Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Application of Solid-state Electrochemical Analysis in Ancient Ceramic Identification and Characterization: A Review

Author(s): Guangfu Liu*, Xinghua Yang, Weiting Ye, Jiangwei Zhu, Kefeng Xie and Li Fu*

Volume 18, Issue 1, 2022

Published on: 06 August, 2020

Page: [116 - 124] Pages: 9

DOI: 10.2174/1573411016999200806155426

Price: $65

Abstract

Background:Ceramics can reflect ancient technology and art; therefore, it has a very important position in archaeology. However, it is far from enough just to study the shape of pottery and porcelain. It is necessary to use advanced scientific and technological means to conduct a comprehensive analysis of pottery and porcelain, so as to study the information hidden deep in the remains of ceramic objects.

Methods: The solid voltammetric method can be used to obtain information about the composition of materials used in ancient ceramics. This new method can be applied to insoluble solids, for example, providing qualitative and quantitative information and structural information with little soluble solids. The method requires only ng-μg sample.

Results:In this review, we first describe the development of a solid-state voltammetric method and our work in this field. Then, we describe in detail the application of this method in archaeology, especially in the analysis of ceramics. Finally, we describe the analytical applications of other electrochemical techniques for ceramics analysis.

Conclusion: Due to the low demand for samples and the high-cost performance of analytical instruments, this method has been widely studied in Europe. To sum up, we propose to establish a microsampling method for ancient ceramics; a new method for the protection of fine ancient ceramics by the suitable carrier and the fixation on the surface of the electrode. These improvements can enable solid-state electroanalytical chemistry technology to achieve a more comprehensive and accurate quantitative analysis of ancient ceramics particles. We also propose the current challenges and future directions of solid-state electroanalytical chemistry.

Keywords: Archaeological analysis, ceramic identification, cultural relics, review, sensor, solid-state electroanalytical chemistry

Graphical Abstract

[1]
Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics. Talanta, 2006, 68(5), 1692-1699.
[http://dx.doi.org/10.1016/j.talanta.2005.08.051] [PMID: 18970516]
[2]
Peacock, D.P.S. The scientific analysis of ancient ceramics: A review. World Archaeol., 1970, 1(3), 375-389.
[http://dx.doi.org/10.1080/00438243.1970.9979454]
[3]
Shoval, S. Using FT-IR Spectroscopy for study of calcareous ancient ceramics. Opt. Mater., 2003, 24(1-2), 117-122.
[http://dx.doi.org/10.1016/S0925-3467(03)00114-9]
[4]
Tite, M.S.; Kilikoglou, V.; Vekinis, G. Strength, toughness and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry, 2001, 43(3), 301-324.
[http://dx.doi.org/10.1111/1475-4754.00019]
[5]
Tsolakidou, A.; Kilikoglou, V. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence. Anal. Bioanal. Chem., 2002, 374(3), 566-572.
[http://dx.doi.org/10.1007/s00216-002-1444-2] [PMID: 12373411]
[6]
Bensimon, Y.; Deroide, B.; Clavel, S.; Zanchetta, J.V. Electron Spin Resonance and Dilatometric Studies of Ancient Ceramics Applied to the Determination of Firing Temperature. Jpn. J. Appl. Phys., 1998, 37(8), 4367-4372.
[http://dx.doi.org/10.1143/JJAP.37.4367]
[7]
Darque-Ceretti, E. Ha©Lary, D.; Bouquillon, A.; Aucouturier, M. Gold like Lustre: Nanometric Surface Treatment for Decoration of Glazed Ceramics in Ancient Islam, Moresque Spain and Renaissance Italy. Surf. Eng., 2005, 21(5-6), 352-358.
[http://dx.doi.org/10.1179/174329305X64312]
[8]
Jansen, R.J.; Koens, H.F.; Neeft, C.W.; Stoker, J. Scenes from the past: CT in the archaeologic study of ancient Greek ceramics. Radiographics, 2001, 21(2), 315-321.
[http://dx.doi.org/10.1148/radiographics.21.2.g01mr12315] [PMID: 11259694]
[9]
Mirguet, C.; Roucau, C.; Sciau, P. Transmission electron microscopy a powerful means to investigate the glazed coating of ancient ceramics. J. Nano Res., 2009, 8(8), 141-146.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.8.141]
[10]
Wu, J.; Liu, Y.C.; Xiong, L.; Tang, M.; Zhang, M.L.; Wu, J.M.; Li, Q.J.; Huang, M.X.; Li, J.Z. Identification of ancient ceramics by digital shape characterization. Sci. China Technol. Sci., 2012, 55(9), 2441-2446.
[http://dx.doi.org/10.1007/s11431-012-4851-4]
[11]
Byszewski, L.; Tabor, A. ToF‐SIMS investigation of ancient ceramics from the quartaia site, tuscany (Italy). Surf. Interface Anal., 2011, 43(8), 1108-1119.
[http://dx.doi.org/10.1002/sia.3286]
[12]
Lofrumento, C.; Zoppi, A.; Castellucci, E.M. Micro‐raman spectroscopy of ancient ceramics: A study of french sigillata wares. J. Raman Spectrosc., 2010, 35(8-9), 650-655.
[13]
Rathossi, C.; Tsoliskatagas, P.; Katagas, C. Thermal behaviour of “metamorphic vermiculite” in Ca-Rich ancient ceramic sherds and experimental ceramics. Mineral. Mag., 2010, 74(4), 747-771.
[http://dx.doi.org/10.1180/minmag.2010.074.4.747]
[14]
Cox, G.A.; Pollard, A.M. Computer programmes for the correction of matrix effects in the XRF analysis of glass, ceramics and related silicate systems. J. Archaeol. Sci., 1981, 8(2), 121-131.
[http://dx.doi.org/10.1016/0305-4403(81)90021-2]
[15]
Injuk, J.; Injuk, J. XRF analysis of ceramics, minerals and allied materials: H. bennett and G. oliver, wiley, chichester, 1992 (ISBN 0-471-93457-7). 298 PP. Price US$101.00. Anal. Chim. Acta, 1995, 300(1), 337-337.
[http://dx.doi.org/10.1016/0003-2670(95)90223-6]
[16]
Shortland, A.J.; Domoney, K.; Kuhn, S. F-19 Invitedu2014 Analysis of meissen ceramics from the hoffmeister collection by HH-XRF. Powder Diffr., 2010, 25(2), 216-216.
[http://dx.doi.org/10.1154/1.3455000]
[17]
Sitko, R.; Zawisza, B.; Jurczyk, J.; Bochenek, D.; Płoñska, M. Multielement XRF semimicroanalysis of Pb(Zr,Ti)O3 type ferroelectric ceramic materials doped with Pb(Nb,Mn)O3 and Bi2O3 by the thin layer method. Mikrochim. Acta, 2004, 144(1-3), 9-15.
[18]
Asadi-Eydivand, M.; Solati-Hashjin, M.; Farzadi, A.; Osman, N.A.A. Artificial Neural Network Approach to Estimate the Composition of chemically synthesized biphasic calcium phosphate powders. Ceram. Int., 2014, 40(8), 12439-12448.
[http://dx.doi.org/10.1016/j.ceramint.2014.04.095]
[19]
Farzadi, A.; Bakhshi, F.; Solati-Hashjin, M.; Asadi-Eydivand, M.; Osman, N.A.A. Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram. Int., 2014, 40(4), 6021-6029.
[http://dx.doi.org/10.1016/j.ceramint.2013.11.051]
[20]
García-Heras, M.; Fernández-Ruiz, R.; Tornero, J.D. Analysis of archaeological ceramics by TXRF and contrasted with NAA. J. Archaeol. Sci., 1997, 24(11), 1003-1014.
[http://dx.doi.org/10.1006/jasc.1996.0178]
[21]
Rad, A.T.; Solati-Hashjin, M.; Osman, N.A.A.; Faghihi, S. Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram. Int., 2014, 40(8), 12681-12691.
[http://dx.doi.org/10.1016/j.ceramint.2014.04.116]
[22]
Garbeschonberg, D.; Muller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom., 2014, 29(6), 990-1000.
[http://dx.doi.org/10.1039/C4JA00007B]
[23]
Hashimoto, B.; Daidoji, H.; Uchihara, H.; Iwasaki, K.; Okamoto, Y.; Fujiwara, T. Determination of trace chlorine in fine ceramics by ICP-AES using tungsten boat furnace vaporizer and exchangeable sample cuvette system as a direct solid sampler. Anal. Lett., 2013, 46(8), 1299-1305.
[http://dx.doi.org/10.1080/00032719.2012.757704]
[24]
Sakate, D.; Iwazaki, Y.; Kon, Y.; Yokoyama, T.; Ohata, M. Examination of the mass transfer of additive elements in barium titanate ceramics during sintering process by laser ablation ICP-MS. Anal. Sci., 2018, 34(6), 739-742.
[http://dx.doi.org/10.2116/analsci.18SBN04] [PMID: 29887565]
[25]
T. KL I.; Hirschfeld, D. A.; Brown, J. J. Alkali corrosion resistant coatings for Si3N4 ceramics. J. Mater. Sci., 1997, 32(16), 4455-4461.
[http://dx.doi.org/10.1023/A:1018652713489]
[26]
Wei, X.; Wan, X.; Yao, X. Dielectric relaxation in paraelectric phase of Ba(Ti,Sn)O3 ceramics. J. Electroceram., 2008, 21(1-4), 226-229.
[http://dx.doi.org/10.1007/s10832-007-9099-1]
[27]
Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Sillanpää, M. Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chem. Eng. J., 2015, 259(259), 364-371.
[http://dx.doi.org/10.1016/j.cej.2014.07.091]
[28]
Iqbal, M.J. ISMAIL; Bushra. Correlation between structural and electrical properties of Mg1-2xZnxNixAl2O4 (x = 0.0-0.5) ceramic nanomaterials synthesized by a urea assisted microwave combustion method. J. Alloys Compd., 2010, 504(2), 440-445.
[http://dx.doi.org/10.1016/j.jallcom.2010.05.142]
[29]
Shih, W.H.; Wan, Y.S.; Kim, S.I.; Aksay, I.A. Equilibrium-state density profiles of centrifuged cakes of flocculated suspensions. Mrs Proc., 1992, 289(2), 540-546.
[http://dx.doi.org/10.1557/PROC-289-251]
[30]
Tudisca, V.; Casieri, C.; Demma, F.; Diaz, M.; Piñol, L.; Terenzi, C.; Luca, F.D. Firing technique characterization of black-slipped pottery in praeneste by low field 2D NMR relaxometry. J. Archaeol. Sci., 2011, 38(2), 352-359.
[http://dx.doi.org/10.1016/j.jas.2010.09.013]
[31]
Ensafi, A.A.; Karimi‐Maleh, H. A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using P‐aminophenol as a mediator. Electroanalysis, 2010, 22(21), 2558-2568.
[http://dx.doi.org/10.1002/elan.201000270]
[32]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/Two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020.310113185
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[33]
Scholz, F.; Nitschke, L.; Henrion, G. A new procedure for fast electrochemical analysis of solid materials. Naturwissenschaften, 1989, 76(2), 71-72.
[http://dx.doi.org/10.1007/BF00396709]
[34]
Scholz, F.; Nitschke, L.; Henrion, G.; Damaschun, F. A technique to study the electrochemistry of minerals. Naturwissenschaften, 1989, 76(4), 167-168.
[http://dx.doi.org/10.1007/BF00366398]
[35]
Inzelt, G. Cyclic voltammetry of solid diphenylamine crystals immobilized on an electrode surface and in the presence of an aqueous solution. J. Solid State Electrochem., 2002, 6(4), 265-271.
[http://dx.doi.org/10.1007/s100080100223]
[36]
Komorsky-Lovrić; Šebojka; Mirčeski; Scholz, V.; Fritz. Voltammetry of organic microparticles. Mikrochim. Acta, 1999, 132(1), 67-77.
[37]
Scholz, F.; Meyer, B. Electrochemical solid state analysis: State of the art. Solid State Ion., 1994, 23(5), 29-41.
[38]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; An electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[39]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[http://dx.doi.org/10.1016/j.bios.2014.03.055] [PMID: 24755294]
[40]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[41]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A New epirubicin biosensor based on amplifying dna interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[42]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.082 ] [PMID: 24731323]
[43]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf. B Biointerfaces, 2013, 104, 186-193.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.011] [PMID: 23314609]
[44]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[http://dx.doi.org/10.1016/j.molliq.2014.03.049]
[45]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A Novel electrochemical epinine sensor using amplified CuO nanoparticles and a N-Hexyl-3-Methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[46]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A Novel Nanosensor Based on Pt:Co Nanoalloy Ionic Liquid Carbon Paste Electrode for Voltammetric Determination of Vitamin B9 in Food Samples. Lebensm. Wiss. Technol., 2014, 57(2), 679-685.
[http://dx.doi.org/10.1016/j.lwt.2014.01.023]
[47]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8(8), 1780-1788.
[http://dx.doi.org/10.1039/C5AY03284A]
[48]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153 ] [PMID: 25952889]
[49]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode. Food Anal. Methods, 2015, 8(3), 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[50]
Ensafi, A.A.; Dadkhah-Tehrani, S.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27(4), 409-409.
[http://dx.doi.org/10.2116/analsci.27.409] [PMID: 21478617]
[51]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[http://dx.doi.org/10.1016/j.msec.2016.12.094] [PMID: 28183634]
[52]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S-A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12(1), 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[53]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[54]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[55]
Shahmiri, M.R.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B Chem., 2013, 177, 70-77.
[http://dx.doi.org/10.1016/j.snb.2012.10.098]
[56]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[57]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.020 ] [PMID: 23993620]
[58]
Glazunov, A. Electrochemical Reproduction of Macrostructure. Chim. Ind., 1929, 1929, 425.
[59]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Amiri, A.; Gholami, F. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode. Chin. Chem. Lett., 2010, 21(12), 1467-1470.
[http://dx.doi.org/10.1016/j.cclet.2010.06.020]
[60]
Mirmomtaz, E.; Asghar Ensafi, A.; Karimi‐Maleh, H. Electrocatalytic determination of 6‐tioguanine at ap‐aminophenol modified carbon paste electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2008, 20(18), 1973-1979.
[http://dx.doi.org/10.1002/elan.200804273]
[61]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-Wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods, 2011, 3(11), 2637-2643.
[http://dx.doi.org/10.1039/c1ay05031a]
[62]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2019, 20, 652-692.
[http://dx.doi.org/10.1002/tcr.201900092]
[63]
Chatterjee, R.; Dey, A.K. Schematic qualitative analysis of cations by the ring oven technique. Microchem. J., 1967, 12(2), 151-156.
[http://dx.doi.org/10.1016/0026-265X(67)90035-5]
[64]
Dey, A.K.; Ghose, A.K.; Shukla, D.K. A Modified ring electrographic method for the non-destructive analysis of metallic artefacts. Mikrochim. Acta, 1981, 76(1-2), 175-181.
[http://dx.doi.org/10.1007/BF01197315]
[65]
Ghose, A.K.; Dey, A.K. A scheme of qualitative analysis for twenty common cations. Analyst (Lond.), 1970, 95(1132), 698-701.
[http://dx.doi.org/10.1039/an9709500698]
[66]
Stephen, W.I. The use of the weisz ring oven in eleetrographic analysis. Mikrochim. Acta, 1956, 44(10), 1531-1539.
[http://dx.doi.org/10.1007/BF01220685]
[67]
West, P.W.; Pitombo, L.R. Microdetermination of copper using dithiooxamide crayons and the ring-oven technique. Anal. Chim. Acta, 1967, 37(3), 374-378.
[http://dx.doi.org/10.1016/S0003-2670(01)80687-5] [PMID: 6044886]
[68]
Kuwana, T.; French, W. Electrooxidation or reduction of organic compounds into aqueous solutions using carbon paste electrode. Anal. Chem., 1964, 36(1), 241-242.
[http://dx.doi.org/10.1021/ac60207a006]
[69]
Bauer, D.; Gaillochet, M.P. Etude Du comportement de la pate de carbone a compose electroactif incorpore. Electrochim. Acta, 1974, 19(10), 597-606.
[http://dx.doi.org/10.1016/0013-4686(74)85016-4]
[70]
Lamache, M.; Bauer, D. Anodic oxidation of cuprous sulfide and the preparation of nonstoichiometric copper sulfide. Anal. Chem., 1979, 51(8), 1320-1322.
[http://dx.doi.org/10.1021/ac50044a045]
[71]
Schultz, F. A.; Kuwana, T. Electrochemical studies of organic compounds dissolved in carbon-paste electrodes. J. Electroanal. Chem. 1959 1965, 10(2), 95-103.
[72]
Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; Yu, J.; Lin, C.T. Electrochemical sex determination of dioecious plants using polydopamine-functionalized graphene sheets. Front Chem., 2020, 8, 92.
[http://dx.doi.org/10.3389/fchem.2020.00092] [PMID: 32211371]
[73]
Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y-L.; Zhou, C.; Wang, C.; Ruan, S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta, 2019, 1081, 51-58.
[http://dx.doi.org/10.1016/j.aca.2019.06.055] [PMID: 31446963]
[74]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Gimeno-Adelantado, J.V.; Bosch-Reig, F.; Saurí-Peris, M.C.; Sánchez-Ramos, S. Electrochemistry of iron oxide pigments (earths) from pictorial microsamples attached to graphite-polyester composite electrodes. Analyst , 2001, 10, 1164-1772.
[75]
Ying, J.; Zheng, Y.; Zhang, H.; Fu, L. Room temperature biosynthesis of gold nanoparticles with lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2020, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[76]
Doménech‐Carbó, A.; Doménech‐Carbó, M.; Gimeno‐Adelantado, J.; Moya‐Moreno, M.; Bosch‐Reig, F. Voltammetric identification of lead (ii) and (iv) in mediaeval glazes in abrasion‐modified carbon paste and polymer film electrodes. application to the study of alterations in archaeological ceramic. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2000, 12(2), 120-127.
[http://dx.doi.org/10.1002/(SICI)1521-4109(200002)12:2<120:AID-ELAN120>3.0.CO;2-E]
[77]
Kulesza, P.J.; Jedral, T.; Galus, Z. A New Development in polynuclear inorganic films: Silver (I)/“Crosslinked” Nickel (II)-Hexacyanoferrate (III, II). Microstruct. Electrochim. Acta, 1989, 34(6), 851-853.
[http://dx.doi.org/10.1016/0013-4686(89)87118-X]
[78]
Lange, B.; Scholz, F.; Weiss, A.; Schwedt, G.; Behnert, J.; Raezke, K-P. Abrasive stripping voltammetry. the electrochemical alternative for pigment analysis. Int. Lab., 1993, 23(6), 23-26.
[79]
Scholz, F.; Nitschke, L.; Henrion, G. Identification of solid materials with a new electrochemical technique-the abrasive stripping analysis. Fresenius Z. Anal. Chem., 1989, 334(1), 56-58.
[http://dx.doi.org/10.1007/BF00481974]
[80]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor Employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[81]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium-nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose Sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[82]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[83]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[84]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[85]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine dna based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[86]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic Effect of Pt-Co Nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-Acetylcysteine. Paracetamol and Folic Acid. Microchim. Acta, 2016, 183(11), 2957-2964.
[http://dx.doi.org/10.1007/s00604-016-1946-9]
[87]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[88]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[89]
Lovrić, M.; Scholz, F. A Model for the propagation of a redox reaction through microcrystals. J. Solid State Electrochem., 1997, 1(1), 108-113.
[http://dx.doi.org/10.1007/s100080050030]
[90]
Lovrić, M.; Scholz, F. A Model for the coupled transport of ions and electrons in redox conductive microcrystals. J. Solid State Electrochem., 1999, 3(3), 172-175.
[http://dx.doi.org/10.1007/s100080050144]
[91]
Oldham, K.B. Voltammetry at a three-phase junction. J. Solid State Electrochem., 1998, 2(6), 367-377.
[http://dx.doi.org/10.1007/s100080050113]
[92]
Bond, A.M.; Marken, F.; Hill, E.; Compton, R.G.; Hügel, H. The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J. Chem. Soc., Perkin Trans. 2, 1997, (9), 1735-1742.
[http://dx.doi.org/10.1039/a701003f]
[93]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Saurí-Peris, M.C. Electrochemical identification of flavonoid dyes in solid work of art samples by abrasive voltammetry at paraffin-impregnated graphite electrodes. Talanta, 2005, 66(3), 769-782.
[http://dx.doi.org/10.1016/j.talanta.2004.12.034] [PMID: 18970051]
[94]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Saurí-Peris, M.C.; Gimeno-Adelantado, J.V.; Bosch-Reig, F. Electrochemical identification of anthraquinone-based dyes in solid microsamples by square wave voltammetry using graphite/polyester composite electrodes. Anal. Bioanal. Chem., 2003, 375(8), 1169-1175.
[http://dx.doi.org/10.1007/s00216-002-1742-8] [PMID: 12733034]
[95]
Grygar, T.; Kučková, Š.; Hradil, D.; Hradilova, J. Electrochemical analysis of natural solid organic dyes and pigments. J. Solid State Electrochem., 2003, 7(10), 706-713.
[http://dx.doi.org/10.1007/s10008-003-0380-1]
[96]
Komorsky-Lovrić, Š. Voltammetry of azobenzene microcrystals. J. Solid State Electrochem., 1997, 1(1), 94-99.
[http://dx.doi.org/10.1007/s100080050028]
[97]
Komorsky-Lovrič, Š.; Mirčeski, V.; Scholz, F. Voltammetry of organic microparticles. Mikrochim. Acta, 1999, 132(1), 67-77.
[http://dx.doi.org/10.1007/PL00010075]
[98]
Scholz, F.; Schröder, U.; Meyer, S.; Brainina, K.Z.; Zakhachuk, N.F.; Sobolev, N.V.; Kozmenko, O.A. The Electrochemical response of radiation defects of non-conducting materials an electrochemical access to age determinations. J. Electroanal. Chem. (Lausanne Switz.), 1995, 385(1), 139-142.
[http://dx.doi.org/10.1016/0022-0728(94)03840-Y]
[99]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Moya-Moreno, M.; Gimeno-Adelantado, J.V.; Bosch-Reig, F. Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal. Chim. Acta, 2000, 407(1), 275-289.
[http://dx.doi.org/10.1016/S0003-2670(99)00781-3]
[100]
Doménech-Carbó, A.; Gimeno-Adelantado, J.V.; Bosch-Reig, F.; Sánchez-Ramos, S.; Doménech-Carbó, M.T.; Saurí-Peris, M.C. Electrochemistry of iron oxide pigments (earths) from pictorial microsamples attached to graphite-polyester composite electrodes. Analyst (Lond.), 2001, 126(10), 1764-1772.
[http://dx.doi.org/10.1039/b100257k]
[101]
Doménech-Carbó, A.; Doménech-Carbó, M.T. Electrochemical characterization of archaeological tin‐opacified lead‐alkali glazes and their corrosion processes. Electroanalysis, 2010, 17(21), 1959-1969.
[http://dx.doi.org/10.1002/elan.200503322]
[102]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Osete-Cortina, L.; Gimeno-Adelantado, J.V.; Sánchez-Ramos, S.; Bosch-Reig, F. Quantitation of metal ions in archaeological glass by abrasive stripping square-wave voltammetry using graphite/polyester composite electrodes. Electroanalysis, 2010, 15(18), 1465-1475.
[http://dx.doi.org/10.1002/elan.200302716]
[103]
Doménech-Carbó, A.; Sánchez-Ramosa, S.; Doménech-Carbó, M.T.; Gimeno-Adelantado, J.V.; Bosch-Reig, F.; Yusá-Marco, D.J.; Saurí-Peris, M.C. Electrochemical determination of the fe(iii)/fe(ii) ratio in archaeological ceramic materials using carbon paste and composite electrodes. Electroanalysis, 2015, 14(10), 685-696.
[http://dx.doi.org/10.1002/1521-4109(200205)14:10<685:AID-ELAN685>3.0.CO;2-4]
[104]
Capelo, S.; Homem, P.M.; Cavalheiro, J.; Fonseca, I.T.E. Linear sweep voltammetry: A cheap and powerful technique for the identification of the silver tarnish layer constituents. J. Solid State Electrochem., 2013, 17(1), 223-234.
[http://dx.doi.org/10.1007/s10008-012-1884-3]
[105]
Moretto, L.M.; Montagner, F.; Ganzerla, R.; Ugo, P. Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: The case of some artistic colouring agents. Anal. Bioanal. Chem., 2013, 405(11), 3603-3610.
[http://dx.doi.org/10.1007/s00216-013-6796-2] [PMID: 23440394]
[106]
Grassini, S.; Angelini, E.; Parvis, M.; Bouchar, M.; Dillmann, P.; Neff, D. An in Situ corrosion study of middle ages wrought iron bar chains in the amiens cathedral. Appl. Phys. Mater. Sci. Process., 2013, 113(4), 971-979.
[http://dx.doi.org/10.1007/s00339-013-7724-1]
[107]
Conejobarboza, G.; Sanabriachinchilla, J.; Ulloa, F.C.; Villalobos, M.M. Characterization of costa rican archaeological ceramics from the formative period: preliminary electrochemical studies. Sci. Technol. Archaeol. Res., 2016, 160210065958009
[108]
Di, T. F.; Montoya, N.; Piquero-Cilla, J.; De, V. C.; Coletti, F.; Favero, G. Doma©Nech-Carba3, A. Archaeometric analysis of roman bronze coins from the magna mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 2017, 955(Complete), 36-47.
[109]
Redondo-Marugán, J.; Piquero-Cilla, J.; Doménech-Carbó, M.T.; Ramírez-Barat, B.; Sekhaneh, W.A.; Capelo, S.; Doménech-Carbó, A. Characterizing archaeological bronze corrosion products intersecting electrochemical impedance measurements with voltammetry of immobilized particles. Electrochim. Acta, 2017, 246, 269.
[http://dx.doi.org/10.1016/j.electacta.2017.05.190]
[110]
Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem., 2019.298126836
[http://dx.doi.org/10.1016/j.snb.2019.126836]
[111]
Fu, L.; Zheng, Y.; Zhang, P.; Zhu, J.; Zhang, H.; Zhang, L.; Su, W. Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy. Electrochem. Commun., 2018, 92, 39-42.
[http://dx.doi.org/10.1016/j.elecom.2018.05.018]
[112]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Zhuang, W.; Zhang, H.; Wang, A.; Su, W.; Yu, J.; Lin, C-T. Enhanced electrochemical voltammetric fingerprints for plant taxonomic sensing. Biosens. Bioelectron., 2018, 120, 102-107.
[http://dx.doi.org/10.1016/j.bios.2018.08.052] [PMID: 30172233]
[113]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C.T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry,, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy