Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Pentamethylquercetin Inhibits Hepatocellular Carcinoma Progression and Adipocytes-induced PD-L1 Expression via IFN-γ Signaling

Author(s): Zhi Li, Wen-Qi Gao, Peng Wang, Tian-Qi Wang, Wen-Chao Xu, Xin-Yu Zhu and Hui Liu*

Volume 20, Issue 11, 2020

Page: [868 - 874] Pages: 7

DOI: 10.2174/1568009620999200730184514

Price: $65

Abstract

Background: Obesity is a significant risk factor for the development of types of cancer. Programmed death 1 and its ligand programmed death-ligand 1 (PD-L1) play a crucial role in tumor immune escape. Although, the role of PD-L1 in obesity-associated hepatocellular carcinoma (HCC) remains unknown. We previously showed that the natural flavonoid pentamethylquercetin (PMQ) possesses anti-obesity properties.

Objective: This study was designed to investigate the effects of PMQ on the development of HCC in obese mice and whether PMQ regulates PD-L1 and expression in HCC.

Methods: Monosodium glutamate-induced obese mice were inoculated with H22 tumor cells. Tumor volumes and weights were measured. In vitro, 3T3-L1 preadipocytes were differentiated and lipid accumulation was measured by oil-red staining, and IFN-γ level was detected by Elisa. Hepatoma HepG2 cells were treated with conditional media from 3T3-L1 adipocytes (adi-CM). Western blotting was applied to detect PD-L1 protein levels in tumor tissue and HepG2 cells.

Results: Compared with control mice, H22 tumors grew faster and exhibited higher PD-L1 protein levels in obese mice. PMQ inhibited H22 tumor growth and reduced PD-L1 expression in tumor tissues. PD-L1 protein level was elevated in adi-CM-treated HepG2 cells. IFN-γ was detectable in adi-CM and exogenous IFN-γ induced PD-L1 expression in HepG2 cells. PMQ affected the differentiation of 3T3-L1 preadipocytes, decreased the level of IFN-γ secreted by adipocytes and downregulated adi-CM-induced PD-L1 expression in HepG2 cells.

Conclusion: PMQ could inhibit HCC progression in obese mice at least in part through down-regulating adipocytes-induced PD-L1 expression via IFN-γ signaling.

Keywords: Pentamethylquercetin, adipocytes, H22, HepG2, PD-L1, IFN-γ.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet, 2014, 384(9945), 755-765.
[http://dx.doi.org/10.1016/S0140-6736(14)60892-8] [PMID: 25129328]
[3]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[4]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[5]
Postow, M.A.; Callahan, M.K.; Wolchok, J.D.; Immune Checkpoint Blockade, D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol., 2015, 33(17), 1974-1982.
[http://dx.doi.org/10.1200/JCO.2014.59.4358] [PMID: 25605845]
[6]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[http://dx.doi.org/10.1016/j.ccell.2015.03.001] [PMID: 25858804]
[7]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[8]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[9]
Powles, T.; Eder, J.P.; Fine, G.D.; Braiteh, F.S.; Loriot, Y.; Cruz, C.; Bellmunt, J.; Burris, H.A.; Petrylak, D.P.; Teng, S.L.; Shen, X.; Boyd, Z.; Hegde, P.S.; Chen, D.S.; Vogelzang, N.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 2014, 515(7528), 558-562.
[http://dx.doi.org/10.1038/nature13904] [PMID: 25428503]
[10]
Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol., 2015, 26(12), 2375-2391.
[http://dx.doi.org/10.1093/annonc/mdv383] [PMID: 26371282]
[11]
Zhang, X.; Ran, Y.; Wang, K.; Zhu, Y.; Li, J. Incidence and risk of hepatic toxicities with PD-1 inhibitors in cancer patients: a meta-analysis. Drug Des. Devel. Ther., 2016, 10, 3153-3161.
[http://dx.doi.org/10.2147/DDDT.S115493] [PMID: 27729774]
[12]
Hibasami, H.; Mitani, A.; Katsuzaki, H.; Imai, K.; Yoshioka, K.; Komiya, T. Isolation of five types of flavonol from seabuckthorn (Hippophae rhamnoides) and induction of apoptosis by some of the flavonols in human promyelotic leukemia HL-60 cells. Int. J. Mol. Med., 2005, 15(5), 805-809.
[http://dx.doi.org/10.3892/ijmm.15.5.805] [PMID: 15806302]
[13]
Patanasethanont, D.; Nagai, J.; Yumoto, R.; Murakami, T.; Sutthanut, K.; Sripanidkulchai, B.O.; Yenjai, C.; Takano, M. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. J. Pharm. Sci., 2007, 96(1), 223-233.
[http://dx.doi.org/10.1002/jps.20769] [PMID: 17031860]
[14]
Shen, J.Z.; Ma, L.N.; Han, Y.; Liu, J.X.; Yang, W.Q.; Chen, L.; Liu, Y.; Hu, Y.; Jin, M.W. Pentamethylquercetin generates beneficial effects in monosodium glutamate-induced obese mice and C2C12 myotubes by activating AMP-activated protein kinase. Diabetologia, 2012, 55(6), 1836-1846.
[http://dx.doi.org/10.1007/s00125-012-2519-z] [PMID: 22415589]
[15]
Park, J.; Euhus, D.M.; Scherer, P.E. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr. Rev., 2011, 32(4), 550-570.
[http://dx.doi.org/10.1210/er.2010-0030] [PMID: 21642230]
[16]
Cleary, M.P. Impact of obesity on development and progression of mammary tumors in preclinical models of breast cancer. J. Mammary Gland Biol. Neoplasia, 2013, 18(3-4), 333-343.
[http://dx.doi.org/10.1007/s10911-013-9300-x] [PMID: 24122258]
[17]
Doerner, S.K.; Reis, E.S.; Leung, E.S.; Ko, J.S.; Heaney, J.D.; Berger, N.A.; Lambris, J.D.; Nadeau, J.H. High-fat diet-induced complement activation mediates intestinal inflammation and neoplasia, independent of obesity. Mol. Cancer Res., 2016, 14(10), 953-965.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0153] [PMID: 27535705]
[18]
Dawson, D.W.; Hertzer, K.; Moro, A.; Donald, G.; Chang, H.H.; Go, V.L.; Pandol, S.J.; Lugea, A.; Gukovskaya, A.S.; Li, G.; Hines, O.J.; Rozengurt, E.; Eibl, G. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev. Res. (Phila.), 2013, 6(10), 1064-1073.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0065] [PMID: 23943783]
[19]
Khasawneh, J.; Schulz, M.D.; Walch, A.; Rozman, J.; Hrabe de Angelis, M.; Klingenspor, M.; Buck, A.; Schwaiger, M.; Saur, D.; Schmid, R.M.; Klöppel, G.; Sipos, B.; Greten, F.R.; Arkan, M.C. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3354-3359.
[http://dx.doi.org/10.1073/pnas.0802864106] [PMID: 19208810]
[20]
Nakagawa, H. Recent advances in mouse models of obesity- and nonalcoholic steatohepatitis-associated hepatocarcinogenesis. World J. Hepatol., 2015, 7(17), 2110-2118.
[http://dx.doi.org/10.4254/wjh.v7.i17.2110] [PMID: 26301053]
[21]
Kim, T.M.; Laird, P.W.; Park, P.J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell, 2013, 155(4), 858-868.
[http://dx.doi.org/10.1016/j.cell.2013.10.015] [PMID: 24209623]
[22]
Lwin, S.T.; Olechnowicz, S.W.; Fowler, J.A.; Edwards, C.M. Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia, 2015, 29(2), 507-510.
[http://dx.doi.org/10.1038/leu.2014.295] [PMID: 25287992]
[23]
Liu, Y.; Metzinger, M.N.; Lewellen, K.A.; Cripps, S.N.; Carey, K.D.; Harper, E.I.; Shi, Z.; Tarwater, L.; Grisoli, A.; Lee, E.; Slusarz, A.; Yang, J.; Loughran, E.A.; Conley, K.; Johnson, J.J.; Klymenko, Y.; Bruney, L.; Liang, Z.; Dovichi, N.J.; Cheatham, B.; Leevy, W.M.; Stack, M.S. Obesity contributes to ovarian cancer metastatic success through increased lipogenesis, enhanced vascularity, and decreased infiltration of m1 macrophages. Cancer Res., 2015, 75(23), 5046-5057.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0706] [PMID: 26573796]
[24]
Hill-Baskin, A.E.; Markiewski, M.M.; Buchner, D.A.; Shao, H.; DeSantis, D.; Hsiao, G.; Subramaniam, S.; Berger, N.A.; Croniger, C.; Lambris, J.D.; Nadeau, J.H. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum. Mol. Genet., 2009, 18(16), 2975-2988.
[http://dx.doi.org/10.1093/hmg/ddp236] [PMID: 19454484]
[25]
Wieser, V.; Moschen, A.R.; Tilg, H. Adipocytokines and hepatocellular carcinoma. Dig. Dis., 2012, 30(5), 508-513.
[http://dx.doi.org/10.1159/000341702] [PMID: 23108307]
[26]
Sun, Y.; Zhu, S.; Wu, Z.; Huang, Y.; Liu, C.; Tang, S.; Wei, L. Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma. Oncotarget, 2017, 8(14), 23427-23435.
[http://dx.doi.org/10.18632/oncotarget.15080] [PMID: 28178643]
[27]
Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol., 2014, 14(10), 667-685.
[http://dx.doi.org/10.1038/nri3738] [PMID: 25234148]
[28]
McNelis, J.C.; Olefsky, J.M. Macrophages, immunity, and metabolic disease. Immunity, 2014, 41(1), 36-48.
[http://dx.doi.org/10.1016/j.immuni.2014.05.010] [PMID: 25035952]
[29]
Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci., 2015, 36(7), 461-470.
[http://dx.doi.org/10.1016/j.tips.2015.04.014] [PMID: 26022934]
[30]
Rocha, V.Z.; Folco, E.J.; Sukhova, G.; Shimizu, K.; Gotsman, I.; Vernon, A.H.; Libby, P. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res., 2008, 103(5), 467-476.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.177105] [PMID: 18658050]
[31]
Priyanka, A.; Anusree, S.S.; Nisha, V.M.; Raghu, K.G. Curcumin improves hypoxia induced dysfunctions in 3T3-L1 adipocytes by protecting mitochondria and down regulating inflammation. Biofactors, 2014, 40(5), 513-523.
[http://dx.doi.org/10.1002/biof.1175] [PMID: 25110893]
[32]
Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; Parisi, G.; Saus, C.P.; Torrejon, D.Y.; Graeber, T.G.; Comin-Anduix, B.; Hu-Lieskovan, S.; Damoiseaux, R.; Lo, R.S.; Ribas, A. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep., 2017, 19(6), 1189-1201.
[http://dx.doi.org/10.1016/j.celrep.2017.04.031] [PMID: 28494868]
[33]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[34]
Abiko, K.; Matsumura, N.; Hamanishi, J.; Horikawa, N.; Murakami, R.; Yamaguchi, K.; Yoshioka, Y.; Baba, T.; Konishi, I.; Mandai, M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer, 2015, 112(9), 1501-1509.
[http://dx.doi.org/10.1038/bjc.2015.101] [PMID: 25867264]
[35]
He, T.; Chen, L.; Chen, Y.; Han, Y.; Yang, W.Q.; Jin, M.W. in vivo and in vitro protective effects of pentamethylquercetin on cardiac hypertrophy. Cardiovasc. Drugs Ther., 2012, 26(2), 109-120.
[http://dx.doi.org/10.1007/s10557-011-6363-z] [PMID: 22183794]
[36]
Ikegawa, T.; Ohtani, H.; Koyabu, N.; Juichi, M.; Iwase, Y.; Ito, C.; Furukawa, H.; Naito, M.; Tsuruo, T.; Sawada, Y. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett., 2002, 177(1), 89-93.
[http://dx.doi.org/10.1016/S0304-3835(01)00761-3] [PMID: 11809535]
[37]
Han, Y.; Wu, J.Z.; Shen, J.Z.; Chen, L.; He, T.; Jin, M.W.; Liu, H. Pentamethylquercetin induces adipose browning and exerts beneficial effects in 3T3-L1 adipocytes and high-fat diet-fed mice. Sci. Rep., 2017, 7(1), 1123.
[http://dx.doi.org/10.1038/s41598-017-01206-4] [PMID: 28442748]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy