P.S.; Shanmugam, P. Tetrahedron, 1984, 40, 4041-4049.
[http://dx.doi.org/10.1016/0040-4020(84)85084-X]
[8]
Grundon, M.F. The Alkaloids; Brossi, A., Ed.; Academic Press: London, 1988, Vol. 32, pp. 341-439.
[9]
Carling, R.W.; Leeson, P.D.; Moseley, A.M.; Baker, R.; Forster, A.C.; Grimwood, S.; Kemp, J.A.; Marshall, G.R. J. Med. Chem., 1992, 35, 1942-1953.
[http://dx.doi.org/10.1021/jm00089a003] [PMID: 1534583]
[10]
Puricelli, L.; Innocenti, G.; Delle Monache, G.; Caniato, R.; Filippini, R.; Cappelletti, E.M. Nat. Prod. Lett., 2002, 16(2), 95-100.
[http://dx.doi.org/10.1080/10575630290019985] [PMID: 11990434]
[11]
Amutha, P.; Lavanya, G.; Venkatapathy, K.; Magesh, C.J. Lett. Org. Chem., 2019, 16, 865-873.
[http://dx.doi.org/10.2174/1570178616666190118152927]
[12]
Mirjafary, Z.; Saidian, H.; Sahandi, M.; Shojaei, L. J. Braz. Chem. Soc., 2014, 25, 1253-1260.
[http://dx.doi.org/10.5935/0103-5053.20140103]
[13]
Nepolraja, A.; Pitchaib, P.; Manic, P. Org. Chem. Res., 2019, 5, 167-173.
[14]
Chen, J.J.; Chen, P.H.; Liao, C.H.; Huang, S.Y.; Chen, I.S. J. Nat. Prod., 2007, 70(9), 1444-1448.
[http://dx.doi.org/10.1021/np070186g] [PMID: 17822293]
[15]
Magedov, I.V.; Manpadi, M.; Ogasawara, M.A.; Dhawan, A.S.; Rogelj, S.; Van Slambrouck, S.; Steelant, W.F.A.; Evdokimov, N.M.; Uglinskii, P.Y.; Elias, E.M.; Knee, E.J.; Tongwa, P.; Antipin, M.Y.; Kornienko, A. J. Med. Chem., 2008, 51(8), 2561-2570.
[http://dx.doi.org/10.1021/jm701499n] [PMID: 18361483]
[16]
Küçükbay, F.Z.; Küçükbay, H.; Tanc, M.; Supuran, C.T. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1198-1202.
[http://dx.doi.org/10.3109/14756366.2015.1113173 ] [PMID: 26586254]
[17]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z.; Angeli, A.; Bartolucci, G.; Supuran, C.T. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1021-1026.
[http://dx.doi.org/10.1080/14756366.2020.1751620 ] [PMID: 32297533]
[18]
Kumari, P.; Narayana, C.; Dubey, S.; Gupta, A.; Sagar, R. Org. Biomol. Chem., 2018, 16(12), 2049-2059.
[http://dx.doi.org/10.1039/C7OB03186F] [PMID: 29411817]
[19]
Asghari, S.; Ramezani, S.; Mohseni, M. Chin. Chem. Lett., 2014, 25, 431-434.
[http://dx.doi.org/10.1016/j.cclet.2013.12.010]
[20]
Fujita, Y.; Oguri, H.; Oikawa, H. J. Antibiot. (Tokyo), 2005, 58(6), 425-427.
[http://dx.doi.org/10.1038/ja.2005.56] [PMID: 16156522]
[21]
Hammoudaa, M.A.A. Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 200-208.
[22]
Cantrell, C.L.; Schrader, K.K.; Mamonov, L.K.; Sitpaeva, G.T.; Kustova, T.S.; Dunbar, C.; Wedge, D.E. J. Agric. Food Chem., 2005, 53(20), 7741-7748.
[http://dx.doi.org/10.1021/jf051478v] [PMID: 16190626]
[23]
Varma, R.S. Pure Appl. Chem., 2001, 73, 193-198.
[http://dx.doi.org/10.1351/pac200173010193]
[24]
Caddick, S. Tetrahedron, 1995, 51, 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[25]
Nadaraj, V.; Abirami, M.; Thamarai Selvi, S. Rasayan J. Chem., 2015, 8, 203-206.
[26]
Yavuz, K.; Kucukbay, H. Appl. Organomet. Chem., 2018, 32(e3897), 1-8.
[http://dx.doi.org/10.1002/aoc.3897]
[27]
Kucukbay, H.; Sireci, N.; Yilmaz, U.; Akkurt, M.; Yalcin, S.P. Appl. Organomet. Chem., 2011, 25, 255-261.
[http://dx.doi.org/10.1002/aoc.1751]
[28]
Senthil Kumar, G.; Kaminsky, W.; Rajendra Prasad, K.J. Synth. Commun., 2015, 45, 1751-1760.
[http://dx.doi.org/10.1080/00397911.2015.1041608]
[29]
Clisir, U.; Cicek, B. J. Mol. Struct., 2017, 1148, 505-511.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.081]
[30]
Althagafi, I.I.; Shaaban, M.R. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[31]
Nadaraj, V.; Thamarai Selvi, S. Res. J. Chem. Environ., 2013, 17, 46-48.
[32]
Acosta, P.; Insuasty, B.; Ortiz, A.; Abonia, R.; Sortinob, M.; Zacchino, S.A.; Quiroga, J. Arab. J. Chem., 2016, 9, 481-492.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.002]
[33]
Nadaraj, V.; Thamarai Selvi, S.; Mohan, S.; Daniel Thangadurai, T. Med. Chem. Res., 2012, 21, 2911-2919.
[http://dx.doi.org/10.1007/s00044-011-9811-1]
[34]
Nadaraj, V.; Thamarai Selvi, S.; Mohan, S.; Daniel Thangadurai, T. Med. Chem. Res., 2012, 21, 2902-2910.
[http://dx.doi.org/10.1007/s00044-011-9810-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy