Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Eupatilin Inhibits the Proliferation and Migration of Prostate Cancer Cells through Modulation of PTEN and NF-κB Signaling

Author(s): Riza Serttas, Cagla Koroglu and Suat Erdogan*

Volume 21, Issue 3, 2021

Published on: 11 August, 2020

Page: [372 - 382] Pages: 11

DOI: 10.2174/1871520620666200811113549

Price: $65

Abstract

Background: Despite advances in the treatment of prostate cancer, side effects and the risks of developing drug resistance require new therapeutic agents. Eupatilin is a secondary metabolite of Artemisia asiatica and has shown potential anti-tumor activity in some cancers, but its potential in prostate cancer treatment has not yet been evaluated.

Objective: The aim of the study was to investigate the effectiveness of eupatilin on prostate cancer cell proliferation and migration.

Methods: Human prostate cancer PC3 and LNCaP cells were exposed to eupatilin and its efficacy on cell survival was determined by the MTT test. Apoptosis and cell cycle phases were evaluated by an image-based cytometer. Cell migration and invasion were evaluated by wound healing and matrigel migration assays; the expression of mRNA and protein was assessed by RT-qPCR and Western blot, respectively.

Results: Eupatilin time- and dose-dependently reduced the viability of prostate cancer cells. Exposure of PC3 cells to 12.5μM-50μM eupatilin resulted in apoptosis by upregulating the expression of caspase 3, Bax and cytochrome c. Annexin V assessment also confirmed that eupatilin causes apoptosis. The treatment significantly upregulated the mRNA expression of p53, p21, and p27, causing cell cycle arrest in the G1 phase. Administration of eupatilin inhibited migration and invasion of the cells by downregulating the expression of Twist, Slug and MMP-2, -7. In addition, the agent increased protein expression of tumor suppressor PTEN, while transcription factor NF-κB expression was reduced.

Conclusion: Eupatilin strongly prevents the proliferation of prostate cancer cells, and suppresses migration and invasion. Due to its therapeutic potential, the clinical use of eupatilin in prostate cancer should also be supported by in vivo studies.

Keywords: Apoptosis, cell cycle, eupatilin, invasion, migration, metastasis, prostate cancer.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Salinas, C.A.; Tsodikov, A.; Ishak-Howard, M.; Cooney, K.A. Prostate cancer in young men: An important clinical entity. Nat. Rev. Urol., 2014, 11(6), 317-323.
[http://dx.doi.org/10.1038/nrurol.2014.91] [PMID: 24818853]
[3]
Kirby, M.; Hirst, C.; Crawford, E.D. Characterising the castration-resistant prostate cancer population: A systematic review. Int. J. Clin. Pract., 2011, 65(11), 1180-1192.
[http://dx.doi.org/10.1111/j.1742-1241.2011.02799.x] [PMID: 21995694]
[4]
Armstrong, C.M.; Gao, A.C. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. Am. J. Clin. Exp. Urol., 2015, 3(2), 64-76.
[PMID: 26309896]
[5]
Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of advanced prostate cancer. Annu. Rev. Med., 2019, 70, 479-499.
[http://dx.doi.org/10.1146/annurev-med-051517-011947] [PMID: 30691365]
[6]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[7]
Erdogan, S.; Turkekul, K.; Serttas, R.; Erdogan, Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed. Pharmacother., 2017, 88, 210-217.
[http://dx.doi.org/10.1016/j.biopha.2017.01.056] [PMID: 28107698]
[8]
Seo, Y.J.; Kim, B.S.; Chun, S.Y.; Park, Y.K.; Kang, K.S.; Kwon, T.G. Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J. Korean Med. Sci., 2011, 26(11), 1489-1494.
[http://dx.doi.org/10.3346/jkms.2011.26.11.1489] [PMID: 22065906]
[9]
Zhong, W.F.; Wang, X.H.; Pan, B.; Li, F.; Kuang, L.; Su, Z.X. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol. Lett., 2016, 12(4), 2894-2899.
[http://dx.doi.org/10.3892/ol.2016.4989] [PMID: 27698876]
[10]
Kim, D.H.; Na, H.K.; Oh, T.Y.; Shin, C.Y.; Surh, Y.J. Eupatilin inhibits proliferation of ras-transformed human breast epithelial (MCF-10A-ras) cells. J. Environ. Pathol. Toxicol. Oncol., 2005, 24(4), 251-259.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v24.i4.20] [PMID: 16393119]
[11]
Nageen, B.; Sarfraz, I.; Rasul, A.; Hussain, G.; Rukhsar, F.; Irshad, S.; Riaz, A.; Selamoglu, Z.; Ali, M. Eupatilin: A natural pharmacologically active flavone compound with its wide range applications. J. Asian Nat. Prod. Res., 2020, 22(1), 1-16.
[http://dx.doi.org/10.1080/10286020.2018.1492565] [PMID: 29973097]
[12]
Zhong, W.; Wu, Z.; Chen, N.; Zhong, K.; Lin, Y.; Jiang, H.; Wan, P.; Lu, S.; Yang, L.; Liu, S. Eupatilin inhibits renal cancer growth by downregulating MicroRNA-21 through the activation of YAP1. BioMed Res. Int., 2019, 20195016483
[http://dx.doi.org/10.1155/2019/5016483] [PMID: 31179326]
[13]
Cho, J.H.; Lee, J.G.; Yang, Y.I.; Kim, J.H.; Ahn, J.H.; Baek, N.I.; Lee, K.T.; Choi, J.H. Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells. Food Chem. Toxicol., 2011, 49(8), 1737-1744.
[http://dx.doi.org/10.1016/j.fct.2011.04.019] [PMID: 21554918]
[14]
Park, J.Y.; Park, D.H.; Jeon, Y.; Kim, Y.J.; Lee, J.; Shin, M.S.; Kang, K.S.; Hwang, G.S.; Kim, H.Y.; Yamabe, N. Eupatilin inhibits angiogenesis-mediated human hepatocellular metastasis by reducing MMP-2 and VEGF signaling. Bioorg. Med. Chem. Lett., 2018, 28(19), 3150-3154.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.034] [PMID: 30177376]
[15]
Park, B.B.; Yoon, J.; Kim, E.; Choi, J.; Won, Y.; Choi, J.; Lee, Y.Y. Inhibitory effects of eupatilin on tumor invasion of human gastric cancer MKN-1 cells. Tumour Biol., 2013, 34(2), 875-885.
[http://dx.doi.org/10.1007/s13277-012-0621-y] [PMID: 23292941]
[16]
Li, F.; Tao, Y.; Qiao, Y.; Li, K.; Jiang, Y.; Cao, C.; Ren, S.; Chang, X.; Wang, X.; Wang, Y.; Xie, Y.; Dong, Z.; Zhao, J.; Liu, K. Eupatilin inhibits EGF-induced JB6 cell transformation by targeting PI3K. Int. J. Oncol., 2016, 49(3), 1148-1154.
[http://dx.doi.org/10.3892/ijo.2016.3600] [PMID: 27573489]
[17]
Wang, Y.; Hou, H.; Li, M.; Yang, Y.; Sun, L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol. Med. Rep., 2016, 13(2), 1141-1146.
[http://dx.doi.org/10.3892/mmr.2015.4671] [PMID: 26676446]
[18]
Cheong, J.H.; Hong, S.Y.; Zheng, Y.; Noh, S.H. Eupatilin inhibits gastric cancer cell growth by blocking STAT3-mediated VEGF expression. J. Gastric Cancer, 2011, 11(1), 16-22.
[http://dx.doi.org/10.5230/jgc.2011.11.1.16] [PMID: 22076197]
[19]
Carnero, A.; Blanco-Aparicio, C.; Renner, O.; Link, W.; Leal, J.F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets, 2008, 8(3), 187-198.
[http://dx.doi.org/10.2174/156800908784293659] [PMID: 18473732]
[20]
Gecgel, K.K.; Muduroglu, M.; Erdogan, S. Inhibition of telomerase potentiates enzalutamide efficiency of androgen-sensitive human prostate cancer cells. J. BUON, 2017, 22(6), 1570-1576.
[PMID: 29332354]
[21]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, Z.B.; Doganlar, O.; Bilir, A. Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: Cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-kappaB. Invest. New Drugs, 2020, 38(2), 246-263.
[PMID: 30993586]
[22]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[23]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Serttas, R.; Turkekul, K.; Dibirdik, I.; Bilir, A. The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci., 2016, 162, 77-86.
[http://dx.doi.org/10.1016/j.lfs.2016.08.019] [PMID: 27569589]
[24]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Turkekul, K. Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int., 2018, 6(4), 126-135.
[http://dx.doi.org/10.1016/j.prnil.2017.11.001] [PMID: 30505814]
[25]
Zhu, Y.; Wu, J.; Li, S.; Wang, X.; Liang, Z.; Xu, X.; Xu, X.; Hu, Z.; Lin, Y.; Chen, H.; Qin, J.; Mao, Q.; Xie, L. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol. Med. Rep., 2015, 11(2), 1004-1008.
[http://dx.doi.org/10.3892/mmr.2014.2801] [PMID: 25351792]
[26]
Wang, X.; Zhu, Y.; Zhu, L.; Chen, X.; Xu, Y.; Zhao, Y.; Shao, Y.; Li, F.; Jiang, Y.; Lu, J.; Huang, Y.; Chang, X.; Zhang, J.; Li, X.; Liu, K.; Zhao, M.; Dong, Z.; Zhao, J. Eupatilin inhibits the proliferation of human esophageal cancer TE1 cells by targeting the Akt GSK3β and MAPK/ERK signaling cascades. Oncol. Rep., 2018, 39(6), 2942-2950.
[http://dx.doi.org/10.3892/or.2018.6390] [PMID: 29693162]
[27]
Wu, Z.; Zou, B.; Zhang, X.; Peng, X. Eupatilin regulates proliferation and cell cycle of cervical cancer by regulating hedgehog signalling pathway. Cell Biochem. Funct., 2020, 38(4), 428-435.
[http://dx.doi.org/10.1002/cbf.3493] [PMID: 31926121]
[28]
Fei, X.; Wang, J.; Chen, C.; Ding, B.; Fu, X.; Chen, W.; Wang, C.; Xu, R. Eupatilin inhibits glioma proliferation, migration, and invasion by arresting cell cycle at G1/S phase and disrupting the cytoskeletal structure. Cancer Manag. Res., 2019, 11, 4781-4796.
[http://dx.doi.org/10.2147/CMAR.S207257] [PMID: 31213900]
[29]
Sugimoto, M.; Martin, N.; Wilks, D.P.; Tamai, K.; Huot, T.J.G.; Pantoja, C.; Okumura, K.; Serrano, M.; Hara, E. Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1). Oncogene, 2002, 21(53), 8067-8074.
[http://dx.doi.org/10.1038/sj.onc.1206019] [PMID: 12444543]
[30]
Turkekul, K.; Colpan, R.D.; Baykul, T.; Ozdemir, M.D.; Erdogan, S. Esculetin inhibits the survival of human prostate cancer cells by inducing apoptosis and arresting the cell cycle. J. Cancer Prev., 2018, 23(1), 10-17.
[http://dx.doi.org/10.15430/JCP.2018.23.1.10] [PMID: 29629344]
[31]
Choi, E.J.; Oh, H.M.; Wee, H.; Choi, C.S.; Choi, S.C.; Kim, K.H.; Han, W.C.; Oh, T.Y.; Kim, S.H.; Jun, C.D. Eupatilin exhibits a novel anti-tumor activity through the induction of cell cycle arrest and differentiation of gastric carcinoma AGS cells. Differentiation, 2009, 77(4), 412-423.
[http://dx.doi.org/10.1016/j.diff.2008.12.004] [PMID: 19281788]
[32]
Riihimäki, M.; Thomsen, H.; Sundquist, K.; Sundquist, J.; Hemminki, K. Clinical landscape of cancer metastases. Cancer Med., 2018, 7(11), 5534-5542.
[http://dx.doi.org/10.1002/cam4.1697] [PMID: 30328287]
[33]
Bates, R.C. Colorectal cancer progression: Integrin alphavbeta6 and the Epithelial-Mesenchymal Transition (EMT). Cell Cycle, 2005, 4(10), 1350-1352.
[http://dx.doi.org/10.4161/cc.4.10.2053] [PMID: 16123591]
[34]
Tong, J.; Shen, Y.; Zhang, Z.; Hu, Y.; Zhang, X.; Han, L. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Biosci. Rep., 2019, 39(5), 39.
[http://dx.doi.org/10.1042/BSR20190452] [PMID: 30967496]
[35]
Lin, D.; Kuang, G.; Wan, J.; Zhang, X.; Li, H.; Gong, X.; Li, H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep., 2017, 37(2), 895-902.
[http://dx.doi.org/10.3892/or.2016.5311] [PMID: 27959422]
[36]
Lynch, C.C.; Matrisian, L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002, 70(9-10), 561-573.
[http://dx.doi.org/10.1046/j.1432-0436.2002.700909.x] [PMID: 12492497]
[37]
Xie, Y.; Lu, W.; Liu, S.; Yang, Q.; Goodwin, J.S.; Sathyanarayana, S.A.; Pratap, S.; Chen, Z. MMP7 interacts with ARF in nucleus to potentiate tumor microenvironments for prostate cancer progression in vivo. Oncotarget, 2016, 7(30), 47609-47619.
[http://dx.doi.org/10.18632/oncotarget.10251] [PMID: 27356744]
[38]
Knox, J.D.; Wolf, C.; McDaniel, K.; Clark, V.; Loriot, M.; Bowden, G.T.; Nagle, R.B. Matrilysin expression in human prostate carcinoma. Mol. Carcinog., 1996, 15(1), 57-63.
[http://dx.doi.org/10.1002/(SICI)1098-2744(199601)15:1<57:AID-MC8>3.0.CO;2-P] [PMID: 8561867]
[39]
Szarvas, T.; Becker, M.; Vom Dorp, F.; Meschede, J.; Scherag, A.; Bánkfalvi, A.; Reis, H.; Schmid, K.W.; Romics, I.; Rübben, H.; Ergün, S. Elevated serum matrix metalloproteinase 7 levels predict poor prognosis after radical prostatectomy. Int. J. Cancer, 2011, 128(6), 1486-1492.
[http://dx.doi.org/10.1002/ijc.25454] [PMID: 20473942]
[40]
Morgia, G.; Falsaperla, M.; Malaponte, G.; Madonia, M.; Indelicato, M.; Travali, S.; Mazzarino, M.C. Matrix Metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol. Res., 2005, 33(1), 44-50.
[http://dx.doi.org/10.1007/s00240-004-0440-8] [PMID: 15517230]
[41]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, Z.B.; Doganlar, O.; Bilir, A. Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: Cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest. New Drugs, 2020, 38(2), 246-263.
[http://dx.doi.org/10.1007/s10637-019-00774-8] [PMID: 30993586]
[42]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7, 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[43]
Cheon, Y.H.; Kim, M.S.; Kim, J.Y.; Kim, D.H.; Han, S.Y.; Lee, J.H. Eupatilin downregulates phorbol 12-myristate 13-acetate-induced MUC5AC expression via inhibition of p38/ERK/JNK MAPKs signal pathway in human airway epithelial cells. Korean J. Physiol. Pharmacol., 2020, 24(2), 157-163.
[http://dx.doi.org/10.4196/kjpp.2020.24.2.157] [PMID: 32140039]
[44]
Raha, S.; Yumnam, S.; Hong, G.E.; Lee, H.J.; Saralamma, V.V.; Park, H.S.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Kim, J.A.; Kim, G.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int. J. Oncol., 2015, 47(3), 1061-1069.
[http://dx.doi.org/10.3892/ijo.2015.3095] [PMID: 26201693]
[45]
Naderali, E.; Khaki, A.A.; Rad, J.S.; Ali-Hemmati, A.; Rahmati, M.; Charoudeh, H.N. Regulation and modulation of PTEN activity. Mol. Biol. Rep., 2018, 45(6), 2869-2881.
[http://dx.doi.org/10.1007/s11033-018-4321-6] [PMID: 30145641]
[46]
Cairns, P.; Okami, K.; Halachmi, S.; Halachmi, N.; Esteller, M.; Herman, J.G.; Jen, J.; Isaacs, W.B.; Bova, G.S.; Sidransky, D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res., 1997, 57(22), 4997-5000.
[PMID: 9371490]
[47]
Mayo, M.W.; Madrid, L.V.; Westerheide, S.D.; Jones, D.R.; Yuan, X.J.; Baldwin, A.S., Jr; Whang, Y.E. PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem., 2002, 277(13), 11116-11125.
[http://dx.doi.org/10.1074/jbc.M108670200] [PMID: 11799112]
[48]
Choi, E.J.; Lee, S.; Chae, J.R.; Lee, H.S.; Jun, C.D.; Kim, S.H. Eupatilin inhibits lipopolysaccharide-induced expression of inflammatory mediators in macrophages. Life Sci., 2011, 88(25-26), 1121-1126.
[http://dx.doi.org/10.1016/j.lfs.2011.04.011] [PMID: 21565208]
[49]
Lee, S.; Lee, M.; Kim, S.H. Eupatilin inhibits H2O2-induced apoptotic cell death through inhibition of mitogen-activated protein kinases and nuclear factor-kappaB. Food Chem. Toxicol., 2008, 46(8), 2865-2870.
[http://dx.doi.org/10.1016/j.fct.2008.05.026] [PMID: 18603343]
[50]
Molinspiration Cheminformatics free web services, Available at: https://www.molinspiration.com
[51]
L.L.C. MolSoft Molecules in silico. Available at: www.molsoft.com/mprop

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy