Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Historical Anecdotes and Breakthroughs of Histamine: From Discovery to Date

Author(s): Ioannis A. Charitos, Francesca Castellaneta, Luigi Santacroce* and Lucrezia Bottalico

Volume 21, Issue 5, 2021

Published on: 29 July, 2020

Page: [801 - 814] Pages: 14

DOI: 10.2174/1871530320666200729150124

Price: $65

Abstract

Aim: Investigating about the history of allergies and discovery of the histamine’s role in the immune response through historical references, starting with ancient anecdotes, analysing the first immunization attempts on animals to understand its importance as the anaphylaxis mediator. Moreover, we shortly resume the most recent discoveries on mast cell role in allergic diseases throughout the latest updates on its antibody-independent receptors.

Methods: Publications, including reviews, treatment guidelines, historical and medical books, on the topic of interest were found on Medline, PubMed, Web of Knowledge, Web of Science, Google Scholar, Elsevier’s (EMBASE.comvarious internet museum archives. Texts from the National Library of Greece (Stavros Niarchos Foundation), from the School of Health Sciences of the National and Kapodistrian University of Athens (Greece). We selected key articles which could provide ahistorical and scientific insight into histamine molecule and its mechanism of action’s discovery starting with Egyptian, Greek and Chinese antiquity to end with the more recent pharmacological and molecular discoveries.

Results: Allergic diseases were described by medicine since ancient times, without exactly understanding the physio-pathologic mechanisms of immuno-mediated reactions and of their most important biochemical mediator, histamine. Researches on histamine and allergic mechanisms started at the beginning of the 20th century with the first experimental observations on animals of anaphylactic reactions. Histamine was then identified as their major mediator of many allergic diseases and anaphylaxis, but also of several physiologic body’s functions, and its four receptors were characterized. Modern researches focus their attention on the fundamental role of the antibody-independent receptors of mast cells in allergic mechanisms, such as MRGPRX2, ADGRE2 and IL-33 receptor.

Conclusion: New research should investigate how to modulate immunity cells activity in order to better investigate possible multi-target therapies for host’s benefits in preclinical and clinical studies on allergic diseases in which mast cells play a major role.

Keywords: Allergy, biological modulators, anaphylactic reactions, histamine, history of pharmacology, history of medicine, mast cells.

Graphical Abstract

[1]
Lieberman, P. The basics of histamine biology. Ann. Allergy Asthma Immunol., 2011, 106(2)(Suppl.), S2-S5.
[http://dx.doi.org/10.1016/j.anai.2010.08.005] [PMID: 21277530]
[2]
Elieh Ali Komi, D.; Wöhrl, S.; Bielory, L. Mast cell biology at molecular level: a comprehensive review. Clin. Rev. Allergy Immunol., 2019, 58(3), 342-365.
[http://dx.doi.org/10.1007/s12016-019-08769-2] [PMID: 31828527]
[3]
Waddell, L. Egyptian Civilization; Luzac: London, 1930.
[4]
Avenberg, K.M.; Harper, D.S.; Larsson, B.L. Footnotes on Allergy; Pharmacia: Uppsala, 1980.
[5]
Veith, I. Huang ti nei ching su wÊn. The Yellow Emperor’s Classic of Internal Medicine; University of California Press, 1975.
[6]
Wang, J.; Li, X-M. Chinese herbal therapy for the treatment of food allergy. Curr. Allergy Asthma Rep., 2012, 12(4), 332-338.
[http://dx.doi.org/10.1007/s11882-012-0265-4] [PMID: 22581122]
[7]
Cohen, S.G. Asthma in antiquity: the Ebers Papyrus. Allergy Proc., 1992, 13(3), 147-154.
[http://dx.doi.org/10.2500/108854192778878746] [PMID: 1505756]
[8]
Krombach, J.W.; Kampe, S.; Keller, C.A.; Wright, P.M. Pharaoh Menes’ death after an anaphylactic reaction--the end of a myth. Allergy, 2004, 59(11), 1234-1235.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00603.x] [PMID: 15461609]
[9]
Dave, N.D.; Xiang, L.; Rehm, K.E.; Marshall, G.D., Jr Stress and allergic diseases. Immunol. Allergy Clin. North Am., 2011, 31(1), 55-68.
[http://dx.doi.org/10.1016/j.iac.2010.09.009] [PMID: 21094923]
[10]
Santacroce, L.; Charitos, I.A.; Topi, S.; Bottalico, L. The Alcmaeon’s school of croton: philosophy and science. Open Access Maced. J. Med. Sci., 2019, 7(3), 500-503.
[http://dx.doi.org/10.3889/oamjms.2019.072] [PMID: 30834025]
[11]
Adams, F The Extant Works of Aretaeus, The Cappadocian.Aretaeus. LL.D; Milford House Inc.: Boston., 1972. (Republication of the 1856 edition)
[12]
Keeney, E.L. The history of asthma from Hippocrates to Meltzer. J. Allergy, 1964, 35, 215-226.
[http://dx.doi.org/10.1016/0021-8707(64)90004-8] [PMID: 14160430]
[13]
Kleisiaris, C.F.; Sfakianakis, C.; Papathanasiou, I.V. Health care practices in ancient Greece: The Hippocratic ideal. J. Med. Ethics Hist. Med., 2014, 7, 6.
[PMID: 25512827]
[14]
Bottalico, L.; Charitos, I.A.; Kolveris, N.; D’Agostino, D.; Topi, S.; Ballini, A.; Santacroce, L. Philosophy and Hippocratic Ethic in Ancient Greek Society: Evolution of Hospital - Sanctuaries. Open Access Maced. J. Med. Sci., 2019, 7(19), 3353-3357.
[http://dx.doi.org/10.3889/oamjms.2019.474] [PMID: 31949542]
[15]
[16]
Karamanou, M.; Androutsos, G. Aretaeus of Cappadocia and the first clinical description of asthma. Am. J. Respir. Crit. Care Med., 2011, 184(12), 1420-1421.
[http://dx.doi.org/10.1164/ajrccm.184.12.1420b] [PMID: 22174116]
[17]
Rautman, M.L. Daily Life in the Byzantine Empire; Greenwood Publishing Group, 2006.
[18]
Topi, S.; Santacroce, L.; Bottalico, L.; Ballini, A.; Inchingolo, A.D.; Dipalma, G.; Charitos, I.A.; Inchingolo, F. Gastric Cancer in History: A Perspective Interdisciplinary Study. Cancers (Basel), 2020, 12(2)E264
[http://dx.doi.org/10.3390/cancers12020264] [PMID: 31978985]
[19]
Wüthrich, B. History of food allergy. Chem. Immunol. Allergy, 2014, 100, 109-119.
[http://dx.doi.org/10.1159/000358616] [PMID: 24925391]
[20]
Santacroce, L.; Bottalico, L.; Charitos, I.A. Greek medicine practice at ancient Rome: the physician molecularist Asclepiades. Medicines (Basel), 2017, 4(4), 92.
[http://dx.doi.org/10.3390/medicines4040092] [PMID: 29231878]
[21]
Pliny the Elder. Naturalis Historia., XXIX, 12-13. Available at: http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.02.0138%3Abook%3D29%3Achapter%3D12 (Accessed February 19, 2020)
[22]
Ring, J. 1st description of an “atopic family anamnesis” in the Julio-Claudian imperial house: Augustus, Claudius, Britannicus. Hautarzt, 1985, 36(8), 470-471.
[PMID: 3899999]
[23]
Zipser, B. Medical books in the Byzantine world, Eikasmós Online II, Bologna , 2013; pp. 2282-2178.
[24]
Marketos, S.G. Eftychiades, AC Historical perspectives: bronchial asthma according to byzantine medicine. J. Asthma, 1986, 23(3), 3.
[http://dx.doi.org/10.3109/02770908609077489]
[25]
Zohalinezhad, M.E.; Askari, A.; Farjam, M. Clinical stories and medical histories recorded by Rhazes (865-925), the Iranian-Islamic physician in the medieval period. Acta Med. Hist. Adriat., 2015, 13(Suppl. 2), 77-86.
[PMID: 26959633]
[26]
Rosner, F. Moses Maimonides’ Treatise on Asthma. J. Asthma, 1984, 21(2), 119-129.
[http://dx.doi.org/10.3109/02770908409077409] [PMID: 6376463]
[27]
Igea, J.M. The history of the idea of allergy. Allergy, 2013, 68(8), 966-973.
[http://dx.doi.org/10.1111/all.12174] [PMID: 23889361]
[28]
Kay, A.B. 100 years of ‘Allergy’: can von Pirquet’s word be rescued? Clin. Exp. Allergy, 2006, 36(5), 555-559.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02491.x] [PMID: 16650037]
[29]
Botallo, L. De catharro eiusque causis symptomatibus,signis et curatione commentarium; Parisiis, 1564.
[30]
Ramazzini, B. De Moribis artificium diatriba (diseases of workers). 1713. Allergy Proc., 1990, 11(1), 51-55.
[PMID: 2179059]
[31]
Finn, R.; Bostock, J. John Bostock, hay fever, and the mechanism of allergy. Lancet, 1992, 340(8833), 1453-1455.
[http://dx.doi.org/10.1016/0140-6736(92)92634-R] [PMID: 1360571]
[32]
History of Allergy. Ring, J.; Grosberg, M.; Brockow, K. ., Eds.; Chem Immunol Allergy;; Karger: Basel, 2014, Vol. 100, pp. 54-61.
[http://dx.doi.org/10.1159/000358503]
[33]
Portier, P.; Richet, C. De l’action anaphylactique de certains vénins. CR Soc Biol, 1902, 54, 170-172. Trav Labor Physiol, 1902, 5, 506.
[34]
Héricourt, J.; Richet, C. On a pyrogenic and septic microbe (Staphylococcus pyosepticus) and on the vaccination against its effects. CR Acad. Sci., 1888, 107, 690.
[35]
Héricourt, J.; Richet, C. Distant effects of eel serum injections. CR Soc Biol., 1989, 50, 137.
[36]
Richet, C. Anaphylaxis after injection of congestin in dogs. CR Soc Biol., 1905, 57, 112.
[37]
Richet, C. From anaphylaxis to the increasing sensitivity of organisms to successive doses of poison. Arch. Fisiol., 1903/1904, 1, 129.
[38]
Richet, C. Prophylactic effects of thalassin and anaphylactic effects of congestin in actinea virus. CR Soc Biol., 1904, 56, 302.
[39]
Richet, C. Poisons contained in the tentacles of actiniates (Congestine and Thalassine). CR Soc Biol., 1903, 55, 246.
[40]
Richet, C. Anaphylaxies; Liverpool, University Press, 1913.
[41]
Johansson, S.G.O.; Bieber, T.; Dahl, R.; Friedmann, P.S.; Lanier, B.Q.; Lockey, R.F.; Motala, C.; Ortega Martell, J.A.; Platts-Mills, T.A.E.; Ring, J.; Thien, F.; Van Cauwenberge, P.; Williams, H.C. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the World Allergy Organization. J. Allergy Clin. Immunol., 2004, 113(5), 832-836.
[http://dx.doi.org/10.1016/j.jaci.2003.12.591] [PMID: 15131563]
[42]
Barry Kay, A.; Bousquet, J.; Holt, P.G.; Kaplan, A.P. Allergy and Allergic Diseases; Blackwell Publishing, 2008, Vol. 1, .
[43]
Saavedra-Delgado, A.M. François Magendie on anaphylaxis (1839). Allergy Proc., 1991, 12(5), 355-356.
[http://dx.doi.org/10.2500/108854191778879160] [PMID: 1959774]
[44]
Shampo, M.A.; Kyle, R.A. François Magendie: early French physiologist. Mayo Clin. Proc., 1987, 62(5), 412.
[http://dx.doi.org/10.1016/S0025-6196(12)65446-9] [PMID: 3553755]
[45]
Moticka, E.J. A Historical Perspective on Evidence-Based Immunology; Elsevier, 2016.
[46]
Von Pirquet, C. Allergie. Munch. Med. Wochenschr., 1906, 53, 1457-1458.
[47]
Lamson, R.W. Sudden death associated with the injection of foreign substances. JAMA, 1924, 82, 1091-1098.
[http://dx.doi.org/10.1001/jama.1924.02650400001001]
[48]
Dale, H.H.; Laidlaw, P.P. The physiological action of β-iminazolylethylamine. J. Physiol., 1910, 41(5), 318-344.
[http://dx.doi.org/10.1113/jphysiol.1910.sp001406] [PMID: 16993030]
[49]
Dale, H.H.; Laidlaw, P.P. Further observations on the action of β-iminazolylethylamine. J. Physiol., 1911, 43(2), 182-195.
[http://dx.doi.org/10.1113/jphysiol.1911.sp001464] [PMID: 16993089]
[50]
Dale, H.H.; Laidlaw, P.P. Histamine shock. J. Physiol., 1919, 52(5), 355-390.
[http://dx.doi.org/10.1113/jphysiol.1919.sp001837] [PMID: 16993403]
[51]
Dale, H.H. The biological significance of anaphylaxis. Croonian lecture. Proc. R. Soc. Lond., B, 1920, 91, 126-146.
[http://dx.doi.org/10.1098/rspb.1920.0005]
[52]
Dale, H.H. Croonian lectures to the royal colleges of physicians. Some chemical factors in the control of the circulation I. Introduction: Vaso-motor hormones; II. Local vasodilator reactions: histamine; III. Local vasodilator reactions: histamine continued, acetylcholine, conclusion. Lancet, 1929, 179-1183.
[53]
Dale, H.H. The anaphylactic reaction of plain muscle in the guinea-pig. J. Pharmacol. Exp. Ther., 1913, 4, 167-223.
[54]
Dale, H.H. Kellaway CHl Anaphylaxis and anaphylatoxins. Philos. Trans. R. Soc. Lond., 1922, 211B, 273-315.
[55]
Dale, H.H.; Richards, A.N. The vasodilator action of histamine and of some other substances. J. Physiol., 1918, 52(2-3), 110-165.
[http://dx.doi.org/10.1113/jphysiol.1918.sp001825] [PMID: 16993411]
[56]
Ballini, A.; Gnoni, A.; De Vito, D.; Dipalma, G.; Cantore, S.; Gargiulo Isacco, C.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; Scacco, S.; Inchingolo, F. Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: a randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(19), 8645-8657.
[http://dx.doi.org/10.26355/eurrev_201910_19182] [PMID: 31646599]
[57]
Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: a randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 373-381.
[http://dx.doi.org/10.2174/1871530319666181221150352] [PMID: 30574857]
[58]
Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Vito, D.; Saini, R.; Inchingolo, F. Probiotics improve urogenital health in women. Open Access Maced. J. Med. Sci., 2018, 6(10), 1845-1850.
[http://dx.doi.org/10.3889/oamjms.2018.406]
[59]
Inchingolo, F.; Dipalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents, 2018, 32(5), 1323-1328.
[PMID: 30334433]
[60]
Castells, M.C. Anaphylaxis and hypersensitivity reactions; Humana Press: New York, 2010.
[61]
Arthus, N.M. Rabbit sero-anaphylaxis. Arch. Int. Physiol., 1909, 7, 471.
[62]
Prausnitz, C.; Küster, H. Studies on hypersensitivity. Zbl. Bakt. Abt. 1. Orig., 1921, 86, 160.
[63]
Rosenau, M.J.; Anderson, J.F. Hypersusceptibility. JAMA, 1906, 47, 1007.
[http://dx.doi.org/10.1001/jama.1906.25210130031001h]
[64]
Simons, F.E.R., Ed.; Ancestors of Allergy; Global Medical Communications: New York, 1994.
[65]
Kallós, P.; Kallós-Defner, L. The experimental basis for the detection and treatment of allergic diseases. Ergebn Hyg., 1937, 19, 178.
[http://dx.doi.org/10.1007/978-3-642-92391-3_4]
[66]
Giudice, G.; Cutrignelli, D.A.; Sportelli, P.; Limongelli, L.; Tempesta, A.; Gioia, G.D.; Santacroce, L.; Maiorano, E.; Favia, G. Rhinocerebral mucormycosis with orosinusal involvement: diagnostic and surgical treatment guidelines. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 264-269.
[http://dx.doi.org/10.2174/1871530316666161223145055] [PMID: 28017141]
[67]
Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Sardaro, N.; Lippolis, R.; Santacroce, L.; Coscia, M.F.; Pettini, F.; De Vito, D.; Scacco, S. Periodontal disease and bone pathogenesis: the crosstalk between cytokines and porphyromonas gingivalis. J. Biol. Regul. Homeost. Agents, 2015, 29(2), 273-281.
[PMID: 26122214]
[68]
Di Serio, F.; Lovero, R.; D’Agostino, D.; Nisi, L.; Miragliotta, G.; Contino, R.; Man, A.; Ciccone, M.M.; Santacroce, L. Evaluation of procalcitonin, vitamin D and C-reactive protein levels in septic patients with positive emocoltures. Our preliminary experience. Acta Med. Mediter., 2016, 32, 1911-1914.
[http://dx.doi.org/10.19193/0393-6384_2016_6_182]
[69]
Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens, 2019, 8(1), 15.
[http://dx.doi.org/10.3390/pathogens8010015] [PMID: 30696051]
[70]
Taylor, S.L.; Stratton, J.E.; Nordlee, J.A. Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. J. Toxicol. Clin. Toxicol., 1989, 27(4-5), 225-240.
[http://dx.doi.org/10.3109/15563658908994420] [PMID: 2689658]
[71]
Cazzolla, A.P.; De Franco, A.R.; Lacaita, M.; Lacarbonara, V. Efficacy of 4-year treatment of icon infiltration resin on postorthodontic white spot lesions. BMJ Case Rep., 2018, 2018bcr2018225639
[http://dx.doi.org/10.1136/bcr-2018-225639] [PMID: 30021744]
[72]
Mukai, K.; Tsai, M.; Starkl, P.; Marichal, T.; Galli, S.J. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol., 2016, 38(5), 581-603.
[http://dx.doi.org/10.1007/s00281-016-0565-1] [PMID: 27225312]
[73]
Olivera, A.; Beaven, M.A.; Metcalfe, D.D. Mast cells signal their importance in health and disease. J. Allergy Clin. Immunol., 2018, 142(2), 381-393.
[http://dx.doi.org/10.1016/j.jaci.2018.01.034] [PMID: 29454835]
[74]
Galli, S.J. The mast cell-IgE paradox: from homeostasis to anaphylaxis. Am. J. Pathol., 2016, 186(2), 212-224.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.025] [PMID: 26776074]
[75]
Johnzon, C.F.; Rönnberg, E.; Pejler, G. The role of mast cells in bacterial infection. Am. J. Pathol., 2016, 186(1), 4-14.
[http://dx.doi.org/10.1016/j.ajpath.2015.06.024] [PMID: 26477818]
[76]
Graham, A.C.; Temple, R.M.; Obar, J.J. Mast cells and influenza a virus: association with allergic responses and beyond. Front. Immunol., 2015, 6, 238.
[http://dx.doi.org/10.3389/fimmu.2015.00238] [PMID: 26042121]
[77]
Saluja, R.; Metz, M.; Maurer, M. Role and relevance of mast cells in fungal infections. Front. Immunol., 2012, 3, 146.
[http://dx.doi.org/10.3389/fimmu.2012.00146] [PMID: 22707950]
[78]
Tsai, M.; Starkl, P.; Marichal, T.; Galli, S.J. Testing the ‘toxin hypothesis of allergy’: mast cells, IgE, and innate and acquired immune responses to venoms. Curr. Opin. Immunol., 2015, 36, 80-87.
[http://dx.doi.org/10.1016/j.coi.2015.07.001] [PMID: 26210895]
[79]
Marichal, T.; Starkl, P.; Reber, L.L.; Kalesnikoff, J.; Oettgen, H.C.; Tsai, M.; Metz, M.; Galli, S.J. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity, 2013, 39(5), 963-975.
[http://dx.doi.org/10.1016/j.immuni.2013.10.005] [PMID: 24210352]
[80]
Starkl, P.; Marichal, T.; Gaudenzio, N.; Reber, L.L.; Sibilano, R.; Tsai, M.; Galli, S.J. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. J. Allergy Clin. Immunol., 2016, 137(1), 246-257.e11.
[http://dx.doi.org/10.1016/j.jaci.2015.08.005] [PMID: 26410782]
[81]
Groot Kormelink, T.; Arkesteijn, G.J.; van de Lest, C.H.; Geerts, W.J.; Goerdayal, S.S.; Altelaar, M.A.; Redegeld, F.A.; Nolte-’t Hoen, E.N.; Wauben, M.H. Mast cell degranulation is accompanied by the release of a selective subset of extracellular vesicles that contain mast cell-specific proteases. J. Immunol., 2016, 197(8), 3382-3392.
[http://dx.doi.org/10.4049/jimmunol.1600614] [PMID: 27619994]
[82]
Melo, F.R.; Wallerman, O.; Paivandy, A.; Calounova, G.; Gustafson, A.M.; Sabari, B.R.; Zabucchi, G.; Allis, C.D.; Pejler, G. Tryptase-catalyzed core histone truncation: a novel epigenetic regulatory mechanism in mast cells. J. Allergy Clin. Immunol., 2017, 140(2), 474-485.
[http://dx.doi.org/10.1016/j.jaci.2016.11.044] [PMID: 28108335]
[83]
Caughey, G.H. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol., 2016, 778, 44-55.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.045] [PMID: 25958181]
[84]
da Silva, E.Z.; Jamur, M.C.; Oliver, C. Mast cell function: a new vision of an old cell. J. Histochem. Cytochem., 2014, 62(10), 698-738.
[http://dx.doi.org/10.1369/0022155414545334] [PMID: 25062998]
[85]
Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast cell: a multi-functional master cell. Front. Immunol., 2016, 6, 620.
[http://dx.doi.org/10.3389/fimmu.2015.00620] [PMID: 26779180]
[86]
Ribatti, D.; Ranieri, G. Tryptase, a novel angiogenic factor stored in mast cell granules. Exp. Cell Res., 2015, 332(2), 157-162.
[http://dx.doi.org/10.1016/j.yexcr.2014.11.014] [PMID: 25478999]
[87]
Oldford, S.A.; Marshall, J.S. Mast cells as targets for immunotherapy of solid tumors. Mol. Immunol., 2015, 63(1), 113-124.
[http://dx.doi.org/10.1016/j.molimm.2014.02.020] [PMID: 24698842]
[88]
Oskeritzian, C.A. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol. Immunol., 2015, 63(1), 104-112.
[http://dx.doi.org/10.1016/j.molimm.2014.03.018] [PMID: 24766823]
[89]
Russi, A.E.; Walker-Caulfield, M.E.; Brown, M.A. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin. Immunol., 2018, 189, 14-22.
[http://dx.doi.org/10.1016/j.clim.2016.04.009] [PMID: 27108197]
[90]
Xu, Y.; Chen, G. Mast cell and autoimmune diseases. Mediators Inflamm., 2015, 2015246126
[http://dx.doi.org/10.1155/2015/246126] [PMID: 25944979]
[91]
Gilfillan, A.M.; Beaven, M.A. Regulation of mast cell responses in health and disease. Crit. Rev. Immunol., 2011, 31(6), 475-529.
[http://dx.doi.org/10.1615/CritRevImmunol.v31.i6.30] [PMID: 22321108]
[92]
Finkelman, F.D.; Khodoun, M.V.; Strait, R. Human IgE-independent systemic anaphylaxis. J. Allergy Clin. Immunol., 2016, 137(6), 1674-1680.
[http://dx.doi.org/10.1016/j.jaci.2016.02.015] [PMID: 27130857]
[93]
Dawicki, W.; Marshall, J.S. New and emerging roles for mast cells in host defence. Curr. Opin. Immunol., 2007, 19(1), 31-38.
[http://dx.doi.org/10.1016/j.coi.2006.11.006] [PMID: 17126541]
[94]
Kulka, M.; Sheen, C.H.; Tancowny, B.P.; Grammer, L.C.; Schleimer, R.P. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology, 2008, 123(3), 398-410.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02705.x] [PMID: 17922833]
[95]
Niyonsaba, F.; Ushio, H.; Hara, M.; Yokoi, H.; Tominaga, M.; Takamori, K.; Kajiwara, N.; Saito, H.; Nagaoka, I.; Ogawa, H.; Okumura, K. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol., 2010, 184(7), 3526-3534.
[http://dx.doi.org/10.4049/jimmunol.0900712] [PMID: 20190140]
[96]
Yu, Y.; Blokhuis, B.R.; Garssen, J.; Redegeld, F.A. Non-IgE mediated mast cell activation. Eur. J. Pharmacol., 2016, 778, 33-43.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.017] [PMID: 26164792]
[97]
Subramanian, H.; Gupta, K.; Ali, H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol., 2016, 138(3), 700-710.
[http://dx.doi.org/10.1016/j.jaci.2016.04.051] [PMID: 27448446]
[98]
Ferry, X.; Brehin, S.; Kamel, R.; Landry, Y. G protein-dependent activation of mast cell by peptides and basic secretagogues. Peptides, 2002, 23(8), 1507-1515.
[http://dx.doi.org/10.1016/S0196-9781(02)00090-6] [PMID: 12182955]
[99]
Tatemoto, K.; Nozaki, Y.; Tsuda, R.; Konno, S.; Tomura, K.; Furuno, M.; Ogasawara, H.; Edamura, K.; Takagi, H.; Iwamura, H.; Noguchi, M.; Naito, T. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem. Biophys. Res. Commun., 2006, 349(4), 1322-1328.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.177] [PMID: 16979137]
[100]
Fujisawa, D.; Kashiwakura, J.; Kita, H.; Kikukawa, Y.; Fujitani, Y.; Sasaki-Sakamoto, T.; Kuroda, K.; Nunomura, S.; Hayama, K.; Terui, T.; Ra, C.; Okayama, Y. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J. Allergy Clin. Immunol., 2014, 134(3), 622-633.e9.
[http://dx.doi.org/10.1016/j.jaci.2014.05.004] [PMID: 24954276]
[101]
Gupta, K.; Idahosa, C.; Roy, S.; Lee, D.; Subramanian, H.; Dhingra, A.; Boesze-Battaglia, K.; Korostoff, J.; Ali, H. Differential regulation of Mas-related G protein coupled receptor X2-mediated mast celldegranulation by antimicrobial host defense peptides and Porphyromonas gingivalis LPS. Infect. Immun., 2017, 85(10), e00246-e17.
[http://dx.doi.org/10.1128/IAI.00246-17]
[102]
Boyden, S.E.; Desai, A.; Cruse, G.; Young, M.L.; Bolan, H.C.; Scott, L.M.; Eisch, A.R.; Long, R.D.; Lee, C-C.R.; Satorius, C.L.; Pakstis, A.J.; Olivera, A.; Mullikin, J.C.; Chouery, E.; Mégarbané, A.; Medlej-Hashim, M.; Kidd, K.K.; Kastner, D.L.; Metcalfe, D.D.; Komarow, H.D. Vibratory urticaria associated with a missense variant in ADGRE2. N. Engl. J. Med., 2016, 374(7), 656-663.
[http://dx.doi.org/10.1056/NEJMoa1500611] [PMID: 26841242]
[103]
Abajian, M.; Schoepke, N.; Altrichter, S.; Zuberbier, T.; Maurer, M. Physical urticarias and cholinergic urticaria. Immunol. Allergy Clin. North Am., 2014, 34(1), 73-88.
[http://dx.doi.org/10.1016/j.iac.2013.09.010] [PMID: 24262690]
[104]
Saluja, R.; Zoltowska, A.; Ketelaar, M.E.; Nilsson, G. IL-33 and thymic stromal lymphopoietin in mast cell functions. Eur. J. Pharmacol., 2016, 778, 68-76.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.047] [PMID: 26051792]
[105]
Nagarkar, D.R.; Ramirez-Carrozzi, V.; Choy, D.F.; Lee, K.; Soriano, R.; Jia, G.; Abbas, A.R.; Modrusan, Z.; Pappu, R.; Arron, J.R. IL-13 mediates IL-33-dependent mast cell and type 2 innate lymphoid cell effects on bronchial epithelial cells. J. Allergy Clin. Immunol., 2015, 136(1), 202-205.
[http://dx.doi.org/10.1016/j.jaci.2015.01.036] [PMID: 25784274]
[106]
Kamijo, S.; Suzuki, M.; Hara, M.; Shimura, S.; Ochi, H.; Maruyama, N.; Matsuda, A.; Saito, H.; Nakae, S.; Suto, H.; Ichikawa, S.; Ikeda, S.; Ogawa, H.; Okumura, K.; Takai, T. Subcutaneous allergic sensitization to protease allergen is dependent on mast cells but not IL-33: distinct mechanisms between subcutaneous and intranasal routes. J. Immunol., 2016, 196(9), 3559-3569.
[http://dx.doi.org/10.4049/jimmunol.1500717] [PMID: 27001956]
[107]
Khodoun, M.V.; Tomar, S.; Tocker, J.E.; Wang, Y.H.; Finkelman, F.D. Prevention of food allergy development and suppression of established food allergy by neutralization of TSLP, IL-25 and IL-33. J. Allergy Clin. Immunol., 2018, 141, 171-9.e1.
[http://dx.doi.org/10.1016/j.jaci.2017.02.046] [PMID: 28552763]
[108]
Lefrançais, E.; Duval, A.; Mirey, E.; Roga, S.; Espinosa, E.; Cayrol, C.; Girard, J.P. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc. Natl. Acad. Sci. USA, 2014, 111(43), 15502-15507.
[http://dx.doi.org/10.1073/pnas.1410700111] [PMID: 25313073]
[109]
Shimokawa, C.; Kanaya, T.; Hachisuka, M.; Ishiwata, K.; Hisaeda, H.; Kurashima, Y.; Kiyono, H.; Yoshimoto, T.; Kaisho, T.; Ohno, H. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity, 2017, 46(5), 863-874.e4.
[http://dx.doi.org/10.1016/j.immuni.2017.04.017] [PMID: 28514691]
[110]
Galand, C.; Leyva-Castillo, J.M.; Yoon, J.; Han, A.; Lee, M.S.; McKenzie, A.N.J.; Stassen, M.; Oyoshi, M.K.; Finkelman, F.D.; Geha, R.S. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin. Immunol., 2016, 138(5), 1356-1366.
[http://dx.doi.org/10.1016/j.jaci.2016.03.056] [PMID: 27372570]
[111]
Morita, H.; Arae, K.; Unno, H.; Miyauchi, K.; Toyama, S.; Nambu, A.; Oboki, K.; Ohno, T.; Motomura, K.; Matsuda, A.; Yamaguchi, S.; Narushima, S.; Kajiwara, N.; Iikura, M.; Suto, H.; McKenzie, A.N.; Takahashi, T.; Karasuyama, H.; Okumura, K.; Azuma, M.; Moro, K.; Akdis, C.A.; Galli, S.J.; Koyasu, S.; Kubo, M.; Sudo, K.; Saito, H.; Matsumoto, K.; Nakae, S. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity, 2015, 43(1), 175-186.
[http://dx.doi.org/10.1016/j.immuni.2015.06.021] [PMID: 26200013]
[112]
Bandara, G.; Beaven, M.A.; Olivera, A.; Gilfillan, A.M.; Metcalfe, D.D. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur. J. Immunol., 2015, 45(11), 3034-3044.
[http://dx.doi.org/10.1002/eji.201545501] [PMID: 26256265]
[113]
Abebayehu, D.; Spence, A.J.; Qayum, A.A.; Taruselli, M.T.; McLeod, J.J.; Caslin, H.L.; Chumanevich, A.P.; Kolawole, E.M.; Paranjape, A.; Baker, B.; Ndaw, V.S.; Barnstein, B.O.; Oskeritzian, C.A.; Sell, S.A.; Ryan, J.J. Lactic acid suppresses IL-33-mediated mast cell inflammatory responses via hypoxia-inducible factor-1alpha-dependent miR-155 suppression. J. Immunol., 2016, 197(7), 2909-2917.
[http://dx.doi.org/10.4049/jimmunol.1600651] [PMID: 27559047]
[114]
Ndaw, V.S.; Abebayehu, D.; Spence, A.J.; Paez, P.A.; Kolawole, E.M.; Taruselli, M.T.; Caslin, H.L.; Chumanevich, A.P.; Paranjape, A.; Baker, B.; Barnstein, B.O.; Haque, T.T.; Kiwanuka, K.N.; Oskeritzian, C.A.; Ryan, J.J. Oskeritzian CA3, Ryan JJ, TGF-beta1 suppresses IL-33-induced mast cell function. J. Immunol., 2017, 199(3), 866-873.
[http://dx.doi.org/10.4049/jimmunol.1601983] [PMID: 28637902]
[115]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International union of basic and clinical pharmacology. XCVIII. histamine receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[116]
Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol., 2006, 147(Suppl. 1), S127-S135.
[http://dx.doi.org/10.1038/sj.bjp.0706440] [PMID: 16402096]
[117]
Reiner, P.B.; Kamondi, A. Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience, 1994, 59(3), 579-588.
[http://dx.doi.org/10.1016/0306-4522(94)90178-3] [PMID: 8008209]
[118]
Leurs, R.; Church, M.K.; Taglialatela, M. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin. Exp. Allergy, 2002, 32(4), 489-498.
[http://dx.doi.org/10.1046/j.0954-7894.2002.01314.x] [PMID: 11972592]
[119]
Hofstra, C.L.; Desai, P.J.; Thurmond, R.L.; Fung-Leung, W.P. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J. Pharmacol. Exp. Ther., 2003, 305(3), 1212-1221.
[http://dx.doi.org/10.1124/jpet.102.046581] [PMID: 12626656]
[120]
Liu, C.; Ma, X.; Jiang, X.; Wilson, S.J.; Hofstra, C.L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T.W. Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol. Pharmacol., 2001, 59(3), 420-426.
[http://dx.doi.org/10.1124/mol.59.3.420] [PMID: 11179434]
[121]
Winbery, S.L.; Lieberman, P.L. Histamine and antihistamines in anaphylaxis. Clin. Allergy Immunol., 2002, 17, 287-317.
[PMID: 12113221]
[122]
Lieberman, P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc., 2009, 30(5), 482-486.
[http://dx.doi.org/10.2500/aap.2009.30.3264] [PMID: 19843401]
[123]
Simons, F.E.; Ardusso, L.R.; Bilò, M.B.; El-Gamal, Y.M.; Ledford, D.K.; Ring, J.; Sanchez-Borges, M.; Senna, G.E.; Sheikh, A.; Thong, B.Y. World allergy organization. World allergy organization anaphylaxis guidelines: summary. J. Allergy Clin. Immunol., 2011, 127(3), 587-93.e1-22.
[http://dx.doi.org/10.1016/j.jaci.2011.01.038] [PMID: 21377030]
[124]
Bryce, P.J.; Falahati, R.; Kenney, L.L.; Leung, J.; Bebbington, C.; Tomasevic, N.; Krier, R.A.; Hsu, C.L.; Shultz, L.D.; Greiner, D.L.; Brehm, M.A. Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J. Allergy Clin. Immunol., 2016, 138(3), 769-779.
[http://dx.doi.org/10.1016/j.jaci.2016.01.049] [PMID: 27139822]
[125]
Ito, R.; Takahashi, T.; Katano, I.; Kawai, K.; Kamisako, T.; Ogura, T.; Ida-Tanaka, M.; Suemizu, H.; Nunomura, S.; Ra, C.; Mori, A.; Aiso, S.; Ito, M. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J. Immunol., 2013, 191(6), 2890-2899.
[http://dx.doi.org/10.4049/jimmunol.1203543] [PMID: 23956433]
[126]
Bibi, S.; Zhang, Y.; Hugonin, C.; Mangean, M.D.; He, L.; Wedeh, G.; Launay, J.M.; Van Rijn, S.; Würdinger, T.; Louache, F.; Arock, M. A new humanized in vivo model of KIT D816V+ advanced systemic mastocytosis monitored using a secreted luciferase. Oncotarget, 2016, 7(50), 82985-83000.
[http://dx.doi.org/10.18632/oncotarget.12824] [PMID: 27783996]
[127]
Reber, L.L.; Marichal, T.; Galli, S.J. New models for analyzing mast cell functions in vivo. Trends Immunol., 2012, 33(12), 613-625.
[http://dx.doi.org/10.1016/j.it.2012.09.008] [PMID: 23127755]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy