Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Review of Bioactive Compounds Extracted from Carica papaya linn

Author(s): Yee H. Chai, Suzana Yusup* and Muhammad S.H. Ruslan

Volume 16, Issue 9, 2020

Page: [1287 - 1298] Pages: 12

DOI: 10.2174/1573401316999200727142506

Price: $65

Abstract

The presence of phytochemical constituents, such as alkaloids, flavonoids, polyphenols, fatty acids, etc., within various parts of Carica papaya is highly valuable for various health and medicinal benefits. This paper aimed to review various sample preparation and extraction methods, including conventional extraction and greener extraction methods of phytochemical compounds from Carica papaya. In this review, the methodology used was based on comprehensive data searched from the Web of Science for literature review and technology benchmarking. An in-depth discussion, including advantages and drawbacks, of each sample and extraction methods of Carica papaya Linn. are presented and outlined. Furthermore, key solutions were proposed to overcome issues faced in conventional extraction methods and the challenges encountered in larger extraction scale ratios were also presented to complement the movement towards more sustainable and greener extraction processes.

Keywords: Carica papaya Linn, extraction methods, green extraction technology, microwave-assisted extraction, phytochemical compounds, supercritical fluid extraction, ultrasonic-assisted extraction.

Graphical Abstract

[1]
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report 1991; 9: 208-18.
[http://dx.doi.org/10.1007/BF02672069]
[2]
FAOSTAT Food and Agriculture Organization of the United Nations 2017. Available from: http://www.fao.org/about/en/
[3]
Evans EA, Ballen FH. An Overview of Global Papaya Production, Trade, and Consumption 2015. Available from: https://edis.ifas. ufl.edu/pdffiles/FE/FE91300.pdf
[4]
FAO. Global food losses and food waste - Extent, causes and prevention 2011. Available from: https://ec.europa.eu/knowledge4 policy/publication/global-food-losses-food-waste-extent-causes-prevention_en
[5]
Sheikh N, Younas N, Akhtar T. Effect of Carica papaya leaf formulation on hematology and serology of normal rat. Biol 2014; 60: 139-42.
[6]
Owoyele BV, Adebukola OM, Funmilayo AA, Soladoye AO. Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacology 2008; 16(4): 168-73.
[http://dx.doi.org/10.1007/s10787-008-7008-0] [PMID: 18759075]
[7]
Otsuki N, Dang NH, Kumagai E, Kondo A, Iwata S, Morimoto C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 2010; 127(3): 760-7.
[http://dx.doi.org/10.1016/j.jep.2009.11.024] [PMID: 19961915]
[8]
Imaga NA, Gbenle GO, Okochi VI, et al. Phytochemical and antioxidant nutrient constituents of Carica papaya and Parquetina nigrescens extracts. Sci Res Essays 2010; 5: 2201-5.
[9]
Kovendan K, Murugan K, Panneerselvam C, et al. Antimalarial activity of Carica papaya (Family : Caricaceae) leaf extract against Plasmodium falciparum Antimalarial activity of Carica papaya (Family : Caricaceae) leaf extract against Plasmodium falciparum. Asian Pac J Trop Dis 2012; 306-11.
[http://dx.doi.org/10.1016/S2222-1808(12)60171-6]
[10]
Julianti T, Oufir M, Hamburger M. Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves. Planta Med 2014; 80(13): 1138-42.
[http://dx.doi.org/10.1055/s-0034-1382948] [PMID: 25153096]
[11]
Senthilvel P, Lavanya P, Kumar KM, et al. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation 2013; 9(18): 889-95.
[http://dx.doi.org/10.6026/97320630009889] [PMID: 24307765]
[12]
Singh O, Ali M. Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian J Pharm Sci 2011; 73(4): 447-51.
[http://dx.doi.org/10.4103/0250-474X.95648] [PMID: 22707832]
[13]
Lohiya NK, Manivannan B, Mishra PK, et al. Chloroform extract of Carica papaya seeds induces long-term reversible azoospermia in langur monkey. Asian J Androl 2002; 4(1): 17-26.
[PMID: 11907624]
[14]
Nwaehujor CO, Ode JO, Ekwere MR, Udegbunam RI. Anti-fertility effects of fractions from Carica papaya (Pawpaw) Linn. methanol root extract in male Wistar rats. Arab J Chem 2019; 21(7): 1563-8.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.018]
[15]
Rivera-Pastrana DM, Yahia EM, González-Aguilar GA. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J Sci Food Agric 2010; 90(14): 2358-65.
[http://dx.doi.org/10.1002/jsfa.4092] [PMID: 20632382]
[16]
Ng LY, Ang YK, Khoo HE, Yim HS. Influence of Different Extraction Parameters on Antioxidant Properties of Carica papaya Peel and Seed. Res J Phytochem 2012; 6: 61-74.
[http://dx.doi.org/10.3923/rjphyto.2012.61.74]
[17]
Barroso PTWW, de Carvalho PP, Rocha TB, Pessoa FLPP, Azevedo DA, Mendes MF. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2. Biotechnol Rep (Amst) 2016; 11: 110-6.
[http://dx.doi.org/10.1016/j.btre.2016.08.004] [PMID: 28352547]
[18]
Zunjar V, Dash RP, Jivrajani M, Trivedi B, Nivsarkar M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. J Ethnopharmacol 2016; 181: 20-5.
[http://dx.doi.org/10.1016/j.jep.2016.01.035] [PMID: 26812680]
[19]
Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J Herb Med 2013; 3: 104-11.
[http://dx.doi.org/10.1016/j.hermed.2013.04.004]
[20]
Raja KS, Taip FS, Mior M, Azmi Z, Rezaul M, Shishir I. Effect of pre-treatment and different drying methods on the physicochemical properties of Carica papaya L. leaf powder. J Saudi Soc Agric Sci 2017; 1-7.
[http://dx.doi.org/10.1016/j.jssas.2017.04.001]
[21]
Nejad-Sadeghi M, Taji S, Goodarznia I. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran. J Chromatogr A 2015; 1422: 73-81.
[http://dx.doi.org/10.1016/j.chroma.2015.10.040] [PMID: 26522747]
[22]
Lee NY, Yunus MAC, Idham Z, Ruslan MSH, Aziz AHA, Irwansyah N. Extraction and identification of bioactive compounds from agarwood leaves. IOP Conf Ser Mater Sci Eng. 162: 012028.
[http://dx.doi.org/10.1088/1757-899X/162/1/012028]
[23]
Azmir J, Zaidul ISM, Rahman MM, et al. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 2013; 117: 426-36.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[24]
Kostova I, Ojala T, Lacy A, et al. Natural product chemistry for drug discovery. J Nat Prod 2010; 5: 440.
[http://dx.doi.org/10.1021/np800144q]
[25]
Alvarez M, Bueno P, Cruz R, Macapulay R. Phytochemical analysis and salivary amylase inhibition activities of Carica papaya leaf and Garcinia mangostana pericarp extracts and partially. Int J Pharm Phytopharm Res 2016; 6: 34-40.
[http://dx.doi.org/10.24896/eijppr.2016616]
[26]
Tariq MH, Ghaffar B, Ahmed T, Sultan A, Farrukh MJ. Phytochemical and microbiological evaluation of different chemical extracts of papaya seeds on clinical isolates of (FGSH Hospital) Islamabad 2015; 5: 122-6.
[27]
Sherwani SK, Bokhari TZ, Nazim K, Gilani SA, Kazmi SU. Qualitative phytochemical screening and antifungal activity of carica papaya leaf extract against human and plant pathogenic fungi. Int Res J Pharm 2013; 4: 83-6.
[http://dx.doi.org/10.7897/2230-8407.04718]
[28]
Sruthi D, Indira G. A comparative evaluation of maceration, soxhlation and ultra sound assisted extraction for the phytochemical screening of the leaves of Nephelium lappaceum. L. (Sapindaceae). J Pharmacogn Phytochem 2016; 5: 386-9.
[29]
Iloki-Assanga SB, Lewis-Luján LM, Lara-Espinoza CL, et al. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res Notes 2015; 8: 396-409.
[http://dx.doi.org/10.1186/s13104-015-1388-1] [PMID: 26323940]
[30]
Luque de Castro MD, Priego-Capote F. Soxhlet extraction: past and present panacea. J Chromatogr A 2010; 1217(16): 2383-9.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[31]
Jones WP, Kinghorn AD. Extraction of plant secondary metabolites. Nat Prod Isol Methods Biotechnol 2005; 20: 323-50.
[http://dx.doi.org/10.1007/978-1-61779-624-1]
[32]
Hamid HK, Kadhim EJ. Extraction, isolation and characterization of Pyrrolizidine Alkaloids present in Senecio vulgaris Linn grown in Iraq 2016; 5: 28-37.
[33]
Rezaei S, Rezaei K, Haghighi M, Labbafi M. Solvent and solvent to sample ratio as main parameters in the microwave-assisted extraction of polyphenolic compounds from apple pomace. Food Sci Biotechnol 2013; 22: 1-6.
[http://dx.doi.org/10.1007/s10068-013-0212-8]
[34]
Udoh FV, Udoh PB. Hepatotoxicity of the methanol extract of carica papaya. (Paw-Paw) seeds in Wistar rats. Pharm Biol 2005; 43(4): 349-52.
[http://dx.doi.org/10.1080/13880200590951810] [PMID: 28925838]
[35]
Juárez-Rojop IE, Tovilla-Zárate CA, Aguilar-Domínguez DE, et al. Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats. Rev Bras Farmacogn 2014; 24: 341-7.
[http://dx.doi.org/10.1016/j.bjp.2014.07.012]
[36]
Adejuwon A, Agbaje E, Idika N. Antifungal and antibacterial activities of aqueous and methanolic root extracts of Carica papaya linn.(Caricaceae). Int Res J Microbiol 2011; 2: 270-7.
[37]
Muhamad N, Muhmed SA, Yusoff MM, Gimbun J. Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from averrhoa bilimbi. J Food Sci Eng 2014; 4: 255-60.
[http://dx.doi.org/10.17265/2159-5828/2014.05.006]
[38]
de Boer HJ, Kool A, Broberg A, Mziray WR, Hedberg I, Levenfors JJ. Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. J Ethnopharmacol 2005; 96(3): 461-9.
[http://dx.doi.org/10.1016/j.jep.2004.09.035] [PMID: 15619565]
[39]
Saini R, Mittal A, Rathi V. Phytochemical evaluation of carica papaya extracts. Eur J Pharm Med Res 2016; 3: 346-50.
[http://dx.doi.org/10.1002/eji.201041067]
[40]
Rayees B, Dorcus M, Chitra S. Nutritional composition and oil fatty acids of Indian winter melon Benincasa hispida (Thunb.) seeds. Int Food Res J 2013; 20: 1151-5.
[http://dx.doi.org/10.3390/molecules171011748]
[41]
Zenker M, Heinz V, Knorr D. Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 2003; 66(9): 1642-9.
[http://dx.doi.org/10.4315/0362-028X-66.9.1642] [PMID: 14503719]
[42]
Ameer K, Shahbaz HM, Kwon JH. Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr Rev Food Sci Food Saf 2017; 16: 295-315.
[http://dx.doi.org/10.1111/1541-4337.12253]
[43]
Wu TY, Guo N, Teh CY, Hay JXW. Theory and Fundamentals of Ultrasound. In:Advances in ultrasound technology for environmental remediation. Switzerland: Springer 2013; pp. 5-12.
[http://dx.doi.org/10.1007/978-94-007-5533-8_2]
[44]
Luque de Castro MD, Delgado-Povedano MM. Ultrasound: a subexploited tool for sample preparation in metabolomics. Anal Chim Acta 2014; 806: 74-84.
[http://dx.doi.org/10.1016/j.aca.2013.10.053] [PMID: 24331041]
[45]
Vardanega R, Santos DT, Meireles MA. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn Rev 2014; 8(16): 88-95.
[http://dx.doi.org/10.4103/0973-7847.134231] [PMID: 25125880]
[46]
Samaram S, Mirhosseini H, Tan CP, Ghazali HM, Bordbar S, Serjouie A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem 2015; 172: 7-17.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.068] [PMID: 25442517]
[47]
Li AN, Li S, Xu DP, Xu XR, Chen YM, Ling WH, et al. Optimization of ultrasound-assisted extraction of lycopene from papaya processing waste by response surface methodology. Food Anal Methods 2015; 8: 1207-14.
[http://dx.doi.org/10.1007/s12161-014-9955-y]
[48]
Li YM, Su N, Yang HQ, Bai XP, Zhu QX, Liu HX, et al. The extraction and properties of Carica papaya seed oil. Adv J Food Sci Technol 2015; 7: 773-9.
[http://dx.doi.org/10.19026/ajfst.7.1736]
[49]
Wang Y, Meng X, Li B, Sun X, Zhang Q. Effect of ultrasonicassisted extraction on antioxidant activity and molecular weight distribution of polysaccharides from Schisandra chinensis (Turcz.) baill Proc - 2011 4th Int Conf Biomed Eng Informatics, BMEI. 3: 1213-7.
[50]
Xu DP, Zhou Y, Zheng J, Li S, Li AN, Li HB. Bin. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules 2015; 21(1)E18
[http://dx.doi.org/10.3390/molecules21010018] [PMID: 26712723]
[51]
Yiin CL, Yusup S, Quitain AT, Sasaki M, Uemura Y, Kida T. Microwave-assisted hydrothermal extraction of natural malic acid for the synthesis of low transition temperature mixtures. J Clean Prod 2016; 113: 919-24.
[http://dx.doi.org/10.1016/j.jclepro.2015.12.053]
[52]
Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 2007; 1: 7-18.
[53]
Zhou HY, Liu CZ. Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 2006; 1129(1): 135-9.
[http://dx.doi.org/10.1016/j.chroma.2006.07.083] [PMID: 16919654]
[54]
Kothari V, Seshadri S. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. Nutr Food Sci 2010; 40: 403-8.
[http://dx.doi.org/10.1108/00346651011062050]
[55]
Li Y, Li S, Lin SJ, Zhang JJ, Zhao CN, Li HB. Bin. Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules 2017; 22(9)E1481
[http://dx.doi.org/10.3390/molecules22091481] [PMID: 28878178]
[56]
Milutinović M, Radovanović N, Rajilić-Stojanović M, Šiler-Marinković S, Dimitrijević S, Dimitrijević-Branković S. Microwave-assisted extraction for the recovery of antioxidants from waste Equisetum arvense. Ind Crops Prod 2014; 61: 388-97.
[http://dx.doi.org/10.1016/j.indcrop.2014.07.039]
[57]
Maran JP, Prakash KA. Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel. Int J Biol Macromol 2015; 73: 202-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.008] [PMID: 25445679]
[58]
Wai CM, Hunt F, Ji M, Chen X. Chemical reactions in supercritical carbon dioxide. J Chem Educ 1998; 75: 1641-5.
[http://dx.doi.org/10.1021/ed075p1641]
[59]
Chan YH, Yusup S, Quitain AT, Uemura Y, Loh SK. Fractionation of pyrolysis oil via supercritical carbon dioxide extraction: Optimization study using response surface methodology (RSM). Biomass Bioenergy 2017; 107: 155-63.
[http://dx.doi.org/10.1016/j.biombioe.2017.10.005]
[60]
Abbas K, Mohamed A, Abdulamir A, Abas H. A review on supercritical fluid extraction as new analytical method. Am J Biochem Biotechnol 2008; 4: 345-53.
[http://dx.doi.org/10.3844/ajbbsp.2008.345.353]
[61]
Lang Q, Wai CM. Supercritical fluid extraction in herbal and natural product studies - a practical review. Talanta 2001; 53(4): 771-82.
[http://dx.doi.org/10.1016/S0039-9140(00)00557-9 PMID: 18968166]
[62]
Raynie DE. Warning concerning the use of nitrous oxide in supercritical fluid extractions. Anal Chem 1993; 65: 3127-8.
[http://dx.doi.org/10.1021/ac00069a028]
[63]
Ekinci MS, Gürü M. Extraction of oil and β-sitosterol from peach (Prunus persica) seeds using supercritical carbon dioxide. J Supercrit Fluids 2014; 92: 319-23.
[http://dx.doi.org/10.1016/j.supflu.2014.06.004]
[64]
Duba KS, Fiori L. Supercritical CO2 extraction of grape seed oil: effect of process parameters on the extraction kinetics. J Supercrit Fluids 2015; 98: 33-43.
[http://dx.doi.org/10.1016/j.supflu.2014.12.021]
[65]
De Melo MMR, Silvestre AJD, Silva CM. Supercritical fluid extraction of vegetable matrices: applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 2014; 92: 115-76.
[http://dx.doi.org/10.1016/j.supflu.2014.04.007]
[66]
Bukhori MFM, Rahman NA, Khalid N, Rashid AH, Diah MM. The supercritical fluid extraction of alkaloids from papaya (Carica papaya L. var. Eksotika) leaves. Borneo J Resour Sci Technol 2014; 4: 35-49.
[http://dx.doi.org/10.33736/bjrst.234.2014]
[67]
Malacrida CR, Kimura M, Jorge N. Characterization of a high oleic oil extracted from papaya (Carica papaya L.) seeds. Food Sci Technol Res 2011; 31: 929-34.
[http://dx.doi.org/10.1590/S0101-20612011000400016]
[68]
Kuddus M, Arif JM, Ali A, et al. Chemical fingerprinting of bioactive compounds of Carica papaya Linn (Indian variety) seed oil. Biochem Cell Arch 2016; 16: 9-20.
[69]
Lopez-Huertas E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res 2010; 61(3): 200-7.
[http://dx.doi.org/10.1016/j.phrs.2009.10.007] [PMID: 19897038]
[70]
Li Y, Fabiano-Tixier AS, Vian MA, Chemat F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. Trends Analyt Chem 2013; 47: 1-11.
[http://dx.doi.org/10.1016/j.trac.2013.02.007]
[71]
Filly A, Fernandez X, Minuti M, Visinoni F, Cravotto G, Chemat F. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem 2014; 150: 193-8.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.139 PMID: 24360439]
[72]
Cvjetko Bubalo M, Vidović S, Radojčić Redovniković I, Jokić S. Green solvents for green technologies. J Chem Technol Biotechnol 2015; 90: 1631-9.
[http://dx.doi.org/10.1002/jctb.4668]
[73]
Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev 2010; 39(1): 301-12.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[74]
Seidel V. Natural Products Isolation 2012; 864: 27-42.
[http://dx.doi.org/10.1007/978-1-61779-624-1_2]
[75]
Sicaire AG, Vian M, Fine F, et al. Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. Int J Mol Sci 2015; 16(4): 8430-53.
[http://dx.doi.org/10.3390/ijms16048430] [PMID: 25884332]
[76]
azwa. a review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 2015; 04: 3-8.
[http://dx.doi.org/10.4172/2167-0412.1000196]
[77]
Prado JM, Dalmolin I, Carareto NDD, et al. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J Food Eng 2012; 109: 249-57.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.10.007]
[78]
Kotnik P, Škerget M, Željko K. Supercritical fluid extraction of chamomile flower heads: comparison with conventional extraction, kinetics and scale-up. J Supercrit Fluids 2007; 43: 192-8.
[http://dx.doi.org/10.1016/j.supflu.2007.02.005]
[79]
Del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A. Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. J Supercrit Fluids 2004; 31: 159-74.
[http://dx.doi.org/10.1016/j.supflu.2003.11.005]
[80]
Attard TM, McElroy CR, Hunt AJ. Economic assessment of supercritical CO2 extraction of waxes as part of a maize stover biorefinery. Int J Mol Sci 2015; 16(8): 17546-64.
[http://dx.doi.org/10.3390/ijms160817546] [PMID: 26263976]
[81]
Périno S, Pierson JT, Ruiz K, Cravotto G, Chemat F. Laboratory to pilot scale: microwave extraction for polyphenols lettuce. Food Chem 2016; 204: 108-14.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.088 PMID: 26988482]
[82]
Petigny L, Périno S, Minuti M, Visinoni F, Wajsman J, Chemat F. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. Int J Mol Sci 2014; 15(5): 7183-98.
[http://dx.doi.org/10.3390/ijms15057183] [PMID: 24776762]
[83]
Boonkird S, Phisalaphong C, Phisalaphong M. Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem 2008; 15(6): 1075-9.
[http://dx.doi.org/10.1016/j.ultsonch.2008.04.010] [PMID: 18524665]
[84]
Pingret D, Fabiano-Tixier AS, Le Bourvellec C, Renard CMGC, Chemat F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J Food Eng 2012; 111: 73-81.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.01.026]
[85]
Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ. Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J Food Eng 2017; 206: 1-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.02.002]
[86]
Budarin VL, Shuttleworth PS, Dodson JR, Hunt AJ, Lanigan B, Marriott R, et al. Use of green chemical technologies in an integrated biorefinery. Energy Environ Sci 2011; 4: 471-9.
[http://dx.doi.org/10.1039/C0EE00184H]
[87]
Pasquel Reátegui JL, Machado APDF, Barbero GF, Rezende CA, Martínez J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J Supercrit Fluids 2014; 94: 223-33.
[http://dx.doi.org/10.1016/j.supflu.2014.07.019]
[88]
Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Sequential microwave-ultrasound-assisted extraction for isolation of piperine from black pepper (Piper nigrum L.). Food Bioprocess Technol 2017; 10: 2199-207.
[http://dx.doi.org/10.1007/s11947-017-1994-0]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy