Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New Selenonapthaquinone-Based Copper (II) Complexes as the Next-Generation Photochemotherapeutic Agents

Author(s): Longjam R. Devi, Md. Kausar Raza, Dulal Musib and Mithun Roy*

Volume 21, Issue 1, 2021

Published on: 27 July, 2020

Page: [33 - 41] Pages: 9

DOI: 10.2174/1871520620999200727204237

Price: $65

Abstract

Background and Objective: Photoactive transition metal complexes like copper complexes find great interest in promoting metal-based photochemotherapeutic agents. In the present study, we explored the photocytotoxic efficacy of new selenylnaphthoquinone-based copper (II) complexes that provide a phenomenal platform in making an effective photo-chemotherapeutic agent via PDT in the clinical field of cancer therapy.

Methods: Three new copper(II) complexes (1-3) were synthesized in 40-60% yield and characterized analytically/ spectroscopically. ATCC® Normal Adult Human Primary Epidermal Keratinocytes were grown in Dermal Cell Basal Media supplemented with Keratinocyte Growth Kit components, to propagate keratinocytes in serum- free (not animal free) conditions. Anticancer activity of the complexes was studied using MTT (3- [4,5- dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. The intracellular ROS (1O2) generation was studied by using Flow Cytometric Analysis (FACS) on HaCaT cells using cell accessible non-polar 2′,7′- Dichlorofluorescein Diacetate (DCFH-DA) dye. The Acridine Orange/Ethidium Bromide (AO/EB) dual staining assay was performed for detecting apoptosis in HaCaT cells. Several photophysical studies probing the generation of singlet oxygen was also carried out. We have performed Time-Dependent Density Functional Theory (TD-DFT) calculations using unrestricted B3LYP to understand the mechanism of type-II process.

Results: All the complexes were remarkably cytotoxic in HaCaT cells with IC50, 1-4μM under visible light with comparing lower dark toxicity. The presence of low-lying and long-lived triplet excited state allowed effective intersystem crossing and subsequent generation of singlet oxygen, which was the primary cytotoxic species responsible for oxidative stress and apoptosis. The experimental findings are in good agrrement with the computational analysis (TD-DFT).

Conclusion: The remarkably enhanced cytotoxicity of the new selenyl copper (II) complexes under the visible light probed the role of Se in photosensitized generation of singlet oxygen which was responsible for apoptosis in HaCaT cells. The results in the present work are of paramount importance in developing next generation copper(II)-based PDT agents.

Keywords: Coppe (II) complexes, selenium, singlet oxygen (1O2), photo-physical studies, DFT and TD-DFT, photocytotoxicity, apoptosis.

Graphical Abstract

[2]
(a)Atif, M.; Farood, W.A.; Siddiqui, M.A.; Al-Khedhairy, A.A. 2-Preliminary study of spectral features of normal and malignant cell cultures. Laser Phys., 2016, 26045601
(b)Atif, M.; Fakhar-e-Alam, M.; Abbas, N.; Siddiqui, M.A.; Ansari, A.A.; Al-Khedhairy, A.A.; Wang, Z.M. In vitro cytotoxicity of mesoporous SiO2@Eu(OH)3 core-shell nanospheres in MCF-7. J. Nanomater.2016, 2016, Article ID 7691861.
[3]
(a)Yang, Y.; Zheng, Z.; Zhang, D.; Zhang, X. Microwave catalytic activities of supported perovskite catalysts MOx/LaCo0.5Cu0.5O3@CM (M=Mg, Al) for salicylic acid degradation. J. Colloid Interf Sci., 2020, 564, 392-405.
(b)Yang, Y.; Yang, M.; Zheng, Z.; Zhang, X. Highly effective adsorption removal of Perfluorooctanoic Acid (PFOA) from aqueous solution using calcined layer-like Mg-Al, hydrotalcites nanosheets. Environ. Sci. Pollut. Res. Int., 2020, 27(12), 13396-13408.
[4]
Atif, M.; Firdous, S.; Khurshid, A.; Noreen, L.; Zaidi, S.S.Z.; Ikram, M. In vitro study of 5-aminolevulinic acid-based photodynamic therapy for apoptosis in human cervical HeLa cell line. Laser Phys. Lett., 2009, 6, 886-891.
[http://dx.doi.org/10.1002/lapl.200910087]
[5]
a)Atif, M.; Fakhar®e®Alam, M.; Firdous, S.; Zaidi, S.S.Z.; Suleman, R.; Ikram, M. Study of the efficacy of 5®‐ALA mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD). Laser Phys. Lett., 2010, 7, 757-764.
b)Atif, M.; Firdous, S.; Mahmood, R.; Fakhar-e-Alam, M.; Zaidi, S.S.Z.; Suleman, R.; Ikram, M.; Nawaz, M. Cytotoxic and photocytotoxic effect of Photofrin® on human laryngeal carcinoma (Hep2c) cell line. Laser Phys., 2011, 21, 1235-1242.
[http://dx.doi.org/10.1134/S1054660X11130020]
[6]
a)Mandy, D.; Ba, L.A.; Lilienthal, N.; Nicco, C.; Scherer, C.; Abbas, M.; Peer Zada, A.A.; Coriat, R.; Burkholz, T.; Wessjohann, L.; Diederich, M.; Batteux, F.; Herling, M.; Jacob, C. Synthesis and selective anti-cancer activity of organochalcogen based redox catalysts. J. Med. Chem., 2010, 53, 6954-6963.
b)Zhang, X.; Lv, X.; Bi, F.; Lu, G.; Wang, Y. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors Mol. Catal., 2020, 482110701
c)Zhang, C.; Huang, H.; Li, G.; Song, L.; Li, X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catal. Today, 2019, 327, 374-381.
d)Zhou, M.; Wang, Z.; Sun, Q.; Wang, J.; Zhang, C.; Chen, D.; Li, X. High performance Ag-Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl. Mater. Interfaces, 2019, 11, 46875-46885.
e)Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Lia, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen Sep. Purify Technol., 2019, 209, 1016-1026.
[7]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79, 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087]
[8]
Smith, P.J.; Tappel, A.L.; Chow, C.K. Glutathione peroxidase activity as a function of dietary selenomethionine. Nature, 1974, 247(5440), 392-393.
[http://dx.doi.org/10.1038/247392a0] [PMID: 4150399]
[9]
Fülöp, A.; Peng, X.; Greenberg, M.M.; Mokhir, A. A nucleic acid-directed, red light-induced chemical reaction. Chem. Commun. (Camb.), 2010, 46(31), 5659-5661.
[http://dx.doi.org/10.1039/c0cc00744g] [PMID: 20574574]
[10]
Bonnet, R. Chemical Aspects of Photodynamic Therapy, 1st ed; Gordon & Breach: Amsterdam, The Netherlands, 2000.
[http://dx.doi.org/10.1201/9781482296952]
[11]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[12]
Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer, 2006, 6(7), 535-545.
[http://dx.doi.org/10.1038/nrc1894] [PMID: 16794636]
[13]
Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 2016, 45(23), 6488-6519.
[http://dx.doi.org/10.1039/C6CS00616G] [PMID: 27722560]
[14]
Heinemann, F.; Karges, J.; Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res., 2017, 50(11), 2727-2736.
[http://dx.doi.org/10.1021/acs.accounts.7b00180] [PMID: 29058879]
[15]
(a)Hwang, H.S.; Shin, H.; Han, J.; Na, K. Combination of Photodynamic Therapy (PDT) and anti-tumor immunity in cancer therapy. J. Pharm. Investigation,, 2018, 48, 143-151.
(b)Lucky, S.S.; Idris, N.M.; Li, Z.; Huang, K.; Soo, K.C.; Zhang, Y. Titania coated upconversion nanoparticles for near-Infrared light triggered photodynamic therapy. ACS Nano, 2015, 9, 191-205.
[16]
Oleinick, N.L.; Morris, R.L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci., 2002, 1(1), 1-21.
[http://dx.doi.org/10.1039/b108586g] [PMID: 12659143]
[17]
Bonnet, S. Why develop photoactivated chemotherapy? Dalton Trans., 2018, 47(31), 10330-10343.
[http://dx.doi.org/10.1039/C8DT01585F] [PMID: 29978870]
[19]
(a)Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials, 2013, 6, 817-840.
(b)Iqbal, S. Fakhar-e- Alam, M.; Akbar, F.; Shafiq, M.; Atif, M.; Amin, N.; Ismail, M.; Hanif, A.; Farooq, W.A. Application of silver oxide nanoparticles for the treatment of cancer. ‎. J. Mol. Struct., 2019, 1189, 203-209.
(c)Atif, M.; Farooq, W.A.; Siddiqui, M.A.; Al-Khedhairy, A.A. Preliminary study of spectral features of normal and malignant cell cultures. Laser Phys., 2016, 26045601
[20]
(a)Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 2011, 40, 340-362.
(b)Iqbal, S.; Fakhar-e-Alama, M.; Atif, M.; Amin, N.; Alimgeer, K.S.; Alia, A. Aqrab-ul-Ahmad, Hanif, A.; Farooq, W.A. Structural, morphological, antimicrobial, and in vitro photodynamic therapeutic assessments of novel Zn+2-substituted cobalt ferrite nanoparticles. Results Phys., 2019, 15102529
[21]
(a)Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115, 1990-2042.
(b)Mao, J.; Zhang, Y.; Zhu, J.; Zhang, C.; Guo, Z. Molecular combo of photodynamic therapeutic agent silicon(IV) phthalocyanine and anticancer drug cisplatin. Chem. Commun. (Camb.), 2009, 8, 908-910.
[22]
Adamson, A.W.; Waltz, W.L.; Zinato, E.; Watts, D.W.; Fleischauer, P.D.; Lindholm, R.D. Photochemistry of transition-metal coordination compounds. Chem. Rev., 1968, 68, 541-585.
[http://dx.doi.org/10.1021/cr60255a002]
[23]
Bock, C.R.; Meyer, T.J.; Whitten, D.G. Photochemistry of transition metal complexes. Mechanism and efficiency of energy conversion by electron-transfer quenching. J. Am. Chem. Soc., 1975, 97, 2909-2911.
[http://dx.doi.org/10.1021/ja00843a055]
[24]
Roundhill, D.M. Photochemistry and Photophysics of Metal Complexes; Springer-Verlag: US, 1994.
[http://dx.doi.org/10.1007/978-1-4899-1495-8]
[25]
Chen, J.; Zhang, H.; Tomov, I.V.; Ding, X.; Rentzepis, P.M. Photochemistry and electron-transfer mechanism of transition metal oxalato complexes excited in the charge transfer band. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15235-15240.
[http://dx.doi.org/10.1073/pnas.0806990105] [PMID: 18832175]
[26]
Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Bioinorganic photochemistry: Frontiers and mechanisms. Chem. Rev., 2005, 105(6), 2647-2694.
[http://dx.doi.org/10.1021/cr030707e] [PMID: 15941225]
[27]
Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828.
[http://dx.doi.org/10.1021/acs.chemrev.8b00211] [PMID: 30295467]
[28]
(a)Farrer, N.J.; Salassa, L.; Sadler, P.J. Photoactivated chemotherapy (PACT): The potential of excited-state d-block metals in medicine. Dalton Trans., 2009, 10690-10701.
(b)Imberti, C.; Zhang, P.; Huang, H.; Sadler, P.J. New designs for phototherapeutic transition metal complexes. Angew. Chem. Int. Ed., 2020, 59, 61-73.
[29]
(a)Basu, U.; Khan, I.; Hussain, A.; Kondaiah, P.; Chakravarty, A.R. Photodynamic effect in near-IR light by a remarkably photocytotoxiciron(III) cellular imaging agent. Angew. Chem. Int. Ed., 2012, 51, 2658-2661.
(b)Chanu, B.S.; Banerjee, S.; Roy, M. Potent anticancer activity of photo-activated oxo-bridged diiron(III) complexes. Eur. J. Med. Chem., 2017, 125, 816-824.
(c)Musib, D.; Raza, M.K.; Martina, K.; Roy, M. Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron, 2019, 172, 125-131.
[30]
(a)Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res., 2015, 48, 2075-2083.
(b)Bhattacharyya, U.; Kumar, B.; Garai, A.; Bhattacharyya, A.; Kumar, A.; Banerjee, S.; Kondaiah, P.; Chakravarty, A.R. Curcumin drug stabilized in oxidovanadium(IV)-BODIPY conjugates formitochondria-targeted Photocytotoxicity. Inorg. Chem., 2017, 56, 12457-12468.
[31]
(a)Musib, D.; Banerjee, S.; Garai, A.; Soraisam, U.; Roy, M. Synthesis, theory and in vitro photodynamic activities of new copper(II)-histidinito complexes. ChemistrySelect, 2018, 3, 2767-2775.
(b)Musib, D.; Raza, M.K.; Kundu, S.; Roy, M. Modulating in vitro photodynamic activities of copper(II) complexes. Eur. J. Inorg. Chem., 2018, 2018, 2011-2018.
[http://dx.doi.org/10.1002/ejic.201800081]
[32]
Mukherjee, N.; Podder, S.; Mitra, K.; Majumdar, S.; Nandi, D.; Chakravarty, A.R. Targeted photodynamic therapy in visible light using BODIPY-appended copper(ii) complexes of a vitamin B6 Schiff base. Dalton Trans., 2018, 47(3), 823-835.
[http://dx.doi.org/10.1039/C7DT03976J] [PMID: 29250622]
[33]
(a)Mukherjee, N.; Podder, S.; Banerjee, S.; Majumdar, S.; Nandi, D.; Chakravarty, A.R. Targeted photocytotoxicity by copper(II) complexes having vitamin B6 and photoactive acridine moieties. Eur. J. Med. Chem., 2016, 122, 497-509.
(b)Goswami, T.K.; Chakravarthi, B.V.S.K.; Roy, M.; Karande, A.A.; Chakravarty, A.R. Ferrocene-conjugated L-tryptophan copper (II) complexes of phenanthroline bases showing DNA photocleavage activity and cytotoxicity. Inorg. Chem., 2011, 50, 8452-8464.
[34]
Bhattacharyya, A.; Dixit, A.; Banerjee, S.; Roy, B.; Kumar, A.; Karande, A.A.; Chakravarty, A.R. BODIPY appended copper (II) complexes for cellular imaging and singlet oxygen mediated anticancer activity in visible light. RSC Advances, 2016, 6, 104474-104482.
[http://dx.doi.org/10.1039/C6RA23118G]
[35]
Devi, L.R.; Musib, D.; Raza, M.K.; Roy, M. Nucleus targeting anthraquinone-based copper (II) complexes as the potent PDT agents: Synthesis, photo-physical and theoretical evaluation. Inorg. Chim. Acta, 2020, 500, 119-208.
[http://dx.doi.org/10.1016/j.ica.2019.119208]
[36]
Acharya, R.; Cekli, S.; Zeman, C.J., IV; Altamimi, R.M.; Schanze, K.S. Effect of selenium substitution on intersystem crossing in π-conjugated donor-acceptor-donor chromophores: The LUMO matters the most. J. Phys. Chem. Lett., 2016, 7(4), 693-697.
[http://dx.doi.org/10.1021/acs.jpclett.5b02902] [PMID: 26822061]
[37]
Rodriguez-Serrano, A.; Rai-Constapel, V.; Daza, M.C.; Doerr, M.; Marian, C.M. Internal heavy atom effects in phenothiazinium dyes: enhancement of intersystem crossing via vibronic spin-orbit coupling. Phys. Chem. Chem. Phys., 2015, 17(17), 11350-11358.
[http://dx.doi.org/10.1039/C5CP00194C] [PMID: 25845532]
[38]
Niculescu, V.C.; Muresan, N.; Salageanu, A.; Tucureanu, C.; Mrinescu, G.; Chirigiu, L.; Lepadatu, C. Novel 2,3-disubstituted 1,4-naphthoquinone derivatives and their metal complexes - Synthesis and in vitro cytotoxic effect against mouse fibrosarcoma L929 cells. J. Organomet. Chem., 2012, 700, 13-19.
[http://dx.doi.org/10.1016/j.jorganchem.2011.10.036]
[39]
Liu, K.K.; Li, J.; Sakya, S. Synthetic approaches to the 2003 new drugs. Mini Rev. Med. Chem., 2004, 4(10), 1105-1125.
[http://dx.doi.org/10.2174/1389557043402900] [PMID: 15579116]
[40]
Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467.
[http://dx.doi.org/10.2174/1389557053765556] [PMID: 15892687]
[41]
(a)Levanova, E.P.; Vakhrina, V.S.; Grabel’nykh, V.A.; Rozentsveig, I.B.; Russavskaya, N.V.; Albanov, A.; Sanzheeva, I.E.R.; Korchevin, N.A. New approaches to synthesis of unsaturated organochalcogen compounds with two different chalcogen atoms. Russ. J. Gen. Chem., 2014, 84, 2130-2137.
(b)Levanova, P.; Grabel’nykh, V.A.; Vakhrina, V.S.; Rozentsveig, I.B.; Russavskaya, N.V.; Albanov, A.I.; Klyba, L.V.; Tarasova, O.A.; Sanzheeva, E.R.; Korchevin, N.A. Synthesis of unsaturated organoselenium compounds via the reaction of organic diselenides with 2,3-dichloro-1-propene in the hydrazine hydrate-KOH system. Russ. J. Gen. Chem., 2013, 83, 1660-1665.
[http://dx.doi.org/10.1134/S1070363213090065]
[42]
Ali, I.; Wani, W.A.; Saleem, K. Empirical formulae to molecular structures of metal complexes by molar conductance. Metal-Org. Nano-Met. Chem, 2013, 43, 1162-1170.
[43]
Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds; A John Wiley Sons, Inc.: Hoboken, New Jersey , 2009.
[44]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery J.r, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, J.K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, 2009, Rev. A.02., Gaussian, Inc., Wallingford; Roy, D.D.; Todd, A.K.; John, M.M. Gauss View 5.0.8., 2009, Gaussian, Inc., Wallingford; Becke, A.D. J. Chem. Phys., 1993, 98, 5648-5652.
[45]
GaussView 5.0; Gaussian Inc.:. Wallingford, C.T, USA , 2009.
[46]
Saha, S.; Majumdar, R.; Roy, M.; Dighe, R.R.; Chakravarty, A.R. An iron complex of dipyridophenazine as a potent photocytotoxic agent in visible light. Inorg. Chem., 2009, 48(6), 2652-2663.
[http://dx.doi.org/10.1021/ic8022612] [PMID: 19267508]
[47]
Raza, M.K.; Mitra, K.; Shettar, A.; Basu, U.; Kondaiah, P.; Chakravarty, A.R. Photoactive platinum(ii) β-diketonates as dual action anticancer agents. Dalton Trans., 2016, 45(33), 13234-13243.
[http://dx.doi.org/10.1039/C6DT02590K] [PMID: 27488950]
[48]
Gou, Y.; Qi, J.; Ajayi, J.P.; Zhang, Y.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Developing anticancer copper(II) pro-drugs based on the nature of cancer cells and the human serum albumin carrier IIA subdomain. Mol. Pharm., 2015, 12(10), 3597-3609.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00314] [PMID: 26354410]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy