Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Copper-Induced Epigenetic Changes Shape the Clinical Phenotype in Wilson’s Disease

Author(s): Daniela Fanni*, Clara Gerosa, Valeria Marina Nurchi, Rosita Cappai, Marta Mureddu, Peter Van Eyken, Luca Saba, Mirko Manchia and Gavino Faa

Volume 28, Issue 14, 2021

Published on: 30 July, 2020

Page: [2707 - 2716] Pages: 10

DOI: 10.2174/0929867327666200730214757

Price: $65

Abstract

Wilson's disease is a congenital disorder of copper metabolism whose pathogenesis remains, at least in part, unknown. Subjects carrying the same genotype may show completely different phenotypes, differing for the age at illness onset or for the hepatic, neurologic or psychiatric clinical presentation. The inability to find a unequivocal correlation between the type of mutation in the ATPase copper transporting beta (ATP7B) gene and the phenotypic manifestation, has encouraged many authors to look for epigenetic factors interacting with the genetic changes. Here, the evidences regarding the ability of copper overload to change the global DNA methylation status are discussed.

Keywords: Copper, epigenetic, Wilson's disease, ATP7B, liver pathology, clinical phenotypes, Wilson’s disease.

[1]
Compston, A. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (From the National Hospital, and the Laboratory of the National Hospital, Queen Square, London). Brain, 2009, 132(Pt 8), 1997-2001.
[http://dx.doi.org/10.1093/brain/awp193] [PMID: 19634211]
[2]
Broussolle, E.; Trocello, J-M.; Woimant, F.; Lachaux, A.; Quinn, N. Samuel Alexander Kinnier Wilson. Wilson’s disease, Queen Square and neurology. Rev. Neurol. (Paris), 2013, 169(12), 927-935.
[http://dx.doi.org/10.1016/j.neurol.2013.04.006] [PMID: 24125461]
[3]
Kikuchi, R. [Samuel Alexander Kinnier Wilson]. Brain Nerve, 2014, 66(11), 1287-1292.
[http://dx.doi.org/10.11477/mf.1416200030] [PMID: 25407062]
[4]
Bramwell, B. Clinical Studies. X. Familial cirrhosis of the liver: four cases of acute fatal cirrhosis of the liver in the same family; suggested relationship to Wilson’s progressive degeneration of the lenticular nucleus. Edinburgh Med. J., 1916, 17(2), 90-99. PMC5273325
[5]
Wilson, S.A. Kayser-fleischer ring in cornea in two cases of Wilson’s disease (progressive lenticular degeneration). Proc. R. Soc. Med., 1934, 27(3), 297-298.
[http://dx.doi.org/10.1177/003591573402700341] [PMID: 19989647]
[6]
Walshe, J.M. The eye in Wilson disease. QJM, 2011, 104(5), 451-453.
[http://dx.doi.org/10.1093/qjmed/hcq065] [PMID: 20444834]
[7]
Gerosa, C.; Fanni, D.; Congiu, T.; Piras, M.; Cau, F.; Moi, M.; Faa, G. Liver pathology in Wilson’s disease: from copper overload to cirrhosis. J. Inorg. Biochem., 2019, 193, 106-111.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.01.008] [PMID: 30703747]
[8]
Glazebrook, A.J. Wilson’s disease. Edinburgh Med. J., 1945, 52(2), 83-87. PMC5286339
[9]
Scheinberg, I.H.; Gitlin, D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s disease). Science, 1952, 116(3018), 484-485.
[http://dx.doi.org/10.1126/science.116.3018.484] [PMID: 12994898]
[10]
Goldfischer, S. The localization of copper in the pericanalicular granules (lysosomes) of liver in Wilson’s disease (hepatolenticular degeneration). Am. J. Pathol., 1965, 46(6), 977-983.
[PMID: 14328025]
[11]
Shokeir, M.H.; Shreffler, D.C. Cytochrome oxidase deficiency in Wilson’s disease: a suggested ceruloplasmin function. Proc. Natl. Acad. Sci. USA, 1969, 62(3), 867-872.
[http://dx.doi.org/10.1073/pnas.62.3.867] [PMID: 4308098]
[12]
Roeser, H.P.; Lee, G.R.; Nacht, S.; Cartwright, G.E. The role of ceruloplasmin in iron metabolism. J. Clin. Invest., 1970, 49(12), 2408-2417.
[http://dx.doi.org/10.1172/JCI106460] [PMID: 5480864]
[13]
Frommer, D.J. Defective biliary excretion of copper in Wilson’s disease. Gut, 1974, 15(2), 125-129.
[http://dx.doi.org/10.1136/gut.15.2.125] [PMID: 4820637]
[14]
Bearn, A.G. A genetical analysis of thirty families with Wilson’s disease (hepatolenticular degeneration). Ann. Hum. Genet., 1960, 24, 33-43.
[http://dx.doi.org/10.1111/j.1469-1809.1959.tb01713.x] [PMID: 13797909]
[15]
Frydman, M.; Bonné-Tamir, B.; Farrer, L.A.; Conneally, P.M.; Magazanik, A.; Ashbel, S.; Goldwitch, Z. Assignment of the gene for Wilson’s disease to chromosome 13: linkage to the esterase D locus. Proc. Natl. Acad. Sci. USA, 1985, 82(6), 1819-1821.
[http://dx.doi.org/10.1073/pnas.82.6.1819] [PMID: 3856863]
[16]
Tanzi, R.E.; Petrukhin, K.; Chernov, I.; Pellequer, J.L.; Wasco, W.; Ross, B.; Romano, D.M.; Parano, E.; Pavone, L.; Brzustowicz, L.M. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet., 1993, 5(4), 344-350.
[http://dx.doi.org/10.1038/ng1293-344] [PMID: 8298641]
[17]
Bull, P.C.; Thomas, G.R.; Rommens, J.M.; Forbes, J.R.; Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet., 1993, 5(4), 327-337.
[http://dx.doi.org/10.1038/ng1293-327] [PMID: 8298639]
[18]
Yamaguchi, Y.; Heiny, M.E.; Gitlin, J.D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun., 1993, 197(1), 271-277.
[http://dx.doi.org/10.1006/bbrc.1993.2471] [PMID: 8250934]
[19]
Fanni, D.; Pilloni, L.; Orrù, S.; Coni, P.; Liguori, C.; Serra, S.; Lai, M.L.; Uccheddu, A.; Contu, L.; Van Eyken, P.; Faa, G. Expression of ATP7B in normal human liver. Eur. J. Histochem., 2005, 49(4), 371-378.
[http://dx.doi.org/10.4081/965] [PMID: 16377579]
[20]
Faa, G. [The role of the pathologist in the diagnosis and monitoring of Wilson’s disease]. Pathologica, 1996, 88(2), 102-110.
[PMID: 8927444]
[21]
Faa, G.; Nurchi, V.; Demelia, L.; Ambu, R.; Parodo, G.; Congiu, T.; Sciot, R.; Van Eyken, P.; Silvagni, R.; Crisponi, G. Uneven hepatic copper distribution in Wilson’s disease. J. Hepatol., 1995, 22(3), 303-308.
[http://dx.doi.org/10.1016/0168-8278(95)80283-5] [PMID: 7608481]
[22]
Faa, G.; Liguori, C.; Columbano, A.; Diaz, G. Uneven copper distribution in the human newborn liver. Hepatology, 1987, 7(5), 838-842.
[http://dx.doi.org/10.1002/hep.1840070508] [PMID: 2443435]
[23]
Faa, G.; Diaz, G.; Farci, G.; Lai, M.L.; Pilleri, G.; Liguori, C.; Costa, V. Variability of copper levels in biopsy tissue from a cirrhotic liver. J. Trace Elem. Electrolytes Health Dis., 1990, 4(1), 49-50.
[PMID: 2135958]
[24]
Johncilla, M.; Mitchell, K.A. Pathology of the liver in copper overload. Semin. Liver Dis., 2011, 31(3), 239-244.
[http://dx.doi.org/10.1055/s-0031-1286055] [PMID: 21901654]
[25]
Crisponi, G.; Nurchi, V.M.; Fanni, D.; Gerosa, C.; Nemolato, S.; Faa, G. Copper-related diseases: from chemistry to molecular pathology. Coord. Chem. Rev., 2010, 254, 876-889.
[http://dx.doi.org/10.1016/j.ccr.2009.12.018]
[26]
Faa, G.; Gerosa, C.; Castagnola, M. MEDNIK syndrome: a new entry in the spectrum of inborn errors of copper metabolism. J. Ped. Neonat. Individual. Med., 2020, 9e090202
[http://dx.doi.org/10.7363/090202]
[27]
Sternlieb, I. Wilson’s disease. Clin. Liver Dis., 2000, 4(1), 229-239.
[http://dx.doi.org/10.1016/S1089-3261(05)70105-7] [PMID: 11232186]
[28]
Cabras, T.; Sanna, M.; Manconi, B.; Fanni, D.; Demelia, L.; Sorbello, O.; Iavarone, F.; Castagnola, M.; Faa, G.; Messana, I. Proteomic investigation of whole saliva in Wilson’s disease. J. Proteomics, 2015, 128, 154-163.
[http://dx.doi.org/10.1016/j.jprot.2015.07.033] [PMID: 26254010]
[29]
Castagnola, M.; Scarano, E.; Passali, G.C.; Messana, I.; Cabras, T.; Iavarone, F.; Di Cintio, G.; Fiorita, A.; De Corso, E.; Paludetti, G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital., 2017, 37(2), 94-101.
[http://dx.doi.org/10.14639/0392-100X-1598] [PMID: 28516971]
[30]
Chen, S-Y.; Liu, S-T.; Lin, W-R.; Lin, C-K.; Huang, S-M. The mechanisms underlying the cytotoxic effects of copper via differentiated embryonic chondrocyte gene 1. Int. J. Mol. Sci., 2019, 20(20), 5225.
[http://dx.doi.org/10.3390/ijms20205225] [PMID: 31652494]
[31]
Horn, N.; Møller, L.B.; Nurchi, V.M.; Aaseth, J. Chelating principles in Menkes and Wilson diseases: choosing the right compounds in the right combinations at the right time. J. Inorg. Biochem., 2019, 190, 98-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.10.009] [PMID: 30384011]
[32]
Murillo, O.; Luqui, D.M.; Gazquez, C.; Martinez-Espartosa, D.; Navarro-Blasco, I.; Monreal, J.I.; Guembe, L.; Moreno-Cermeño, A.; Corrales, F.J.; Prieto, J.; Hernandez-Alcoceba, R.; Gonzalez-Aseguinolaza, G. Long-term metabolic correction of Wilson’s disease in a murine model by gene therapy. J. Hepatol., 2016, 64(2), 419-426.
[http://dx.doi.org/10.1016/j.jhep.2015.09.014] [PMID: 26409215]
[33]
Sini, M.; Sorbello, O.; Sanna, F.; Battolu, F.; Civolani, A.; Fanni, D.; Faa, G.; Demelia, L. Histologic evolution and long-term outcome of Wilson’s disease: results of a single-center experience. Eur. J. Gastroenterol. Hepatol., 2013, 25(1), 111-117.
[http://dx.doi.org/10.1097/MEG.0b013e328358f7da] [PMID: 23011036]
[34]
Fanni, D.; Fanos, V.; Gerosa, C.; Piras, M.; Dessi, A.; Atzei, A.; Van, E.P.; Gibo, Y.; Faa, G. Effects of iron and copper overload on the human liver: an ultrastructural study. Curr. Med. Chem., 2014, 21(33), 3768-3774.
[http://dx.doi.org/10.2174/0929867321666140601163244] [PMID: 24934354]
[35]
Sturtz, L.A.; Diekert, K.; Jensen, L.T.; Lill, R.; Culotta, V.C. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem., 2001, 276(41), 38084-38089.
[http://dx.doi.org/10.1074/jbc.M105296200] [PMID: 11500508]
[36]
Zischka, H.; Einer, C. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int. J. Biochem. Cell Biol., 2018, 102, 71-75.
[http://dx.doi.org/10.1016/j.biocel.2018.07.001] [PMID: 29997057]
[37]
Camarata, M.A.; Ala, A. The diagnostic approach to Wilson disease. Wilson Disease; Elsevier, 2019, pp. 97-104.
[http://dx.doi.org/10.1016/B978-0-12-811077-5.00008-6]
[38]
Pilloni, L.; Coni, P.; Mancosu, G.; Lecca, S.; Serra, S.; Demelia, L.; Pilleri, G.; Spigà, E.; Ambu, R.; Faa, G. [Late onset Wilson’s disease]. Pathologica, 2004, 96(3), 105-110.
[PMID: 15524050]
[39]
Chabik, G.; Litwin, T.; Członkowska, A. Concordance rates of Wilson’s disease phenotype among siblings. J. Inherit. Metab. Dis., 2014, 37(1), 131-135.
[http://dx.doi.org/10.1007/s10545-013-9625-z] [PMID: 23774950]
[40]
Pilloni, L.; Lecca, S.; Coni, P.; Demelia, L.; Pilleri, G.; Spiga, E.; Faa, G.; Ambu, R. Wilson’s disease with late onset. Dig. Liver Dis., 2000, 32(2), 180.
[http://dx.doi.org/10.1016/S1590-8658(00)80408-9] [PMID: 10975796]
[41]
Medici, V.; Weiss, K-H. Genetic and environmental modifiers of Wilson disease. Handb. Clin. Neurol., 2017, 142, 35-41.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00004-5] [PMID: 28433108]
[42]
Chang, I.J.; Hahn, S.H. Chapter 3 - The genetics of Wilsondisease. In: Handbook of Clinical Neurology; Elsevier, 2017, 142, 19-34.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00003-3]
[43]
Ferenci, P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum. Genet., 2006, 120(2), 151-159.
[http://dx.doi.org/10.1007/s00439-006-0202-5] [PMID: 16791614]
[44]
Gomes, A.; Dedoussis, G.V. Geographic distribution of ATP7B mutations in Wilson disease. Ann. Hum. Biol., 2016, 43(1), 1-8.
[http://dx.doi.org/10.3109/03014460.2015.1051492] [PMID: 26207595]
[45]
Faa, G.; Lisci, M.; Caria, M.P.; Ambu, R.; Sciot, R.; Nurchi, V.M.; Silvagni, R.; Diaz, A.; Crisponi, G. Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson’s disease. J. Trace Elem. Med. Biol., 2001, 15(2-3), 155-160.
[http://dx.doi.org/10.1016/S0946-672X(01)80060-2] [PMID: 11787982]
[46]
Loudianos, G.; Dessi, V.; Lovicu, M.; Angius, A.; Figus, A.; Lilliu, F.; De Virgiliis, S.; Nurchi, A.M.; Deplano, A.; Moi, P.; Pirastu, M.; Cao, A. Molecular characterization of wilson disease in the Sardinian population--evidence of a founder effect. Hum. Mutat., 1999, 14(4), 294-303.
[http://dx.doi.org/10.1002/(SICI)1098-1004(199910)14:4<294:AID-HUMU4>3.0.CO;2-9] [PMID: 10502776]
[47]
Sandahl, T.D.; Ott, P. Epidemiology of Wilson disease. Wilson Disease; Elsevier, 2019, pp. 85-94.
[http://dx.doi.org/10.1016/B978-0-12-811077-5.00007-4]
[48]
Zappu, A.; Magli, O.; Lepori, M.B.; Dessì, V.; Diana, S.; Incollu, S.; Kanavakis, E.; Nicolaidou, P.; Manolaki, N.; Fretzayas, A.; De Virgiliis, S.; Cao, A.; Loudianos, G. High incidence and allelic homogeneity of Wilson disease in 2 isolated populations: a prerequisite for efficient disease prevention programs. J. Pediatr. Gastroenterol. Nutr., 2008, 47(3), 334-338.
[http://dx.doi.org/10.1097/MPG.0b013e31817094f6] [PMID: 18728530]
[49]
Crisponi, G.; Nurchi, V.M.; Gerosa, C.; Fanni, D.; Nemolato, S.; Faa, G. Copper uptake and trafficking in the brain. Metal Ions in Neurological Systems; Linert, W.; Kozlowski, H., Eds.; Springer Vienna: Vienna, 2012, pp. 47-63.
[http://dx.doi.org/10.1007/978-3-7091-1001-0_5]
[50]
Merle, U.; Stremmel, W.; Gessner, R. Influence of homozygosity for methionine at codon 129 of the human prion gene on the onset of neurological and hepatic symptoms in Wilson disease. Arch. Neurol., 2006, 63(7), 982-985.
[http://dx.doi.org/10.1001/archneur.63.7.982] [PMID: 16831968]
[51]
Martinelli, D.; Travaglini, L.; Drouin, C.A.; Ceballos-Picot, I.; Rizza, T.; Bertini, E.; Carrozzo, R.; Petrini, S.; de Lonlay, P.; El Hachem, M.; Hubert, L.; Montpetit, A.; Torre, G.; Dionisi-Vici, C. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain, 2013, 136(Pt 3), 872-881.
[http://dx.doi.org/10.1093/brain/awt012] [PMID: 23423674]
[52]
Usta, J.; Wehbeh, A.; Rida, K.; El-Rifai, O.; Estiphan, T.A.; Majarian, T.; Barada, K. Phenotype-genotype correlation in Wilson disease in a large Lebanese family: association of c.2299insC with hepatic and of p. Ala1003Thr with neurologic phenotype. PLoS One, 2014, 9(11)e109727
[http://dx.doi.org/10.1371/journal.pone.0109727] [PMID: 25390358]
[53]
Cocoş, R.; Şendroiu, A.; Schipor, S.; Bohîlţea, L.C.; Şendroiu, I.; Raicu, F. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson’s disease: genetic and clinical homogeneity. PLoS One, 2014, 9(6)e98520
[http://dx.doi.org/10.1371/journal.pone.0098520] [PMID: 24897373]
[54]
Leggio, L.; Addolorato, G.; Loudianos, G.; Abenavoli, L.; Gasbarrini, G. Genotype-phenotype correlation of the Wilson disease ATP7B gene. Am. J. Med. Genet. A., 2006, 140(8), 933.
[http://dx.doi.org/10.1002/ajmg.a.31191] [PMID: 16532467]
[55]
Medici, V.; LaSalle, J.M. Genetics and epigenetic factors of Wilson disease. Ann. Transl. Med., 2019, 7(Suppl. 2), S58.
[http://dx.doi.org/10.21037/atm.2019.01.67] [PMID: 31179295]
[56]
Faa, G.; Fanni, D.; Pichiri, G.; Gerosa, C. Epigenetic mechanisms in gynecological cancer. Gynecological Cancers; Giordano, A; Macaluso, M., Ed.; Springer International Publishing: Cham, 2016, pp. 3-22.
[http://dx.doi.org/10.1007/978-3-319-32907-9_1]
[57]
Andersen, E.; Altıntaş, A.; Andersson-Hall, U.; Holmäng, A.; Barrès, R. Environmental factors influence the epigenetic signature of newborns from mothers with gestational diabetes. Epigenomics, 2019, 11(8), 861-873.
[http://dx.doi.org/10.2217/epi-2019-0055] [PMID: 30966798]
[58]
Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.; Török, N.J.; Jiang, J.X.; Havel, P.J.; Lönnerdal, B.; Kim, K.; Halsted, C.H. Wilson’s disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57(2), 555-565.
[http://dx.doi.org/10.1002/hep.26047] [PMID: 22945834]
[59]
Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel), 2017, 8(6), 148.
[http://dx.doi.org/10.3390/genes8060148] [PMID: 28545252]
[60]
Hotta, K.; Kitamoto, A.; Kitamoto, T.; Ogawa, Y.; Honda, Y.; Kessoku, T.; Yoneda, M.; Imajo, K.; Tomeno, W.; Saito, S.; Nakajima, A. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci. Rep., 2018, 8(1), 13567.
[http://dx.doi.org/10.1038/s41598-018-31886-5] [PMID: 30206277]
[61]
Mordaunt, C.E.; Kieffer, D.A.; Shibata, N.M.; Człon-kowska, A.; Litwin, T.; Weiss, K-H.; Zhu, Y.; Bowlus, C.L.; Sarkar, S.; Cooper, S.; Wan, Y.Y.; Ali, M.R.; LaSalle, J.M.; Medici, V. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin, 2019, 12(1), 10.
[http://dx.doi.org/10.1186/s13072-019-0255-z] [PMID: 30709419]
[62]
Riordan, S.M.; Williams, R. The Wilson’s disease gene and phenotypic diversity. J. Hepatol., 2001, 34(1), 165-171.
[http://dx.doi.org/10.1016/S0168-8278(00)00028-3] [PMID: 11211896]
[63]
Chédin, F. The DNMT3 family of mammalian de novo DNA methyltransferases. Prog. Mol. Biol. Transl. Sci., 2011, 101, 255-285.
[http://dx.doi.org/10.1016/B978-0-12-387685-0.00007-X] [PMID: 21507354]
[64]
Mazi, T.A.; Sarode, G.V.; Czlonkowska, A.; Litwin, T.; Kim, K.; Shibata, N.M.; Medici, V. Dysregulated choline, methionine, and aromatic amino acid metabolism in patients with Wilson disease: exploratory metabolomic profiling and implications for hepatic and neurologic phenotypes. Int. J. Mol. Sci., 2019, 20(23)E5937
[http://dx.doi.org/10.3390/ijms20235937] [PMID: 31779102]
[65]
Medici, V.; Kieffer, D.A.; Shibata, N.M.; Chima, H.; Kim, K.; Canovas, A.; Medrano, J.F.; Islas-Trejo, A.D.; Kharbanda, K.K.; Olson, K.; Su, R.J.; Islam, M.S.; Syed, R.; Keen, C.L.; Miller, A.Y.; Rutledge, J.C.; Halsted, C.H.; LaSalle, J.M. Wilson disease: epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model. Epigenetics, 2016, 11(11), 804-818.
[http://dx.doi.org/10.1080/15592294.2016.1231289] [PMID: 27611852]
[66]
Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 2013, 502(7472), 472-479.
[http://dx.doi.org/10.1038/nature12750] [PMID: 24153300]
[67]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[68]
Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[69]
Gupta, A.; Bhattacharjee, A.; Dmitriev, O.Y.; Nokhrin, S.; Braiterman, L.; Hubbard, A.L.; Lutsenko, S. Cellular copper levels determine the phenotype of the Arg875 variant of ATP7B/Wilson disease protein. Proc. Natl. Acad. Sci. USA, 2011, 108(13), 5390-5395.
[http://dx.doi.org/10.1073/pnas.1014959108] [PMID: 21406592]
[70]
Einer, C.; Leitzinger, C.; Lichtmannegger, J.; Eberhagen, C.; Rieder, T.; Borchard, S.; Wimmer, R.; Denk, G.; Popper, B.; Neff, F.; Polishchuk, E.V.; Polishchuk, R.S.; Hauck, S.M.; von Toerne, C.; Müller, J-C.; Karst, U.; Baral, B.S.; DiSpirito, A.A.; Kremer, A.E.; Semrau, J.; Weiss, K.H.; Hohenester, S.; Zischka, H. A High-calorie diet aggravates mitochondrial dysfunction and triggers severe liver damage in Wilson disease rats. Cell. Mol. Gastroenterol. Hepatol., 2019, 7(3), 571-596.
[http://dx.doi.org/10.1016/j.jcmgh.2018.12.005] [PMID: 30586623]
[71]
Kegley, K.M.; Sellers, M.A.; Ferber, M.J.; Johnson, M.W.; Joelson, D.W.; Shrestha, R. Fulminant Wilson’s disease requiring liver transplantation in one monozygotic twin despite identical genetic mutation. Am. J. Transplant., 2010, 10(5), 1325-1329.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03071.x] [PMID: 20346064]
[72]
Kieffer, D.A.; Medici, V. Wilson disease: At the crossroads between genetics and epigenetics-a review of the evidence. Liver Res, 2017, 1(2), 121-130.
[http://dx.doi.org/10.1016/j.livres.2017.08.003] [PMID: 29270329]
[73]
Crisponi, G.; Fanni, D.; Gerosa, C.; Nemolato, S.; Nurchi, V.M.; Crespo-Alonso, M.; Lachowicz, J.I.; Faa, G. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol. Concepts, 2013, 4(1), 77-87.
[http://dx.doi.org/10.1515/bmc-2012-0045] [PMID: 25436567]
[74]
Fanni, D.; Ambu, R.; Gerosa, C.; Nemolato, S.; Iacovidou, N.; Van Eyken, P.; Fanos, V.; Zaffanello, M.; Faa, G. Aluminum exposure and toxicity in neonates: a practical guide to halt aluminum overload in the prenatal and perinatal periods. World J. Pediatr., 2014, 10(2), 101-107.
[http://dx.doi.org/10.1007/s12519-014-0477-x] [PMID: 24801228]
[75]
Fanni, D.; Faa, G. Aluminum exposure and toxicity inneonates: sources, absorption, and retention. World J. Pediatr., 2015, 11(1), 90-91.
[http://dx.doi.org/10.1007/s12519-015-0007-5] [PMID: 25822704]
[76]
Nurchi, V.M.; Crisponi, G.; Lachowicz, J.I.; Medici, S.; Peana, M.; Zoroddu, M.A. Chemical features of in use and in progress chelators for iron overload. J. Trace Elem. Med. Biol., 2016, 38, 10-18.
[http://dx.doi.org/10.1016/j.jtemb.2016.05.010] [PMID: 27365273]
[77]
Crisponi, G.; Nurchi, V.M.; Silvagni, R.; Faa, G. Oral iron chelators for clinical use. Polyhedron, 1999, 18(25), 3219-3226.
[http://dx.doi.org/10.1016/S0277-5387(99)00277-6]
[78]
Walshe, J.M. The acute haemolytic syndrome in Wilson’s disease--a review of 22 patients. QJM, 2013, 106(11), 1003-1008.
[http://dx.doi.org/10.1093/qjmed/hct137] [PMID: 23842488]
[79]
Cairns, J.E.; Williams, H.P.; Walshe, J.M. “Sunflower cataract” in Wilson’s disease. BMJ, 1969, 3(5662), 95-96.
[http://dx.doi.org/10.1136/bmj.3.5662.95] [PMID: 5790274]
[80]
Michalak, E.M.; Burr, M.L.; Bannister, A.J.; Dawson, M.A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 573-589.
[http://dx.doi.org/10.1038/s41580-019-0143-1] [PMID: 31270442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy