Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Increased Induction of Apoptosis in ESCC (Esophageal Squamous-Cell Carcinoma) by Betula pendula Roth Stem Cell Extract Containing Triterpenoids Compared to Doxorubicin

Author(s): Jamile Nazari, Vahide Payamnoor, Zahra Sadeghzadeh , Jahanbakhsh Asadi* and Mohammad R. Kavosi

Volume 21, Issue 1, 2021

Published on: 11 August, 2020

Page: [100 - 107] Pages: 8

DOI: 10.2174/1871520620666200811112904

Price: $65

Abstract

Background: Esophageal Squamous-Cell Carcinoma (ESCC) is one of the most life-threatening malignancies worldwide, with a growing incidence in Iran higher than the global average.

Objective: The present study, for the first time under patent number (97668), introduces a method using in vitro production of activated-Birch stem cells using biotechnological techniques of tissue culture and plant stem cell culture from Betula pendula Roth (Birch) bark.

Methods: In the first step, Birch stem cells were produced in large amounts using tissue culture, and then the amount of triterpenoids of its extract was measured by the HPLC method. In the second step, the cytotoxicity was evaluated by MTT, and the IC50 was calculated. The cellular apoptosis in response to the extract compared to doxorubicin was measured using the Annexin V kit and the flow cytometry method.

Results: The optimized method introduced in the current study efficiently produced plant stem cells containing triterpenoids in large quantities over a period of 2-4 months. Our findings indicated that the growth of ESCC cells decreased by induction treatment 3 times (24, 36, 48 hours). IC50 values were obtained in 24 hours for the natural bark extract, Birch stem cell extract, doxorubicin and interactions of two extracts with doxorubicin at 300μg/mL, 1700μg/mL, 0.5μM, 150μg/mL, 1800μg/mL, respectively. In the flow cytometric test, the Birch stem cell extract showed the highest percentage of apoptosis, with 92.5% for total apoptosis. The percentage of total apoptosis in doxorubicin treatment was 85.33%, and the combination of doxorubicin with Birch stem cell extract was 88.33%. Natural bark extract and its combination with a lower percentage (69.33% and 70.33%, respectively) caused apoptosis of esophageal cancer cells.

Conclusion: Owing to the extinction of Birch in Iran and its inaccessibility and exploitation, Birch stem cells can be cultured as an appropriate alternative source to produce valuable triterpenoids for pharmaceutical purposes. Additionally, according to the results of this study, stem cells can be used to enhance the treatment of esophageal cancer and supplementation with chemotherapy.

Keywords: Apoptosis, birch, ESCC cancer, plant stem cells, triterpenoids, doxorubicin.

Graphical Abstract

[1]
Kolahdoozan, S.; Sadjadi, A.; Radmard, A.R.; Khademi, H. Five common cancers in Iran. Arch. Iran Med., 2010, 13(2), 143-146.
[PMID: 20187669]
[2]
Haghdoost, A.A.; Hosseini, H.; Chamani, G.; Zarei, M.R.; Rad, M.; Hashemipoor, M.; Zahedi, M.J.; Darvish-Moghadam, S. Rising incidence of adenocarcinoma of the esophagus in Kerman, Iran. Arch. Iran Med., 2008, 11(4), 364-370.
[PMID: 18588366]
[3]
Chen, X. Esophageal Tumor. Gastroenterol. Med. Res., 2018, 2, 1-7.
[4]
Chan, H.K.; Ismail, S. Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: Experiences, perceptions and informational needs from clinical pharmacists. Asian Pac. J. Cancer Prev., 2014, 15(13), 5305-5309.
[http://dx.doi.org/10.7314/APJCP.2014.15.13.5305] [PMID: 25040993]
[5]
Lee, Y.K.; Bae, K.; Yoo, H-S.; Cho, S-H. Benefit of adjuvant traditional herbal medicine with chemotherapy for respectable gastric cancer. Integr. Cancer Ther., 2018, 17(3), 619-627.
[http://dx.doi.org/10.1177/1534735417753542] [PMID: 29614889]
[6]
Tajaldini, M.; Samadi, F.; Khosravi, A.; Ghasemnejadd, A.; Asadi, J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharmacother., 2020, 121109594
[http://dx.doi.org/10.1016/j.biopha.2019.109594]
[7]
Lee, S.K.; Cui, B.; Mehta, R.R.; Kinghorn, A.D.; Pezzuto, J.M. Cytostatic mechanism and antitumor potential of novel 1H-cyclopenta[b]benzofuran lignans isolated from Aglaia elliptica. Chem. Biol. Interact., 1998, 115(3), 215-228.
[http://dx.doi.org/10.1016/S0009-2797(98)00073-8] [PMID: 9851291]
[8]
Aldaghi, L.; Ali, D.J.A.; Nemati, F.; Mir Dashti, R.; Ekrami, R. The effects of cytotoxicity of Astragalus cystosus on the Hela Cells by using MTT Method. Quart. J. Sabzevar Univ. Med. Sci., 2014, 5(20), 603-610.
[9]
Dash, S.; Chattopadhyay, S.; Karmakar, P.; Roy, S. Anti-leukemic activity of betulinic acid from bulk to self-assembled structure. BLDE Univ. J. Health Sci., 2016, 1(1), 9-14.
[10]
Drąg-Zalesińska, M.; Drąg, M.; Poręba, M.; Borska, S.; Kulbacka, J.; Saczko, J. Anticancer properties of ester derivatives of betulin in human metastatic melanoma cells (Me-45). Cancer Cell Int., 2017, 17, 4.
[http://dx.doi.org/10.1186/s12935-016-0369-3] [PMID: 28053599]
[11]
Mishra, T.; Arya, R.K.; Meena, S.; Joshi, P.; Pal, M.; Meena, B.; Upreti, D.K.; Rana, T.S.; Datta, D. Isolation, characterization and anticancer potential of cytotoxic triterpenes from Betula utilis bark. PLoS One, 2016, 11(7)e0159430
[http://dx.doi.org/10.1371/journal.pone.0159430]] [PMID: 27453990]
[12]
Wang, D-Y.L.J.; Yin, M.Z. Betulin induces apoptosis of HeLa cell lines in vitro and its possible mechanism. Tumor, 2012, 4(32), 234-238.
[13]
Boryczka, S.; Bębenek, E.; Wietrzyk, J.; Kempińska, K.; Jastrzębska, M.; Kusz, J.; Nowak, M. Synthesis, structure and cytotoxic activity of new acetylenic derivatives of betulin. Molecules, 2013, 18(4), 4526-4543.
[http://dx.doi.org/10.3390/molecules18044526] [PMID: 23595090]
[14]
Dehelean, C.A.; Feflea, S.; Molnár, J.; Zupko, I.; Soica, C. Betulin as an antitumor agent tested in vitro on A431, HeLa and MCF7, and as an angiogenic inhibitor in vivo in the CAM assay. Nat. Prod. Commun., 2012, 7(8), 981-985.
[http://dx.doi.org/10.1177/1934578X1200700805] [PMID: 22978210]
[15]
Ehrhardt, H.; Fulda, S.; Führer, M.; Debatin, K.M.; Jeremias, I. Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 2004, 18(8), 1406-1412.
[http://dx.doi.org/10.1038/sj.leu.2403406] [PMID: 15201849]
[16]
Król, S.K.; Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res. Int., 2015, 2015584189
[http://dx.doi.org/10.1155/2015/584189]] [PMID: 25866796]
[17]
Kamalanathan, D.; Natarajan, D. Anticancer potential of leaf and leaf-derived callus extracts of Aerva javanica against MCF-7 breast cancer cell line. J. Cancer Res. Ther., 2018, 14(2), 321-327.
[PMID: 29516913]
[18]
I.U.C.N. Red list categories and criteria. Gland, Switzerland, IUSN 2001.
[19]
Zare, H.; Akbarinia, M.; Hosseini, S.M.; Ejtehadi, H.; Eshkevari, T.A. A new record of Betula litwanowii (Betulaceae) and a review of the geographical distribution of the genus Betula L. in Iran. Iran. J. Bot., 2010, 16(2), 237-241.
[20]
Tripathi, L.; Tripathi, J.N. Role of biotechnology in medicinal plants. Trop. J. Pharm. Res., 2003, 2, 243-253.
[21]
Nagata, T.; Takebe, I. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta, 1971, 99(1), 12-20.
[http://dx.doi.org/10.1007/BF00392116] [PMID: 24487444]
[22]
Jafari Hajati, R.; Payamnoor, V.; Ghasemi Bezdi, K.; Ahmadian Chashmi, N. Optimization of callus induction and cell suspension culture of Betula pendula roth for improved production of betulin, betulinic acid, and antioxidant activity. In Vitro Cell. Dev. Biol. Plant, 2016, 52(4), 400-407.
[http://dx.doi.org/10.1007/s11627-016-9773-6]
[23]
Zhao, G.; Yan, W.; Cao, D. Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. J. Pharm. Biomed. Anal., 2007, 43(3), 959-962.
[http://dx.doi.org/10.1016/j.jpba.2006.09.026] [PMID: 17084057]
[24]
Ayyoob, K.; Masoud, K.; Vahideh, K.; Jahanbakhsh, A. Authentication of newly established human esophageal squamous cell carcinoma cell line (YM-1) using Short Tandem Repeat (STR) profiling method. Tumour Biol., 2016, 37(3), 3197-3204.
[http://dx.doi.org/10.1007/s13277-015-4133-4] [PMID: 26432330]
[25]
Seyedalipour, B.; Pourakbar, E.; Taravati, A. The cytotoxic effect of ethanolic extract of Pistacia Khinjuk leaf on HeLa and MCF-7 cancerous cell lines. JRUMS, 2016, 14(11), 939-952.
[26]
Jazi, M.S.; Mohammadi, S.; Yazdani, Y.; Sedighi, S.; Memarian, A.; Aghaei, M. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells. Iran. J. Basic Med. Sci., 2016, 19(7), 779-786.
[PMID: 27635203]
[27]
Cohen, A.J.; Anderson, H.R.; Ostro, B. Urban air pollution. In:Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; Ezzati, M.; Lopez, A.; Rodgers, A.; Murray, C., Eds.; World Health Organization: Geneva, 2004, Vol. 2, pp. 1353-1433.
[28]
Ju, E.M.; Lee, S.E.; Hwang, H.J.; Kim, J.H. Antioxidant and anticancer activity of extract from Betula platyphylla var. japonica. Life Sci., 2004, 74(8), 1013-1026.
[http://dx.doi.org/10.1016/j.lfs.2003.07.025] [PMID: 14672757]
[29]
Drag, M.; Surowiak, P.; Drag-Zalesinska, M.; Dietel, M.; Lage, H.; Oleksyszyn, J. Comparision of the cytotoxic effects of birch bark extract, betulin and betulinic acid towards human gastric carcinoma and pancreatic carcinoma drug-sensitive and drug-resistant cell lines. Molecules, 2009, 14(4), 1639-1651.
[http://dx.doi.org/10.3390/molecules14041639] [PMID: 19396022]
[30]
Mehrirad, N.; Payam Noor, V.; Nazari, J. Effect of trees age and light on Betula litwinowii callogenesis and betulin induced in vitro conditions. Iran. J. Rangelands Forests Plant Breed. Genet. Res., 2015, 23(1), 93-102.
[31]
Zarkovic, N.; Vukovic, T.; Loncaric, I.; Miletic, M.; Zarkovic, K.; Borovic, S.; Cipak, A.; Sabolovic, S.; Konitzer, M.; Mang, S. An overview on anticancer activities of the Viscum album extract Isorel. Cancer Biother. Radiopharm., 2001, 16(1), 55-62.
[http://dx.doi.org/10.1089/108497801750096041] [PMID: 11279798]
[32]
LaPensee, E.W.; Schwemberger, S.J.; LaPensee, C.R.; Bahassi, M.; Afton, S.E.; Ben-Jonathan, N. Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis, 2009, 30(8), 1298-1304.
[http://dx.doi.org/10.1093/carcin/bgp120] [PMID: 19443905]
[33]
Alitheen, N.; Rahman, M.; Yeap, S.K.; Shuhaimi, M.; Ali, A.; Nordin, L. Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources. Int. Food Res., 2010, 17(3), 711-719.
[34]
Fulda, S.; Debatin, K.M. Sensitization for anticancer drug-induced apoptosis by betulinic Acid. Neoplasia, 2005, 7(2), 162-170.
[http://dx.doi.org/10.1593/neo.04442] [PMID: 15802021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy