Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Insight in Pathophysiological Mechanism of Alzheimer’s Disease and its Management Using Plant Natural Products

Author(s): Zeba Firdaus and Tryambak Deo Singh*

Volume 21, Issue 1, 2021

Published on: 30 July, 2020

Page: [35 - 57] Pages: 23

DOI: 10.2174/1389557520666200730155928

Price: $65

Abstract

Alzheimer’s disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.

Keywords: Alzheimer's disease (AD), Amyloid-β (Aβ), Neurofibrillary tangles (NFTs), Neuroinflammation, Medicinal Plants, Terpenes.

Graphical Abstract

[1]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188.
[http://dx.doi.org/10.5114/fn.2013.37702] [PMID: 24114635]
[2]
Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Alzheimer’s Disease International. Global prevalence of dementia: A Delphi consensus study. Lancet, 2005, 366(9503), 2112-2117.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0 ] [PMID: 16360788]
[3]
Brun, A.; Englund, E. Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading. Histopathology, 1981, 5(5), 549-564.
[http://dx.doi.org/10.1111/j.1365-2559.1981.tb01818.x ] [PMID: 7286917]
[4]
Fox, N.C.; Crum, W.R.; Scahill, R.I.; Stevens, J.M.; Janssen, J.C.; Rossor, M.N. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 2001, 358(9277), 201-205.
[http://dx.doi.org/10.1016/S0140-6736(01)05408-3 PMID: 11476837]
[5]
Kehoe, P.G. The coming of age of the angiotensin hypothesis in Alzheimer’s disease: Progress toward disease prevention and treatment? J. Alzheimers Dis., 2018, 62(3), 1443-1466.
[http://dx.doi.org/10.3233/JAD-171119] [PMID: 29562545]
[6]
Schneider, J.A.; Arvanitakis, Z.; Leurgans, S.E.; Bennett, D.A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol., 2009, 66(2), 200-208.
[http://dx.doi.org/10.1002/ana.21706] [PMID: 19743450]
[7]
Querfurth, H.W.; Laferla, F.M. Alzheimer’s disease reply. N. Engl. J. Med., 2010, 362(19), 1844-1845.
[http://dx.doi.org/10.1056/NEJMc1002323]
[8]
Shen, J.; Kelleher, R.J., III The presenilin hypothesis of Alzheimer’s disease: Evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA, 2007, 104(2), 403-409.
[http://dx.doi.org/10.1073/pnas.0608332104] [PMID: 17197420]
[9]
Piaceri, I.; Nacmias, B.; Sorbi, S. Genetics of familial and sporadic Alzheimer’s disease. Front. Biosci. (Elite Ed.), 2013, 5, 167-177.
[http://dx.doi.org/10.2741/E605] [PMID: 23276979]
[10]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222.
[http://dx.doi.org/10.1016/j.cell.2012.02.040] [PMID: 22424230]
[11]
Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C-C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol., 2019, 15(9), 501-518.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[12]
Liu, C-C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[13]
Jones, L.; Holmans, P.A.; Hamshere, M.L.; Harold, D.; Moskvina, V.; Ivanov, D.; Pocklington, A.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Pahwa, J.S.; Jones, N.; Stretton, A.; Morgan, A.R.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Morgan, K.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Love, S.; Kehoe, P.G.; Mead, S.; Fox, N.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Schürmann, B.; Heun, R.; Kölsch, H.; van den Bussche, H.; Heuser, I.; Peters, O.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Hüll, M.; Rujescu, D.; Goate, A.M.; Kauwe, J.S.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K.H.; Klopp, N.; Wichmann, H.E.; Rüther, E.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Hardy, J.; O’Donovan, M.C.; Owen, M.J.; Williams, J. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 2010, 5(11)e13950
[http://dx.doi.org/10.1371/journal.pone.0013950] [PMID: 21085570]
[14]
Reiss, A.B.; Voloshyna, I. Regulation of cerebral cholesterol metabolism in Alzheimer disease. J. Investig. Med., 2012, 60(3), 576-582.
[http://dx.doi.org/10.2310/JIM.0b013e318246d973 ] [PMID: 22367100]
[15]
Mills, J.; Reiner, P.B. Regulation of amyloid precursor protein cleavage. J. Neurochem., 1999, 72(2), 443-460.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720443.x ] [PMID: 9930716]
[16]
Murphy, R.M. Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim. Biophys. Acta, 2007, 1768(8), 1923-1934.
[http://dx.doi.org/10.1016/j.bbamem.2006.12.014] [PMID: 17292851]
[17]
Fezoui, Y.; Teplow, D.B. Kinetic studies of amyloid β-protein fibril assembly. Differential effects of α-helix stabilization. J. Biol. Chem., 2002, 277(40), 36948-36954.
[http://dx.doi.org/10.1074/jbc.M204168200] [PMID: 12149256]
[18]
Carrillo-Mora, P.; Luna, R.; Colín-Barenque, L. Amyloid beta: Multiple mechanisms of toxicity and only some protective effects? Oxid. Med. Cell. Longev. 2014, 2014.
[http://dx.doi.org/10.1155/2014/795375]
[19]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300(5618), 486-489.
[http://dx.doi.org/10.1126/science.1079469] [PMID: 12702875]
[20]
Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron, 2009, 63(3), 287-303.
[http://dx.doi.org/10.1016/j.neuron.2009.06.026] [PMID: 19679070]
[21]
Small, D.H.; McLean, C.A. Alzheimer’s disease and the amyloid β protein: What is the role of amyloid? J. Neurochem., 1999, 73(2), 443-449.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730443.x ] [PMID: 10428038]
[22]
Seabrook, G.R.; Rosahl, T.W. Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology, 1999, 38(1), 1-17.
[http://dx.doi.org/10.1016/S0028-3908(98)00170-1 PMID: 10193895]
[23]
Robakis, N.K.; Georgakopoulos, A. Allelic interference: A mechanism for trans-dominant transmission of loss of function in the neurodegeneration of familial Alzheimer’s disease. Neurodegener. Dis., 2014, 13(2-3), 126-130.
[http://dx.doi.org/10.1159/000354241] [PMID: 24081144]
[24]
Xu, T-H.; Yan, Y.; Kang, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discov., 2016, 2, 16026.
[http://dx.doi.org/10.1038/celldisc.2016.26] [PMID: 27625790]
[25]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in alzheimer’s disease. Front. Neurosci., 2018, 12, 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[26]
Marei, H.E.; Althani, A.; Suhonen, J.; El, M.E.; Caceci, T. Recent perspective about the amyloid cascade hypothesis and stem cell-based therapy in the treatment of alzheimer’s disease. Front. Clin. Drug Res.- Alzheimer Disorders. Bentham Sci. (UAE), 2016, 5, 3-33.
[27]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[28]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[29]
BntoN, J. The role of neurofibrillary tangles in Alzheimer disease. Acta Neurol. Belg., 1998, 98, 165-174.
[30]
Di, J.; Cohen, L.S.; Corbo, C.P.; Phillips, G.R.; El Idrissi, A.; Alonso, A.D. Abnormal tau induces cognitive impairment through two different mechanisms: Synaptic dysfunction and neuronal loss. Sci. Rep., 2016, 6, 20833.
[http://dx.doi.org/10.1038/srep20833] [PMID: 26888634]
[31]
de Paula, V.J.R.; Guimarães, F.M.; Diniz, B.S.; Forlenza, O.V. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement. Neuropsychol., 2009, 3(3), 188-194.
[http://dx.doi.org/10.1590/S1980-57642009DN30300003 ] [PMID: 29213627]
[32]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers. Dement (N Y).,2018;(b) Medina, M., An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci., 2018, 19(4), 1160.
[33]
Medina, M. An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci., 2018, 19(4), 1160.
[http://dx.doi.org/10.3390/ijms19041160] [PMID: 29641484]
[34]
Sims, N.R.; Bowen, D.M.; Davison, A.N. [14C]acetylcholine synthesis and [14C]carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem. J., 1981, 196(3), 867-876.
[http://dx.doi.org/10.1042/bj1960867] [PMID: 6797411]
[35]
Greenwald, B.S.; Davis, K.L. Experimental pharmacology of Alzheimer disease. Adv. Neurol., 1983, 38, 87-102.
[PMID: 6137135]
[36]
Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular pathogenesis of alzheimer’s Disease: An update. Ann. Neurosci., 2017, 24(1), 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[37]
Rogawski, M.A.; Wenk, G.L. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev., 2003, 9(3), 275-308.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00254.x ] [PMID: 14530799]
[38]
Wenk, G.L.; Parsons, C.G.; Danysz, W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: Focus on memantine. Behav. Pharmacol., 2006, 17(5-6), 411-424.
[http://dx.doi.org/10.1097/00008877-200609000-00007 ] [PMID: 16940762]
[39]
Collingridge, G.L.; Singer, W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci., 1990, 11(7), 290-296.
[http://dx.doi.org/10.1016/0165-6147(90)90011-V] [PMID: 2167544]
[40]
Simpson, M.D.; Royston, M.C.; Deakin, J.F.; Cross, A.J.; Mann, D.M.; Slater, P. Regional changes in [3H] D-aspartate and [3H] TCP binding sites in Alzheimer’s disease brains. Brain Res., 1988, 462(1), 76-82.
[http://dx.doi.org/10.1016/0006-8993(88)90587-2] [PMID: 2846124]
[41]
Bush, A.I. The metal theory of Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(s1)(Suppl. 1), S277-S281.
[http://dx.doi.org/10.3233/JAD-2012-129011] [PMID: 22635102]
[42]
Bush, A.I.; Pettingell, W.H.; Multhaup, G. d Paradis, M.; Vonsattel, J.P.; Gusella, J.F.; Beyreuther, K.; Masters, C.L.; Tanzi, R.E. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467.
[http://dx.doi.org/10.1126/science.8073293] [PMID: 8073293]
[43]
Dong, J.; Atwood, C.S.; Anderson, V.E.; Siedlak, S.L.; Smith, M.A.; Perry, G.; Carey, P.R. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry, 2003, 42(10), 2768-2773.
[http://dx.doi.org/10.1021/bi0272151] [PMID: 12627941]
[44]
Tabner, B.J.; Turnbull, S.; El-Agnaf, O.M.; Allsop, D. Formation of hydrogen peroxide and hydroxyl radicals from A(β) and α-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic. Biol. Med., 2002, 32(11), 1076-1083.
[http://dx.doi.org/10.1016/S0891-5849(02)00801-8 ] [PMID: 12031892]
[45]
Ali, F. E.; Separovic, F.; Barrow, C. J.; Cherny, R. A.; Fraser, F.; Bush, A. I.; Masters, C. L.; Barnham, K. J. Methionine regulates copper/hydrogen peroxide oxidation products of Aβ. J. Pept. Sci. an official publication of the European Peptide Society., 2005, 11(6), 353-360.
[46]
Barnham, K.J.; Haeffner, F.; Ciccotosto, G.D.; Curtain, C.C.; Tew, D.; Mavros, C.; Beyreuther, K.; Carrington, D.; Masters, C.L.; Cherny, R.A. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J., 2004, 18(12), 1427-1429.
[http://dx.doi.org/10.1096/fj.04-1890fje]
[47]
Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G. Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13313-13318.
[http://dx.doi.org/10.1073/pnas.0702669104] [PMID: 17686982]
[48]
Zatta, P.; Zambenedetti, P.; Milanese, M. Activation of monoamine oxidase type-B by aluminum in rat brain homogenate. Neuroreport, 1999, 10(17), 3645-3648.
[http://dx.doi.org/10.1097/00001756-199911260-00033 ] [PMID: 10619659]
[49]
Popescu, B.F.; Nichol, H. Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci. Ther., 2011, 17(4), 256-268.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00149.x ] [PMID: 20553312]
[50]
Akatsu, H.; Hori, A.; Yamamoto, T.; Yoshida, M.; Mimuro, M.; Hashizume, Y.; Tooyama, I.; Yezdimer, E.M. Transition metal abnormalities in progressive dementias. Biometals, 2012, 25(2), 337-350.
[http://dx.doi.org/10.1007/s10534-011-9504-8] [PMID: 22080191]
[51]
Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int., 2013, 62(5), 575-594.
[http://dx.doi.org/10.1016/j.neuint.2012.12.006] [PMID: 23266600]
[52]
Bishop, G.M.; Dang, T.N.; Dringen, R.; Robinson, S.R. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox. Res., 2011, 19(3), 443-451.
[http://dx.doi.org/10.1007/s12640-010-9195-x] [PMID: 20431983]
[53]
Graham, S.F.; Nasaruddin, M.B.; Carey, M.; Holscher, C.; McGuinness, B.; Kehoe, P.G.; Love, S.; Passmore, P.; Elliott, C.T.; Meharg, A.A.; Green, B.D. Age-associated changes of brain copper, iron, and zinc in Alzheimer’s disease and dementia with Lewy bodies. J. Alzheimers Dis., 2014, 42(4), 1407-1413.
[http://dx.doi.org/10.3233/JAD-140684] [PMID: 25024342]
[54]
Maynard, C.J.; Cappai, R.; Volitakis, I.; Cherny, R.A.; White, A.R.; Beyreuther, K.; Masters, C.L.; Bush, A.I.; Li, Q-X. Overexpression of Alzheimer’s disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem., 2002, 277(47), 44670-44676.
[http://dx.doi.org/10.1074/jbc.M204379200] [PMID: 12215434]
[55]
White, A.R.; Reyes, R.; Mercer, J.F.; Camakaris, J.; Zheng, H.; Bush, A.I.; Multhaup, G.; Beyreuther, K.; Masters, C.L.; Cappai, R. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res., 1999, 842(2), 439-444.
[http://dx.doi.org/10.1016/S0006-8993(99)01861-2 ] [PMID: 10526140]
[56]
Kessler, H.; Pajonk, F-G.; Meisser, P.; Schneider-Axmann, T.; Hoffmann, K-H.; Supprian, T.; Herrmann, W.; Obeid, R.; Multhaup, G.; Falkai, P.; Bayer, T.A. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease. J. Neural Transm. (Vienna), 2006, 113(11), 1763-1769.
[http://dx.doi.org/10.1007/s00702-006-0485-7] [PMID: 16736242]
[57]
Religa, D.; Strozyk, D.; Cherny, R.A.; Volitakis, I.; Haroutunian, V.; Winblad, B.; Naslund, J.; Bush, A.I. Elevated cortical zinc in Alzheimer disease. Neurology, 2006, 67(1), 69-75.
[http://dx.doi.org/10.1212/01.wnl.0000223644.08653.b5 ] [PMID: 16832080]
[58]
Shibata, N.; Kobayashi, M. The role for oxidative stress in neurodegenerative diseases. Brain and nerve= Shinkei kenkyu no shinpo, 2008, 60(2), 157-170.
[59]
Muthukumaran, K.; Kanwar, A.; Vegh, C.; Marginean, A.; Elliott, A.; Guilbeault, N.; Badour, A.; Sikorska, M.; Cohen, J.; Pandey, S. Ubisol-Q 10 (a nanomicellar water-soluble formulation of CoQ 10) treatment inhibits Alzheimer-type behavioral and pathological symptoms in a double transgenic mouse (TgAPEswe, PSEN1dE9) model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 1-16. [Preprint]
[60]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[61]
Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 411-421.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[62]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta, 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[63]
Morrison, A.S.; Lyketsos, C. The pathophysiology of Alzheimer disease and directions in treatment. Adv. Stud. Nurs., 2005, 3(8), 256-270.
[64]
Zhu, X.; Lee, H.G.; Casadesus, G.; Avila, J.; Drew, K.; Perry, G.; Smith, M.A. Oxidative imbalance in Alzheimer’s disease. Mol. Neurobiol., 2005, 31(1-3), 205-217.
[http://dx.doi.org/10.1385/MN:31:1-3:205] [PMID: 15953822]
[65]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (NY.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[66]
Fu, R.; Shen, Q.; Xu, P.; Luo, J.J.; Tang, Y. Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol., 2014, 49(3), 1422-1434.
[http://dx.doi.org/10.1007/s12035-013-8620-6] [PMID: 24395130]
[67]
Heneka, M.T.; Galea, E.; Gavriluyk, V.; Dumitrescu-Ozimek, L.; Daeschner, J.; O’Banion, M.K.; Weinberg, G.; Klockgether, T.; Feinstein, D.L. Noradrenergic depletion potentiates β -amyloid-induced cortical inflammation: Implications for Alzheimer’s disease. J. Neurosci., 2002, 22(7), 2434-2442.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02434.2002 ] [PMID: 11923407]
[68]
Baik, S.H.; Kang, S.; Son, S.M.; Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia, 2016, 64(12), 2274-2290.
[http://dx.doi.org/10.1002/glia.23074] [PMID: 27658617]
[69]
Koenigsknecht-Talboo, J.; Landreth, G.E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci., 2005, 25(36), 8240-8249.
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005 ] [PMID: 16148231]
[70]
Quintanilla, R.A.; Orellana, D.I.; González-Billault, C.; Maccioni, R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res., 2004, 295(1), 245-257.
[http://dx.doi.org/10.1016/j.yexcr.2004.01.002] [PMID: 15051507]
[71]
Strohmeyer, R.; Ramirez, M.; Cole, G.J.; Mueller, K.; Rogers, J. Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer’s disease brain. J. Neuroimmunol., 2002, 131(1-2), 135-146.
[http://dx.doi.org/10.1016/S0165-5728(02)00272-2 ] [PMID: 12458045]
[72]
Pasqualetti, G.; Brooks, D.J.; Edison, P. The role of neuroinflammation in dementias. Curr. Neurol. Neurosci. Rep., 2015, 15(4), 17.
[http://dx.doi.org/10.1007/s11910-015-0531-7] [PMID: 25716012]
[73]
Jiang, Y.; Li, Z.; Ma, H.; Cao, X.; Liu, F.; Tian, A.; Sun, X.; Li, X.; Wang, J. Upregulation of TREM2 ameliorates neuroinflammatory responses and improves cognitive deficits triggered by surgical trauma in Appswe/PS1dE9 mice. Cell. Physiol. Biochem., 2018, 46(4), 1398-1411.
[http://dx.doi.org/10.1159/000489155] [PMID: 29689568]
[74]
Jiang, T.; Yu, J-T.; Hu, N.; Tan, M-S.; Zhu, X-C.; Tan, L. CD33 in Alzheimer’s disease. Mol. Neurobiol., 2014, 49(1), 529-535.
[http://dx.doi.org/10.1007/s12035-013-8536-1] [PMID: 23982747]
[75]
Griciuc, A.; Serrano-Pozo, A.; Parrado, A.R.; Lesinski, A.N.; Asselin, C.N.; Mullin, K.; Hooli, B.; Choi, S.H.; Hyman, B.T.; Tanzi, R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron, 2013, 78(4), 631-643.
[http://dx.doi.org/10.1016/j.neuron.2013.04.014] [PMID: 23623698]
[76]
Finch, C.E.; Morgan, T.E. Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: A position paper. Curr. Alzheimer Res., 2007, 4(2), 185-189.
[http://dx.doi.org/10.2174/156720507780362254 ] [PMID: 17430245]
[77]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[78]
Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammat., 2019, 16(1), 108.
[http://dx.doi.org/10.1186/s12974-019-1494-4 ] [PMID: 31118068]
[79]
Kowalski, K.; Mulak, A. Brain-gut-microbiota axis in Alzheimer’s disease. J. Neurogastroenterol. Motil., 2019, 25(1), 48-60.
[http://dx.doi.org/10.5056/jnm18087] [PMID: 30646475]
[80]
de la Torre, J.C.; Mussivand, T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol. Res., 1993, 15(3), 146-153.
[http://dx.doi.org/10.1080/01616412.1993.11740127 ] [PMID: 8103579]
[81]
Johnson, K.A.; Albert, M.S. Perfusion abnormalities in prodromal AD. Neurobiol. Aging, 2000, 21(2), 289-292.
[http://dx.doi.org/10.1016/S0197-4580(00)00137-8 ] [PMID: 10867213]
[82]
Zhao, Y.; Gong, C-X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell. Mol. Neurobiol., 2015, 35(1), 101-110.
[http://dx.doi.org/10.1007/s10571-014-0127-9 ] [PMID: 25352419]
[83]
Rius-Pérez, S.; Tormos, A.M.; Pérez, S.; Taléns-Visconti, R. Vascular pathology: Cause or effect in Alzheimer disease? Neurologia, 2018, 33(2), 112-120. [English Edition]
[http://dx.doi.org/10.1016/j.nrleng.2015.07.008] [PMID: 26385017]
[84]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[85]
Mosconi, L.; Pupi, A.; De Leon, M.J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2008, 1147, 180-195.
[http://dx.doi.org/10.1196/annals.1427.007] [PMID: 19076441]
[86]
AMWang, A.; LE, H. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol., 2018, 168-181.
[87]
Rad, S.K.; Arya, A.; Karimian, H.; Madhavan, P.; Rizwan, F.; Koshy, S.; Prabhu, G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: Link between type 2 diabetes and Alzheimer’s disease. Drug Des. Devel. Ther., 2018, 12, 3999-4021.
[http://dx.doi.org/10.2147/DDDT.S173970] [PMID: 30538427]
[88]
Cetinkalp, S.; Simsir, I.Y.; Ertek, S. Insulin resistance in brain and possible therapeutic approaches. Curr. Vasc. Pharmacol., 2014, 12(4), 553-564.
[http://dx.doi.org/10.2174/1570161112999140206130426 ] [PMID: 23627981]
[89]
Tsang, S.W.; Lai, M.K.; Francis, P.T.; Wong, P.T-H.; Spence, I.; Esiri, M.M.; Keene, J.; Hope, T.; Chen, C.P-H. Serotonin transporters are preserved in the neocortex of anxious Alzheimer’s disease patients. Neuroreport, 2003, 14(10), 1297-1300.
[http://dx.doi.org/10.1097/00001756-200307180-00002 ] [PMID: 12876460]
[90]
García-Alberca, J.M.; Lara Muñoz, J.P.; Berthier Torres, M. Neuropsychiatric and behavioral symptomatology in Alzheimer disease. Actas Esp. Psiquiatr., 2010, 38(4), 212-222.
[PMID: 21104466]
[91]
Bartus, R.T.; Dean, R.L., III; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[92]
Farlow, M. A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int. Psychogeriatr., 2002, 14(S1)(Suppl. 1), 93-126.
[http://dx.doi.org/10.1017/S1041610203008688] [PMID: 12636182]
[93]
Cummings, J.; Jones, R.; Wilkinson, D.; Lopez, O.; Gauthier, S.; Waldemar, G.; Zhang, R.; Xu, Y.; Sun, Y.; Richardson, S.; Mackell, J. Effect of donepezil on cognition in severe Alzheimer’s disease: A pooled data analysis. J. Alzheimers Dis., 2010, 21(3), 843-851.
[http://dx.doi.org/10.3233/JAD-2010-100078] [PMID: 20634594]
[94]
Alfirevic, A.; Mills, T.; Carr, D.; Barratt, B.J.; Jawaid, A.; Sherwood, J.; Smith, J.C.; Tugwood, J.; Hartkoorn, R.; Owen, A.; Park, K.B.; Pirmohamed, M. Tacrine-induced liver damage: An analysis of 19 candidate genes. Pharmacogenet. Genomics, 2007, 17(12), 1091-1100.
[http://dx.doi.org/10.1097/FPC.0b013e3282f1f12b ] [PMID: 18004213]
[95]
Alva, G.; Cummings, J.L. Relative tolerability of Alzheimer’s disease treatments. Psychiatry (Edgmont Pa.), 2008, 5(11), 27-36.
[PMID: 19724715]
[96]
Hansen, R.A.; Gartlehner, G.; Webb, A.P.; Morgan, L.C.; Moore, C.G.; Jonas, D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging, 2008, 3(2), 211-225.
[PMID: 18686744]
[97]
Qaseem, A.; Snow, V.; Cross, J.T., Jr; Forciea, M.A.; Hopkins, R., Jr; Shekelle, P.; Adelman, A.; Mehr, D.; Schellhase, K.; Campos-Outcalt, D.; Santaguida, P.; Owens, D.K. American College of Physicians/American Academy of Family Physicians Panel on Dementia. Current pharmacologic treatment of dementia: A clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann. Intern. Med., 2008, 148(5), 370-378.
[http://dx.doi.org/10.7326/0003-4819-148-5-200803040-00008] [PMID: 18316755]
[98]
Danysz, W.; Parsons, C.G.; Mobius, H.J.; Stoffler, A.; Quack, G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease--a unified glutamatergic hypothesis on the mechanism of action. Neurotox. Res., 2000, 2(2-3), 85-97.
[http://dx.doi.org/10.1007/BF03033787] [PMID: 16787834]
[99]
McShane, R. Memantine for dementia/McShane R., Areosa SA, Minakaran N. Cochrane Database Syst. Rev., 2006, 2.
[100]
Fuschillo, C.; Ascoli, E.; Franzese, G.; Campana, F.; Cello, C.; Galdi, M.; La Pia, S.; Cetrangolo, C. Alzheimer’s disease and acetylcholinesterase inhibitor agents: A two-year longitudinal study. Arch. Gerontol. Geriatr. Suppl., 2004, 38(9), 187-194.
[http://dx.doi.org/10.1016/j.archger.2004.04.026 ] [PMID: 15207413]
[101]
Corbett, A.; Williams, G.; Ballard, C. Drug repositioning: An opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals (Basel), 2013, 6(10), 1304-1321.
[http://dx.doi.org/10.3390/ph6101304] [PMID: 24275851]
[102]
Zhang, C. Developing effective therapeutics for Alzheimer’s disease -- emerging mechanisms and actions in translational medicine. Discov. Med., 2017, 23(125), 105-111.
[PMID: 28371613]
[103]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. (N. Y.), 2019, 5, 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[104]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[105]
Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2019, 15(2), 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[106]
Manyam, B.V. Dementia in Ayurveda. J. Altern. Complement. Med., 1999, 5(1), 81-88.
[http://dx.doi.org/10.1089/acm.1999.5.81] [PMID: 10100034]
[107]
Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res. Ther., 2012, 4(3), 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[108]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[109]
Ng, Z.X.; Rosman, N.F. In vitro digestion and domestic cooking improved the total antioxidant activity and carbohydrate-digestive enzymes inhibitory potential of selected edible mushrooms. J. Food Sci. Technol., 2019, 56(2), 865-877.
[http://dx.doi.org/10.1007/s13197-018-3547-6 ] [PMID: 30906044]
[110]
Ng, Z.X.; Tan, W.C. Impact of optimised cooking on the antioxidant activity in edible mushrooms. J. Food Sci. Technol., 2017, 54(12), 4100-4111.
[http://dx.doi.org/10.1007/s13197-017-2885-0] [PMID: 29085153]
[111]
Wollen, K.A. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern. Med. Rev., 2010, 15(3), 223-244.
[PMID: 21155625]
[112]
Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5)(Suppl.), 208-213.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[113]
Kuboyama, T.; Tohda, C.; Komatsu, K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol., 2005, 144(7), 961-971.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[114]
Kuboyama, T.; Tohda, C.; Zhao, J.; Nakamura, N.; Hattori, M.; Komatsu, K. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport, 2002, 13(14), 1715-1720.
[http://dx.doi.org/10.1097/00001756-200210070-00005 PMID: 12395110]
[115]
Kumar, S.; Harris, R.J.; Seal, C.J.; Okello, E.J. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother. Res., 2012, 26(1), 113-117.
[http://dx.doi.org/10.1002/ptr.3512] [PMID: 21567509]
[116]
Tohda, C.; Kuboyama, T.; Komatsu, K. Search for natural products related to regeneration of the neuronal network. Neurosignals, 2005, 14(1-2), 34-45.
[http://dx.doi.org/10.1159/000085384] [PMID: 15956813]
[117]
Bhattacharya, S.K.; Goel, R.K.; Kaur, R.; Ghosal, S. Anti‐stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother. Res., 1987, 1(1), 32-37.
[http://dx.doi.org/10.1002/ptr.2650010108]
[118]
Chandrasekhar, K.; Kapoor, J.; Anishetty, S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J. Psychol. Med., 2012, 34(3), 255-262.
[http://dx.doi.org/10.4103/0253-7176.106022] [PMID: 23439798]
[119]
Chengappa, K.N.; Bowie, C.R.; Schlicht, P.J.; Fleet, D.; Brar, J.S.; Jindal, R. Randomized placebo-controlled adjunctive study of an extract of withania somnifera for cognitive dysfunction in bipolar disorder. J. Clin. Psychiat., 2013, 74(11), 1076-1083.
[http://dx.doi.org/10.4088/JCP.13m08413] [PMID: 24330893]
[120]
Shinomol, G.K. Muralidhara; Bharath, M.M. Exploring the role of “Brahmi” (Bocopa monnieri and Centella asiatica) in brain function and therapy. Rec. Pat. Endocr. Metab. Immune Drug Discov., 2011, 5(1), 33-49.
[http://dx.doi.org/10.2174/187221411794351833] [PMID: 22074576]
[121]
James, J.T.; Dubery, I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.). Urban. Molecules, 2009, 14(10), 3922-3941.
[http://dx.doi.org/10.3390/molecules14103922] [PMID: 19924039]
[122]
Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Dańczak-Pazdrowska, A.; Brzezińska, M. Centella asiatica in dermatology: An overview. Phytother. Res., 2014, 28(8), 1117-1124.
[http://dx.doi.org/10.1002/ptr.5110] [PMID: 24399761]
[123]
Meena, H.; Pandey, H.K.; Pandey, P.; Arya, M.C.; Ahmed, Z. Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica. Indian J. Pharmacol., 2012, 44(1), 114-117.
[http://dx.doi.org/10.4103/0253-7613.91880] [PMID: 22345883]
[124]
Puttarak, P.; Dilokthornsakul, P.; Saokaew, S.; Dhippayom, T.; Kongkaew, C.; Sruamsiri, R.; Chuthaputti, A.; Chaiyakunapruk, N. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: A systematic review and meta-analysis. Sci. Rep., 2017, 7(1), 10646.
[http://dx.doi.org/10.1038/s41598-017-09823-9] [PMID: 28878245]
[125]
Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol., 2008, 116(2), 325-332.
[http://dx.doi.org/10.1016/j.jep.2007.11.038] [PMID: 18191355]
[126]
Jatwa, V.; Khirwadkar, P.; Dashora, K. Indian traditional memory enhancing herbs and their medicinal benefits. Indian J. Biotech. Pharm. Res., 2014, 2(1), 1030.
[127]
Bensimon, G.; Chermat, R. Microtubule disruption and cognitive defects: Effect of colchicine on learning behavior in rats. Pharmacol. Biochem. Behav., 1991, 38(1), 141-145.
[http://dx.doi.org/10.1016/0091-3057(91)90602-X ] [PMID: 2017442]
[128]
Veerendra Kumar, M.H.; Gupta, Y.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin. Exp. Pharmacol. Physiol., 2003, 30(5-6), 336-342.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03842.x ] [PMID: 12859423]
[129]
Kim, Y.J.; Cha, H.J.; Nam, K.H.; Yoon, Y.; Lee, H.; An, S. Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts. Exp. Dermatol., 2011, 20(12), 998-1003.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01388.x PMID: 22092576]
[130]
Chen, C-L.; Tsai, W-H.; Chen, C-J.; Pan, T-M. Centella asiatica extract protects against amyloid β1-40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med., 2015, 6(4), 362-369.
[http://dx.doi.org/10.1016/j.jtcme.2015.07.002] [PMID: 27774420]
[131]
Ng, Z.X.; See, A.N. Effect of in vitro digestion on the total polyphenol and flavonoid, antioxidant activity and carbohydrate hydrolyzing enzymes inhibitory potential of selected functional plant‐based foods. J. Food Process. Preserv., 2019, 43(4)e13903
[http://dx.doi.org/10.1111/jfpp.13903]
[132]
Cott, J. Medicinal plants and dietary supplements: Sources for innovative treatment or adjuncts? Psychopharmacol. Bull., 1995, 31(1), 131-137.
[PMID: 7675977]
[133]
Chen, Y.; Han, T.; Rui, Y.; Yin, M.; Qin, L.; Zheng, H. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai, 2005, 28(6), 492-496.
[PMID: 16209267]
[134]
Malik, J.; Karan, M.; Vasisht, K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm. Biol., 2011, 49(12), 1234-1242.
[http://dx.doi.org/10.3109/13880209.2011.584539 ] [PMID: 21846173]
[135]
Sethiya, N.K.; Nahata, A.; Mishra, S.H.; Dixit, V.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J. Chin. Integr. Med., 2009, 7(11), 1001-1022.
[http://dx.doi.org/10.3736/jcim20091101] [PMID: 19912732]
[136]
Nahata, A.; Patil, U.K.; Dixit, V.K. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents. Nat. Prod. Res., 2008, 22(16), 1472-1482.
[http://dx.doi.org/10.1080/14786410802214199] [PMID: 19023811]
[137]
Sharma, K.; Bhatnagar, M.; Kulkarni, S. Effect of Convolvulus pluricaulis Choisy. and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation. Indian J. Exp. Biol., 2010, 48, 479-485.
[138]
Rai, K.S.; Murthy, K.D.; Rao, M.S.; Karanth, K.S. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract. Phytother. Res., 2005, 19(7), 592-598.
[http://dx.doi.org/10.1002/ptr.1657] [PMID: 16161034]
[139]
Gattu, M.; Boss, K.L.; Terry, A.V., Jr; Buccafusco, J.J. Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacol. Biochem. Behav., 1997, 57(4), 793-799.
[http://dx.doi.org/10.1016/S0091-3057(96)00391-7] [PMID: 9259008]
[140]
Bhargava, J.; Khan, Z. Comparative Evaluation of the efficacy and side effects of imipramine, sertraline and an ayurvedic formulation in patients of depression. J. Clin. Diagn. Res., 2012, 6, 220-225.
[141]
Jalwal, P.; Singh, B.; Dahiya, J.; Khokhara, S. A comprehensive review on shankhpushpi a morning glory. Pharma. Innovation., 2016, 5(1, Part A), 14.
[142]
Stough, C.; Downey, L.A.; Lloyd, J.; Silber, B.; Redman, S.; Hutchison, C.; Wesnes, K.; Nathan, P.J. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial. Phytother. Res., 2008, 22(12), 1629-1634.
[http://dx.doi.org/10.1002/ptr.2537] [PMID: 18683852]
[143]
Rajan, K. E.; Preethi, J.; Singh, H. K. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid. Based. Complement. Alternat. Med., 2015, 2015.
[144]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine, 2005, 12(4), 305-317.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[145]
Singh, H.K.; Dhawan, B.N. Effect of Bacopa monniera Linn. (brahmi) extract on avoidance responses in rat. J. Ethnopharmacol., 1982, 5(2), 205-214.
[http://dx.doi.org/10.1016/0378-8741(82)90044-7] [PMID: 7057659]
[146]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[147]
Zhou, Y.; Peng, L.; Zhang, W-D.; Kong, D-Y. Effect of triterpenoid saponins from Bacopa monniera on scopolamine-induced memory impairment in mice. Planta Med., 2009, 75(6), 568-574.
[http://dx.doi.org/10.1055/s-0029-1185339] [PMID: 19214943]
[148]
Piyabhan, P.; Wetchateng, T. P-1288-Neuroprotective and cognitive enhancement effects of Bacopa monnieri on novel object recognition in schizophrenic rat model. Eur. Psychiat., 2012, 27, 1.
[http://dx.doi.org/10.1016/S0924-9338(12)75455-X]
[149]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[150]
Kumar, N.; Abichandani, L.; Thawani, V.; Gharpure, K.; Naidu, M.; Venkat Ramana, G. Efficacy of Standardized Extract of Bacopa monnieri (Bacognize®) on Cognitive Functions of Medical Students: A Six-Week, Randomized Placebo-Controlled Trial. Evid. Based Complement. Alternat. Med., 2016, 2016.
[151]
Pase, M.P.; Kean, J.; Sarris, J.; Neale, C.; Scholey, A.B.; Stough, C. The cognitive-enhancing effects of Bacopa monnieri: A systematic review of randomized, controlled human clinical trials. J. Altern. Complement. Med., 2012, 18(7), 647-652.
[http://dx.doi.org/10.1089/acm.2011.0367] [PMID: 22747190]
[152]
Hussain, S.A.; Panjagari, N.R.; Singh, R.R.; Patil, G.R. Potential herbs and herbal nutraceuticals: Food applications and their interactions with food components. Crit. Rev. Food Sci. Nutr., 2015, 55(1), 94-122.
[http://dx.doi.org/10.1080/10408398.2011.649148 ] [PMID: 24915396]
[153]
Ganguli, M.; Chandra, V.; Kamboh, M.I.; Johnston, J.M.; Dodge, H.H.; Thelma, B.K.; Juyal, R.C.; Pandav, R.; Belle, S.H.; DeKosky, S.T. Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US cross-national dementia study. Arch. Neurol., 2000, 57(6), 824-830.
[http://dx.doi.org/10.1001/archneur.57.6.824] [PMID: 10867779]
[154]
Breitner, J.C.; Welsh, K.A.; Helms, M.J.; Gaskell, P.C.; Gau, B.A.; Roses, A.D.; Pericak-Vance, M.A.; Saunders, A.M. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging, 1995, 16(4), 523-530.
[http://dx.doi.org/10.1016/0197-4580(95)00049-K] [PMID: 8544901]
[155]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[156]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[157]
Kulkarni, S.K.; Dhir, A. An overview of curcumin in neurological disorders. Indian J. Pharm. Sci., 2010, 72(2), 149-154.
[http://dx.doi.org/10.4103/0250-474X.65012] [PMID: 20838516]
[158]
Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(2), 131-136.
[http://dx.doi.org/10.2174/1567205053585882] [PMID: 15974909]
[159]
Butterfield, D.; Castegna, A.; Pocernich, C.; Drake, J.; Scapagnini, G.; Calabrese, V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem., 2002, 13(8), 444-461.
[http://dx.doi.org/10.1016/S0955-2863(02)00205-X ] [PMID: 12165357]
[160]
Program, N.T. National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of Turmeric Oleoresin (CAS No. 8024-37-1) (Major Component 79%-85% Curcumin, CAS No. 458-37-7) in F344/N Rats and B6C3F1 Mice (Feed Studies). Natl. Toxicol. Program Tech. Rep. Ser., 1993, 427, 1-275.
[PMID: 12616304]
[161]
Baum, L.; Lam, C.W.K.; Cheung, S.K-K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.; Goggins, W.B.; Zee, B.C.; Cheng, K.F.; Fong, C.Y.; Wong, A.; Mok, H.; Chow, M.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.; Chan, M.H.; Szeto, S.; Chan, I.H.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[162]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K-P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiat., 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[163]
Sharman, J.; Galeshi, R.; Onega, L.; Ashby, S.; Sharman, K. The efficacy of curcumin on cognition, depression, and agitation in older adults with Alzheimer’s disease., 2017, , 11.
[164]
Shashank, D.; Rajendra, S.; Mistry, A. An overview of Phytoconstituents and pharmacological activities of Celastrus paniculatus Willd. J. Pharm. Res., 2018, 16(4), 307-313.
[165]
Godkar, P.B.; Gordon, R.K.; Ravindran, A.; Doctor, B.P. Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide- and glutamate-induced injury in embryonic rat forebrain neuronal cells. Phytomedicine, 2006, 13(1-2), 29-36.
[http://dx.doi.org/10.1016/j.phymed.2003.11.011] [PMID: 16360930]
[166]
da Rocha, M.D.; Viegas, F.P.; Campos, H.C.; Nicastro, P.C.; Fossaluzza, P.C.; Fraga, C.A.; Barreiro, E.J.; Viegas, C., Jr The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2011, 10(2), 251-270.
[http://dx.doi.org/10.2174/187152711794480429] [PMID: 20874701]
[167]
Kumar, M.H.; Gupta, Y.K. Antioxidant property of Celastrus paniculatus Willd.: A possible mechanism in enhancing cognition. Phytomedicine, 2002, 9(4), 302-311.
[http://dx.doi.org/10.1078/0944-7113-00136] [PMID: 12120811]
[168]
Purnima, B.M.; Kothiyal, P. A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC-medicinal herb. J. Pharmacogn. Phytochem., 2015, 3(5), 102-106.
[169]
Lyle, N.; Gomes, A.; Sur, T.; Munshi, S.; Paul, S.; Chatterjee, S.; Bhattacharyya, D. The role of antioxidant properties of Nardostachys jatamansi in alleviation of the symptoms of the chronic fatigue syndrome. Behav. Brain Res., 2009, 202(2), 285-290.
[http://dx.doi.org/10.1016/j.bbr.2009.04.005] [PMID: 19375459]
[170]
Joshi, H.; Parle, M. Nardostachys jatamansi improves learning and memory in mice. J. Med. Food, 2006, 9(1), 113-118.
[http://dx.doi.org/10.1089/jmf.2006.9.113] [PMID: 16579738]
[171]
Dhingra, D.; Goyal, P.K. Inhibition of MAO and GABA: probable mechanisms for antidepressant-like activity of Nardostachys jatamansi DC. in mice. Indian J. Exp. Biol., 2008, 46(4), 212-218.
[PMID: 18512329]
[172]
Prabhu, V.; Karanth, K.S.; Rao, A. Effects of Nardostachys jatamansi on biogenic amines and inhibitory amino acids in the rat brain. Planta Med., 1994, 60(2), 114-117.
[http://dx.doi.org/10.1055/s-2006-959429] [PMID: 8202559]
[173]
Liu, Q.F.; Jeon, Y.; Sung, Y.W.; Lee, J.H.; Jeong, H.; Kim, Y-M.; Yun, H.S.; Chin, Y-W.; Jeon, S.; Cho, K.S.; Koo, B.S. Nardostachys jatamansi ethanol extract ameliorates Aβ42 cytotoxicity. Biol. Pharm. Bull., 2018, 41(4), 470-477.
[http://dx.doi.org/10.1248/bpb.b17-00750] [PMID: 29398668]
[174]
Ng, Z.X.; Koick, Y.T.T.; Yong, P.H. Comparative analyses on radical scavenging and cytotoxic activity of phenolic and flavonoid content from selected medicinal plants. Nat. Prod. Res., 2020, 1-6.
[http://dx.doi.org/10.1080/14786419.2020.1749617 ] [PMID: 32290699]
[175]
Mancuso, C.; Siciliano, R.; Barone, E.; Preziosi, P. Natural substances and Alzheimer’s disease: From preclinical studies to evidence based medicine. Biochim. Biophys. Acta, 2012, 1822(5), 616-624.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.004] [PMID: 21939756]
[176]
Shi, C.; Wu, F.; Xu, J. H2O2 and PAF mediate Abeta1-42-induced Ca2+ dyshomeostasis that is blocked by EGb761. Neurochem. Int., 2010, 56(8), 893-905.
[http://dx.doi.org/10.1016/j.neuint.2010.03.016] [PMID: 20362023]
[177]
Luo, Y.; Smith, J.V.; Paramasivam, V.; Burdick, A.; Curry, K.J.; Buford, J.P.; Khan, I.; Netzer, W.J.; Xu, H.; Butko, P. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12197-12202.
[http://dx.doi.org/10.1073/pnas.182425199] [PMID: 12213959]
[178]
Bastianetto, S.; Ramassamy, C.; Doré, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur. J. Neurosci., 2000, 12(6), 1882-1890.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x ] [PMID: 10886329]
[179]
Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Abeta (1-42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[180]
Bastianetto, S.; Zheng, W.H.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C. J. Neurochem., 2000, 74(6), 2268-2277.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0742268.x ] [PMID: 10820186]
[181]
Ramassamy, C.; Christen, Y.; Clostre, F.; Costentin, J. The Ginkgo biloba extract, EGb761, increases synaptosomal uptake of 5-hydroxytryptamine: In-vitro and ex-vivo studies. J. Pharm. Pharmacol., 1992, 44(11), 943-945.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb03244.x ] [PMID: 1361545]
[182]
Mössner, R.; Schmitt, A.; Syagailo, Y.; Gerlach, M.; Riederer, P.; Lesch, K. The serotonin transporter in Alzheimer’s and Parkinson’s disease. Adv. Res. Neurodegenerat; Springer, 2000, pp. 345-350.
[http://dx.doi.org/10.1007/978-3-7091-6301-6_24]
[183]
Pardon, M-C.; Joubert, C.; Perez-Diaz, F.; Christen, Y.; Launay, J-M.; Cohen-Salmon, C. In vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extract (EGb 761). Mech. Ageing Dev., 2000, 113(3), 157-168.
[http://dx.doi.org/10.1016/S0047-6374(99)00107-4 ] [PMID: 10714935]
[184]
Blecharz-Klin, K.; Piechal, A.; Joniec, I.; Pyrzanowska, J.; Widy-Tyszkiewicz, E. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol. Exp. (Warsz.), 2009, 69(2), 217-231.
[PMID: 19593336]
[185]
Gong, Q.H.; Wu, Q.; Huang, X.N.; Sun, A.S.; Nie, J.; Shi, J.S. Protective effect of Ginkgo biloba leaf extract on learning and memory deficit induced by aluminum in model rats. Chin. J. Integr. Med., 2006, 12(1), 37-41.
[http://dx.doi.org/10.1007/BF02857428] [PMID: 16571282]
[186]
Kanowski, S.; Hoerr, R. Ginkgo biloba extract EGb 761 in dementia: Intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry, 2003, 36(6), 297-303.
[http://dx.doi.org/10.1055/s-2003-45117] [PMID: 14663654]
[187]
Schneider, L.S.; DeKosky, S.T.; Farlow, M.R.; Tariot, P.N.; Hoerr, R.; Kieser, M. A randomized, double-blind, placebo-controlled trial of two doses of Ginkgo biloba extract in dementia of the Alzheimer’s type. Curr. Alzheimer Res., 2005, 2(5), 541-551.
[http://dx.doi.org/10.2174/156720505774932287] [PMID: 16375657]
[188]
Snitz, B.E.; O’Meara, E.S.; Carlson, M.C.; Arnold, A.M.; Ives, D.G.; Rapp, S.R.; Saxton, J.; Lopez, O.L.; Dunn, L.O.; Sink, K.M.; DeKosky, S.T. Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA, 2009, 302(24), 2663-2670.
[http://dx.doi.org/10.1001/jama.2009.1913] [PMID: 20040554]
[189]
Jiang, L.; Su, L.; Cui, H.; Ren, J.; Li, C. Ginkgo biloba extract for dementia: A systematic review. Shanghai Jingshen Yixue, 2013, 25(1), 10-21.
[PMID: 24991128]
[190]
Yuan, Q.; Wang, C.W.; Shi, J.; Lin, Z.X. Effects of Ginkgo biloba on dementia: An overview of systematic reviews. J. Ethnopharmacol., 2017, 195, 1-9.
[http://dx.doi.org/10.1016/j.jep.2016.12.005] [PMID: 27940086]
[191]
Geng, Y.; Li, C.; Liu, J.; Xing, G.; Zhou, L.; Dong, M.; Li, X.; Niu, Y. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol. Pharm. Bull., 2010, 33(5), 836-843.
[http://dx.doi.org/10.1248/bpb.33.836] [PMID: 20460763]
[192]
Muthuraman, A.; Singh, N. Acute and sub-acute oral toxicity profile of Acorus calamus (Sweet flag) in rodents. Asian Pac. J. Trop. Biomed., 2012, 2(2), S1017-S1023.
[http://dx.doi.org/10.1016/S2221-1691(12)60354-2]
[193]
Chellian, R.; Pandy, V.; Mohamed, Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. Phytomedicine, 2017, 32, 41-58.
[http://dx.doi.org/10.1016/j.phymed.2017.04.003] [PMID: 28732807]
[194]
Wang, N.; Wang, H.; Li, L.; Li, Y.; Zhang, R. β-Asarone Inhibits Amyloid-β by Promoting Autophagy in a Cell Model of Alzheimer’s Disease. Front. Pharmacol., 2020, 10, 1529.
[http://dx.doi.org/10.3389/fphar.2019.01529] [PMID: 32009952]
[195]
Esfandiari, E.; Ghanadian, M.; Rashidi, B.; Mokhtarian, A.; Vatankhah, A.M. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int. J. Prev. Med., 2018, 9, 85.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_75_18] [PMID: 30450168]
[196]
Malve, H.O.; Raut, S.B.; Marathe, P.A.; Rege, N.N. Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J. Ayurveda Integr. Med., 2014, 5(4), 209-215.
[http://dx.doi.org/10.4103/0975-9476.146564] [PMID: 25624694]
[197]
Lannert, H.; Hoyer, S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav. Neurosci., 1998, 112(5), 1199-1208.
[http://dx.doi.org/10.1037/0735-7044.112.5.1199] [PMID: 9829797]
[198]
Balkrishna, A.; Pokhrel, S.; Tomer, M.; Verma, S.; Kumar, A.; Nain, P.; Gupta, A.; Varshney, A. Anti-Acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Molecules, 2019, 24(22), 4175.
[http://dx.doi.org/10.3390/molecules24224175] [PMID: 31752124]
[199]
Kulkarni, S.K.; Dhir, A. Possible involvement of L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride. Eur. J. Pharmacol., 2007, 569(1-2), 77-83.
[http://dx.doi.org/10.1016/j.ejphar.2007.05.002] [PMID: 17585901]
[200]
Prakash, R.; Sandhya, E.; Ramya, N.; Dhivya, R.; Priyadarshini, M.; Sakthi Priya, B. Neuroprotective activity of ethanolic extract of Tinospora cordifolia on LPS induced neuroinflammation. Transl. Biomed., 2017, 8(4), 135.
[201]
Sharma, A.; Kaur, G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective. BMC Complement. Altern. Med., 2018, 18(1), 268.
[http://dx.doi.org/10.1186/s12906-018-2330-6] [PMID: 30285727]
[202]
Mishra, R.; Manchanda, S.; Gupta, M.; Kaur, T.; Saini, V.; Sharma, A.; Kaur, G. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci. Rep., 2016, 6, 25564.
[http://dx.doi.org/10.1038/srep25564] [PMID: 27146164]
[203]
Ranjan, N.; Kumari, M. Acetylcholinesterase inhibition by medicinal plants: A review. Ann. Plant Sci., 2017, 6(06), 1640-1644.
[http://dx.doi.org/10.21746/aps.2017.06.003]
[204]
Shang, Y-Z.; Ye, J.W.; Tang, X.C. Improving effects of huperzine A on abnormal lipid peroxidation and superoxide dismutase in aged rats. Zhongguo Yao Li Xue Bao, 1999, 20(9), 824-828.
[PMID: 11245091]
[205]
Xu, S-S.; Cai, Z-Y.; Qu, Z-W.; Yang, R-M.; Cai, Y-L.; Wang, G-Q.; Su, X-Q.; Zhong, X-S.; Cheng, R-Y.; Xu, W-A.; Li, J.X.; Feng, B. Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Zhongguo Yao Li Xue Bao, 1999, 20(6), 486-490.
[PMID: 10678137]
[206]
Ye, J.W.; Cai, J.X.; Wang, L.M.; Tang, X.C. Improving effects of huperzine A on spatial working memory in aged monkeys and young adult monkeys with experimental cognitive impairment. J. Pharmacol. Exp. Ther., 1999, 288(2), 814-819.
[PMID: 9918593]
[207]
Huang, X-T.; Qian, Z-M.; He, X.; Gong, Q.; Wu, K-C.; Jiang, L-R.; Lu, L-N.; Zhu, Z.J.; Zhang, H-Y.; Yung, W-H.; Ke, Y. Reducing iron in the brain: A novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol. Aging, 2014, 35(5), 1045-1054.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.004 ] [PMID: 24332448]
[208]
Yalla Reddy, Y.; Mohana Lakshmi, S.; Saravana, K. Review on effect of natural memory enhancing drugs on dementia. Int. J. Phytopharmacol., 2010, 1, 1-7.
[209]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disorder., 2013, 6(1), 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[210]
Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem., 2008, 56(13), 4855-4873.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[211]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol., 2018, 9, 548.
[http://dx.doi.org/10.3389/fphar.2018.00548] [PMID: 29896105]
[212]
Trompetero, A.; Gordillo, A.; Del Pilar, M.C.; Cristina, V.M.; Bustos Cruz, R.H. Alzheimer’s disease and parkinson’s disease: A review of current treatment adopting a nanotechnology approach. Curr. Pharm. Des., 2018, 24(1), 22-45.
[http://dx.doi.org/10.2174/1381612823666170828133059 ] [PMID: 28847307]
[213]
Durg, S.; Dhadde, S.B.; Vandal, R.; Shivakumar, B.S.; Charan, C.S. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. J. Pharm. Pharmacol., 2015, 67(7), 879-899.
[http://dx.doi.org/10.1111/jphp.12398] [PMID: 25828061]
[214]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[215]
Chiroma, S.M.; Baharuldin, M.T.H.; Mat Taib, C.N.; Amom, Z.; Jagadeesan, S.; Ilham Adenan, M.; Mahdi, O.; Moklas, M.A.M.; Moklas, M.A.M. Protective effects of Centella asiatica on cognitive deficits induced by D-gal/AlCl3 via inhibition of oxidative stress and attenuation of acetylcholinesterase level. Toxics, 2019, 7(2), 19.
[http://dx.doi.org/10.3390/toxics7020019] [PMID: 30935005]
[216]
Kumar, A.; Prakash, A.; Dogra, S. Centella asiatica attenuates Dgalactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int. J. Alzheimers Dis., 2011,, 2011.
[217]
Gray, N.E.; Sampath, H.; Zweig, J.A.; Quinn, J.F.; Soumyanath, A. Centella asiatica attenuates amyloid-β-induced oxidative stress and mitochondrial dysfunction. J. Alzheimer's Dis., 2015, 45(3), 933-946.
[http://dx.doi.org/10.3233/JAD-142217] [PMID: 25633675]
[218]
Bihaqi, S.W.; Singh, A.P.; Tiwari, M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J. Pharmacol., 2011, 43(5), 520-525.
[http://dx.doi.org/10.4103/0253-7613.84958] [PMID: 22021993]
[219]
Saini, N.; Singh, D.; Sandhir, R. Bacopa monnieri prevents colchicine-induced dementia by anti-inflammatory action. Metab. Brain Dis., 2019, 34(2), 505-518.
[http://dx.doi.org/10.1007/s11011-018-0332-1] [PMID: 30604025]
[220]
Pandareesh, M.D.; Anand, T.; Khanum, F. Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus. Neurochem. Res., 2016, 41(5), 985-999.
[http://dx.doi.org/10.1007/s11064-015-1780-1] [PMID: 26677075]
[221]
Ishrat, T.; Hoda, M.N.; Khan, M.B.; Yousuf, S.; Ahmad, M.; Khan, M.M.; Ahmad, A.; Islam, F. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur. Neuropsychopharmacol., 2009, 19(9), 636-647.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002 ] [PMID: 19329286]
[222]
Shytle, R.D.; Tan, J.; Bickford, P.C.; Rezai-Zadeh, K.; Hou, L.; Zeng, J.; Sanberg, P.R.; Sanberg, C.D.; Alberte, R.S.; Fink, R.C.; Roschek, B., Jr Optimized turmeric extract reduces β-Amyloid and phosphorylated Tau protein burden in Alzheimer’s transgenic mice. Curr. Alzheimer Res., 2012, 9(4), 500-506.
[http://dx.doi.org/10.2174/156720512800492459] [PMID: 21875408]
[223]
Malik, J.; Karan, M.; Dogra, R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: Possible antioxidant mechanism. Pharm. Biol., 2017, 55(1), 980-990.
[http://dx.doi.org/10.1080/13880209.2017.1285945 ] [PMID: 28164735]
[224]
Bhagya, V.; Christofer, T.; Shankaranarayana Rao, B.S. Neuroprotective effect of Celastrus paniculatus on chronic stress-induced cognitive impairment. Indian J. Pharmacol., 2016, 48(6), 687-693.
[http://dx.doi.org/10.4103/0253-7613.194853] [PMID: 28066108]
[225]
Karkada, G.; Shenoy, K.B.; Halahalli, H.; Karanth, K.S. Nardostachys jatamansi extract prevents chronic restraint stress-induced learning and memory deficits in a radial arm maze task. J. Nat. Sci. Biol. Med., 2012, 3(2), 125-132.
[http://dx.doi.org/10.4103/0976-9668.101879] [PMID: 23225973]
[226]
Khan, M.B.; Hoda, M.N.; Ishrat, T.; Ahmad, S.; Moshahid Khan, M.; Ahmad, A.; Yusuf, S.; Islam, F. Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurol. Sci., 2012, 33(5), 1011-1020.
[http://dx.doi.org/10.1007/s10072-011-0880-1] [PMID: 22170092]
[227]
Zeng, K.; Li, M.; Hu, J.; Mahaman, Y.A.R.; Bao, J.; Huang, F.; Xia, Y.; Liu, X.; Wang, Q.; Wang, J-Z.; Yang, Y.; Liu, R.; Wang, X. Ginkgo biloba extract EGb761 attenuates Hyperhomocysteinemia-induced AD like tau hyperphosphorylation and cognitive impairment in rats. Curr. Alzheimer Res., 2018, 15(1), 89-99.
[PMID: 28847282]
[228]
Muthuraman, A.; Singh, N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J. Ethnopharmacol., 2012, 142(3), 723-731.
[http://dx.doi.org/10.1016/j.jep.2012.05.049] [PMID: 22706151]
[229]
Dhingra, D.; Goyal, P.K. Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of Tinospora cordifolia in micae. Indian J. Pharm. Sci., 2008, 70(6), 761-767.
[http://dx.doi.org/10.4103/0250-474X.49118] [PMID: 21369437]
[230]
Une, H.D.; Ejaj, M.A.; Tarde, V.A. Nootropic Activity of Saponins obtained from Tinospora cordifolia Stem in Scopolamine induced Amnesia. Int. J. Pharm. Sci. Rev. Res., 2014, 3(2), 28-35.
[231]
Ohba, T.; Yoshino, Y.; Ishisaka, M.; Abe, N.; Tsuruma, K.; Shimazawa, M.; Oyama, M.; Tabira, T.; Hara, H. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci. Biotechnol. Biochem., 2015, 79(11), 1838-1844.
[http://dx.doi.org/10.1080/09168451.2015.1052773 ] [PMID: 26059088]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy