Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Incorporating K-mers Highly Correlated to Epigenetic Modifications for Bayesian Inference of Gene Interactions

Author(s): Dariush Salimi* and Ali Moeini

Volume 16, Issue 3, 2021

Published on: 28 July, 2020

Page: [484 - 492] Pages: 9

DOI: 10.2174/1574893615999200728193621

Price: $65

Abstract

Objective: A gene interaction network, along with its related biological features, has an important role in computational biology. Bayesian network, as an efficient model, based on probabilistic concepts is able to exploit known and novel biological casual relationships between genes. The success of Bayesian networks in predicting the relationships greatly depends on selecting priors.

Methods: K-mers have been applied as the prominent features to uncover the similarity between genes in a specific pathway, suggesting that this feature can be applied to study genes dependencies. In this study, we propose k-mers (4,5 and 6-mers) highly correlated with epigenetic modifications, including 17 modifications, as a new prior for Bayesian inference in the gene interaction network.

Result: Employing this model on a network of 23 human genes and on a network based on 27 genes related to yeast resulted in F-measure improvements in different biological networks.

Conclusion: The improvements in the best case are 12%, 36%, and 10% in the pathway, coexpression, and physical interaction, respectively.

Keywords: Epigenetic modifications, K-mers, network inference, bayesian network, gene interaction, F-measure.

« Previous
Graphical Abstract

[1]
Chai LE. Mohamad MS, Deris S, Chong CK, Choon YW. Modelling gene networks by a dynamic bayesian network-based model with time lag estimation. Springer 2013; pp. 7867..
[2]
Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol 2014; 14(14): 546-51.
[3]
Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes 2010; 1(1): 38-69.
[http://dx.doi.org/10.3390/genes1010038] [PMID: 24710010]
[4]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[5]
Yu H-J. Segmented K-mer and its application on similarity analysis of mitochondrial genome sequences. Gene 2013; 518(2): 419-24.
[http://dx.doi.org/10.1016/j.gene.2012.12.079] [PMID: 23353775]
[6]
Peña CJ, Nestler EJ. Progress in epigenetics of depression. Prog Mol Biol Transl Sci 2018; 157: 41-66.
[http://dx.doi.org/10.1016/bs.pmbts.2017.12.011] [PMID: 29933956]
[7]
Zhang Y, Lv J, Liu H, et al. HHMD: the human histone modification database. Nucleic Acids Res 2010; 38(Database issue): D149-54.
[8]
Mariño-Ramírez L, Levine KM, Morales M, et al. The histone database: an integrated resource for histones and histone fold-containing proteins. Database 2011; 2011bar048
[9]
Khare SP, Habib F, Sharma R, Gadewal N, Gupta S, Galande S. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res 2012; 40(Database issue): D337-42.
[10]
Pei B, Shin DG. Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models. J Comput Biol 2012; 19(12): 1324-34.
[http://dx.doi.org/10.1089/cmb.2011.0194] [PMID: 23210479]
[11]
Gao S, Wang X. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data. BMC Bioinformatics 2011; 12: 359.
[http://dx.doi.org/10.1186/1471-2105-12-359] [PMID: 21884587]
[12]
Pham TH, Ho TB, Tran DH, et al. Prediction of histone modifications in DNA sequences IEEE 7th International Symposium on BioInformatics and Bio Engineering. IEEE: Boston, MA, USA. 2007..
[13]
Greil F. Boolean networks as modeling framework. Front Plant Sci 2012; 3: 178.
[http://dx.doi.org/10.3389/fpls.2012.00178]
[14]
Zhang Y, Pu Y, Zhang H, Su Y, Zhang L, Zhou J. Using gene expression programming to infer gene regulatory networks from time-series data. Comput Biol Chem 2013; 47: 198-206.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.09.004] [PMID: 24140883]
[15]
Penfold CA, Gherman I, Sybirna A, Wild DL. Inferring gene regulatory networks from multiple datasets. Methods Mol Biol 2019; 1883: 251-82.
[http://dx.doi.org/10.1007/978-1-4939-8882-2_11] [PMID: 30547404]
[16]
Imani M, Braga-Neto UM. Control of gene regulatory networks using bayesian inverse reinforcement learning . IEEE/ACM Trans Comput Biol Bioinform 2019; 16(4): 1250-61..
[17]
Isci S, Dogan H, Ozturk C, Otu HH. Bayesian network prior: network analysis of biological data using external knowledge. Bioinformatics 2014; 30(6): 860-7.
[http://dx.doi.org/10.1093/bioinformatics/btt643] [PMID: 24215027]
[18]
Rishishwar L, Conley AB, Vidakovic B, Jordan IK. A combined evidence Bayesian method for human ancestry inference applied to Afro-Colombians. Gene 2015; 574(2): 345-51.
[http://dx.doi.org/10.1016/j.gene.2015.08.015] [PMID: 26275940]
[19]
Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122(4): 517-27.
[http://dx.doi.org/10.1016/j.cell.2005.06.026] [PMID: 16122420]
[20]
Salimi D, Moeini A, Masoudi-Nejad A. Sequence-based 5-mers highly correlated to epigenetic modifications in genes interactions. Genes Genomics 2018; 40(12): 1363-71.
[http://dx.doi.org/10.1007/s13258-018-0730-0] [PMID: 30187226]
[21]
Zheng J, Chaturvedi I, Rajapakse JC. Integration of epigenetic data in bayesian network modeling of gene regulatory network Pattern Recognition in Bioinformatics Lecture Notes in Computer ScienceBerlin. Heidelberg: Springer 2011; pp. 87-96.
[http://dx.doi.org/10.1007/978-3-642-24855-9_8]
[22]
Chen H, Maduranga DAK, Mundra PA, et al. Integrating epigenetic prior in dynamic Bayesian network for gene regulatory network inference Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Singapore, Singapore: IEEE 2013.
[http://dx.doi.org/10.1109/CIBCB.2013.6595391]
[23]
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128(4): 669-81.
[http://dx.doi.org/10.1016/j.cell.2007.01.033] [PMID: 17320505]
[24]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[25]
Chae H, Park J, Lee SW, Nephew KP, Kim S. Comparative analysis using K-mer and K-flank patterns provides evidence for CpG island sequence evolution in mammalian genomes. Nucleic Acids Res 2013; 41(9): 4783-91.
[http://dx.doi.org/10.1093/nar/gkt144] [PMID: 23519616]
[26]
Fogel GB, Weekes DG, Varga G, et al. Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Res 2004; 32(13): 3826-35.
[http://dx.doi.org/10.1093/nar/gkh713] [PMID: 15266008]
[27]
Oberbeckmann E, Wolff M, Krietenstein N, et al. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res 2019; 29(12): 1996-2009.
[http://dx.doi.org/10.1101/gr.253419.119] [PMID: 31694866]
[28]
Wen J, Chan RH, Yau SC, He RL, Yau SS. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences. Gene 2014; 546(1): 25-34.
[http://dx.doi.org/10.1016/j.gene.2014.05.043] [PMID: 24858075]
[29]
Meher PK, Sahu TK, Rao AR. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier. Gene 2016; 592(2): 316-24.
[http://dx.doi.org/10.1016/j.gene.2016.07.010] [PMID: 27393648]
[30]
Pham TH, Tran DH, Ho TB, Satou K, Valiente G. Qualitatively predicting acetylation and methylation areas in DNA sequences. Genome Inform 2005; 16(2): 3-11.
[31]
Yin Q, Wu M, Liu Q, Lv H, Jiang R. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics 2019; 20(Suppl. 2): 193.
[http://dx.doi.org/10.1186/s12864-019-5489-4] [PMID: 30967126]
[32]
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2016; 44(D1): D67-72.
[http://dx.doi.org/10.1093/nar/gkv1276] [PMID: 26590407]
[33]
Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129(4): 823-37.
[http://dx.doi.org/10.1016/j.cell.2007.05.009] [PMID: 17512414]
[34]
Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40(7): 897-903.
[http://dx.doi.org/10.1038/ng.154] [PMID: 18552846]
[35]
Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function . Nucleic Acids Res 2010; 38(Web Server issue): W214-20..
[http://dx.doi.org/10.1093/nar/gkq537] [PMID: 20576703]
[36]
Hardy OT, Perugini RA, Nicoloro SM, et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis 2011; 7(1): 60-7.
[http://dx.doi.org/10.1016/j.soard.2010.05.013] [PMID: 20678967]
[37]
Liu F, Zhang SW, Guo WF, Wei ZG, Chen L. Inference of gene regulatory network based on local bayesian networks . PLOS Comput Biol 2016; 12(8): e1005024..
[http://dx.doi.org/10.1371/journal.pcbi.1005024] [PMID: 27479082]
[38]
Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from DNA motifs. Nat Methods 2015; 12(3): 265-72.
[http://dx.doi.org/10.1038/nmeth.3065]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy