Review Article

炎症相关结直肠癌的单核苷酸多态性研究:重点介绍相关基因产物的作用的当前综述

卷 21, 期 14, 2020

页: [1456 - 1462] 页: 7

弟呕挨: 10.2174/1389450121666200727105218

价格: $65

摘要

炎症相关结直肠癌(CA-CRC)是炎症性肠病(IBD)最严重的并发症之一,是10-15%患者的死亡原因。致癌的风险比率取决于多种因素,如肠道炎症病变的程度和疾病的持续时间。由于IBD的发病率和流行率不断上升,CA-CRC是当今胃肠病学和结肠外科的一个主要问题。在这篇综述中,我们讨论了散发性CRC和CA-CRC之间遗传差异的知识现状,特别是与染色体不稳定机制(CIN)有关的知识。为了解释CA-CRC的分子基础,我们分析了关于CA-CRC和单核苷酸多态性(SNPs)存在之间相关性的研究数据。进一步关注相关的蛋白质的作用强调NF -κB信号的角色之间的主要联系炎症和致癌过程中炎症性肠病。

关键词: 炎症相关结直肠癌

图形摘要

[1]
Sairenji T, Collins KL, Evans DV. An update on inflammatory bowel disease. Prim Care 2017; 44(4): 673-92.
[http://dx.doi.org/10.1016/j.pop.2017.07.010 ] [PMID: 29132528]
[2]
Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis Mon 2018; 64(2): 20-57.
[http://dx.doi.org/10.1016/j.disamonth.2017.07.001 ] [PMID: 28826742]
[3]
Kelley KA, Kaur T, Tsikitis VL. Perianal Crohn’s disease: challenges and solutions. Clin Exp Gastroenterol 2017; 10: 39-46.
[http://dx.doi.org/10.2147/CEG.S108513 ] [PMID: 28223835]
[4]
Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterol 2012; 142(1): 46-54.e42.
[http://dx.doi.org/10.1053/j.gastro.2011.10.001 ] [PMID: 22001864]
[5]
Editor, C. Complications of Inflammatory Bowel Disease.. 2020; pp. 1-10.
[6]
Munkholm P, Loftus EVJ Jr, Reinacher-Schick A, Kornbluth A, Mittmann U, Esendal B. Prevention of colorectal cancer in inflammatory bowel disease: value of screening and 5-aminosalicylates. Digestion 2006; 73(1): 11-9.
[http://dx.doi.org/10.1159/000090763 ] [PMID: 16410688]
[7]
Gaidos JKJ, Bickston SJ. How to Optimize Colon Cancer Surveillance in Inflammatory Bowel Disease Patients. Inflamm Bowel Dis 2016; 22(5): 1219-30.
[http://dx.doi.org/10.1097/MIB.0000000000000685 ] [PMID: 26926040]
[8]
Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48(4): 526-35.
[http://dx.doi.org/10.1136/gut.48.4.526 ] [PMID: 11247898]
[9]
Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther 2006; 23(8): 1097-104.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02854.x ] [PMID: 16611269]
[10]
Low END, Mokhtar NM, Wong Z, Raja Ali RA. Colonic mucosal transcriptomic changes in patients with long-duration ulcerative colitis revealed colitis-associated cancer pathways. J Crohn’s Colitis 2019; 13(6): 755-63.
[http://dx.doi.org/10.1093/ecco-jcc/jjz002 ] [PMID: 30954025]
[11]
Lee H-S, Park SH, Yang S-K, et al. The risk of colorectal cancer in inflammatory bowel disease: a hospital-based cohort study from Korea. Scand J Gastroenterol 2015; 50(2): 188-96.
[http://dx.doi.org/10.3109/00365521.2014.989538 ] [PMID: 25515241]
[12]
von Roon AC, Reese G, Teare J, Constantinides V, Darzi AW, Tekkis PP. The risk of cancer in patients with Crohn’s disease. Dis Colon Rectum 2007; 50(6): 839-55.
[http://dx.doi.org/10.1007/s10350-006-0848-z ] [PMID: 17308939]
[13]
Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003; 3(4): 276-85.
[http://dx.doi.org/10.1038/nrc1046 ] [PMID: 12671666]
[14]
Van Der Kraak L, Gros P, Beauchemin N. Colitis-associated colon cancer: Is it in your genes? World J Gastroenterol 2015; 21(41): 11688-99.
[http://dx.doi.org/10.3748/wjg.v21.i41.11688 ] [PMID: 26556996]
[15]
Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009; 30(2): 183-96.
[http://dx.doi.org/10.1093/carcin/bgn267 ] [PMID: 19037092]
[16]
Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 2016; 13(1): 120-35.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2015.0103 ] [PMID: 27144067]
[17]
Lennerz JK, van der Sloot KWJ, Le LP, et al. Colorectal cancer in Crohn’s colitis is comparable to sporadic colorectal cancer. Int J Colorectal Dis 2016; 31(5): 973-82.
[http://dx.doi.org/10.1007/s00384-016-2574-x ] [PMID: 27026089]
[18]
Robles AI, Traverso G, Zhang M, et al. Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers. Gastroenterology 2016; 150(4): 931-43.
[http://dx.doi.org/10.1053/j.gastro.2015.12.036 ] [PMID: 26764183]
[19]
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138(6): 2059-72.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065 ] [PMID: 20420946]
[20]
Baker AM, Cross W, Curtius K, et al. Evolutionary history of human colitis-associated colorectal cancer. Gut 2019; 68(6): 985-95.
[http://dx.doi.org/10.1136/gutjnl-2018-316191 ] [PMID: 29991641]
[21]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-7.
[http://dx.doi.org/10.1038/nature11252 ] [PMID: 22810696]
[22]
Du L, Kim JJ, Shen J, Chen B, Dai N. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis. Oncotarget 2017; 8(13): 22175-86.
[http://dx.doi.org/10.18632/oncotarget.14549 ] [PMID: 28077799]
[23]
Garrity-Park MM, Loftus EVJ Jr, Bryant SC, Smyrk TC. A Biomarker panel to detect synchronous neoplasm in non-neoplastic surveillance biopsies from patients with ulcerative colitis. Inflamm Bowel Dis 2016; 22(7): 1568-74.
[http://dx.doi.org/10.1097/MIB.0000000000000789 ] [PMID: 27135485]
[24]
Connelly TM, Berg AS, Harris LR III, et al. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single-nucleotide polymorphisms. Surgery 2014; 156(2): 253-62.
[http://dx.doi.org/10.1016/j.surg.2014.03.017 ] [PMID: 24947639]
[25]
Martini M, Ferrara AM, Giachelia M, et al. Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients. Inflamm Bowel Dis 2012; 18(3): 439-48.
[http://dx.doi.org/10.1002/ibd.21814 ] [PMID: 21793125]
[26]
Garrity-Park M, Loftus EVJ Jr, Sandborn WJ, Smyrk TC. Myeloperoxidase immunohistochemistry as a measure of disease activity in ulcerative colitis: association with ulcerative colitis-colorectal cancer, tumor necrosis factor polymorphism and RUNX3 methylation. Inflamm Bowel Dis 2012; 18(2): 275-83.
[http://dx.doi.org/10.1002/ibd.21681 ] [PMID: 21425209]
[27]
Garrity-Park MM, Loftus EVJ Jr, Bryant SC, Sandborn WJ, Smyrk TC. Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. Am J Gastroenterol 2008; 103(2): 407-15.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01572.x ] [PMID: 18289203]
[28]
Mahid SS, Colliver DW, Crawford NPS, et al. Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma. BMC Med Genet 2007; 8: 28.
[http://dx.doi.org/10.1186/1471-2350-8-28 ] [PMID: 17537267]
[29]
Brentnall TA, Rubin CE, Crispin DA, et al. A germline substitution in the human MSH2 gene is associated with high-grade dysplasia and cancer in ulcerative colitis. Gastroenterology 1995; 109(1): 151-5.
[http://dx.doi.org/10.1016/0016-5085(95)90280-5 ] [PMID: 7797014]
[30]
Li H, Jin Z, Li X, Wu L, Jin J. Associations between single-nucleotide polymorphisms and inflammatory bowel disease-associated colorectal cancers in inflammatory bowel disease patients: a meta-analysis. Clin Transl Oncol 2017; 19(8): 1018-27.
[http://dx.doi.org/10.1007/s12094-017-1634-1 ] [PMID: 28243990]
[31]
Ye BD, McGovern DPB. Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility. Expert Rev Clin Immunol 2016; 12(10): 1091-107.
[http://dx.doi.org/10.1080/1744666X.2016.1184972 ] [PMID: 27156530]
[32]
Lesage S, Zouali H, Cézard J-P, et al. EPIMAD Group; GETAID Group. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70(4): 845-57.
[http://dx.doi.org/10.1086/339432 ] [PMID: 11875755]
[33]
Maeda S, Hsu L-C, Liu H, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 307(5710): 734-8.
[http://dx.doi.org/10.1126/science.1103685 ] [PMID: 15692052]
[34]
Maeda M, Watanabe N, Neda H, et al. Serum tumor necrosis factor activity in inflammatory bowel disease. Immunopharmacol Immunotoxicol 1992; 14(3): 451-61.
[http://dx.doi.org/10.3109/08923979209005404 ] [PMID: 1517530]
[35]
Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonald TT. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992; 339(8785): 89-91.
[http://dx.doi.org/10.1016/0140-6736(92)90999-J ] [PMID: 1345871]
[36]
Adegbola SO, Sahnan K, Warusavitarne J. Anti-TNF Therapy in Crohn’s Disease. Int J Mol Sci 2018; (July): 19. Epub ahead of print
[http://dx.doi.org/10.3390/ijms19082244]
[37]
Liu ZG, Han J. Cellular responses to tumor necrosis factor. Curr Issues Mol Biol 2001; 3(4): 79-90.
[PMID: 11719971]
[38]
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016; 12(1): 49-62.
[http://dx.doi.org/10.1038/nrrheum.2015.169 ] [PMID: 26656660]
[39]
Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15(6): 362-74.
[http://dx.doi.org/10.1038/nri3834 ] [PMID: 26008591]
[40]
Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2010; 2(3), a000158
[http://dx.doi.org/10.1101/cshperspect.a000158 ] [PMID: 20300203]
[41]
Luo C, Zhang H. The Role of Proinflammatory Pathways in the Pathogenesis of Colitis-Associated Colorectal Cancer. Mediators Inflamm 2017., 20175126048
[http://dx.doi.org/10.1155/2017/5126048 ] [PMID: 28852270]
[42]
Yan P, Wang Y, Meng X, et al. Whole exome sequencing of ulcerative colitis-associated colorectal cancer based on novel somatic mutations identified in chinese patients. Inflamm Bowel Dis 2019; 25(8): 1293-301.
[http://dx.doi.org/10.1093/ibd/izz020 ] [PMID: 30794281]
[43]
Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441(7092): 431-6.
[http://dx.doi.org/10.1038/nature04870 ] [PMID: 16724054]
[44]
O’Connor PM, Lapointe TK, Beck PL, Buret AG. Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16(8): 1411-20.
[http://dx.doi.org/10.1002/ibd.21217 ] [PMID: 20155848]
[45]
Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med 2008; 263(6): 591-6.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01953.x ] [PMID: 18479258]
[46]
Guo X, Li M-G, Li S-S, Liu FH, Liu ZJ, Yang PC. Tumor necrosis factor suppresses interleukin 10 in peripheral B cells via upregulating Bcl2-like protein 12 in patients with inflammatory bowel disease. Cell Biochem Funct 2017; 35(2): 77-82.
[http://dx.doi.org/10.1002/cbf.3250 ] [PMID: 28120341]
[47]
Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 2009; 6(5): 327-34.
[http://dx.doi.org/10.1038/cmi.2009.43 ] [PMID: 19887045]
[48]
Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118(3): 285-96.
[http://dx.doi.org/10.1016/j.cell.2004.07.013 ] [PMID: 15294155]
[49]
Mandal RK, Khan MA, Hussain A. A trial sequential meta-analysis of TNF-α -308G>A (rs800629) gene polymorphism and susceptibility to colorectal cancer. Biosci Rep 2019; (January): 39. Epub ahead of print
[http://dx.doi.org/10.1042/BSR20181052.]
[50]
Nagao M, Sato Y, Yamauchi A. Meta-Analysis of Interleukin Polymorphisms and NSAID Usage Indicates Correlations to the Risk of Developing Cancer Journal of Clinical & Medical Genomics 2014; 2: 1-7.
[51]
He B, Zhang Y, Pan Y, et al. Interleukin 1 beta (IL1B) promoter polymorphism and cancer risk: evidence from 47 published studies. Mutagenesis 2011; 26(5): 637-42.
[http://dx.doi.org/10.1093/mutage/ger025 ] [PMID: 21653279]
[52]
Sanabria-Salas MC, Hernández-Suárez G, Umaña-Pérez A, et al. IL1B-CGTC haplotype is associated with colorectal cancer in admixed individuals with increased African ancestry. Sci Rep 2017; 7: 41920.
[http://dx.doi.org/10.1038/srep41920 ] [PMID: 28157220]
[53]
Chen H-X, Yuan Z-Y, Wu K-X, et al. The study of methylation and single nucleotide polymorphisms of cancer-related genes in patients with early-stage ulcerative colitis. Scand J Gastroenterol 2019; 54(4): 427-31.
[http://dx.doi.org/10.1080/00365521.2019.1594355 ] [PMID: 31046486]
[54]
Anderson CA, Massey DCO, Barrett JC, et al. Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 2009; 136(2): 523-9.e3.
[http://dx.doi.org/10.1053/j.gastro.2008.10.032 ] [PMID: 19068216]
[55]
Durães C, Machado JC, Portela F, et al. Phenotype-genotype profiles in Crohn’s disease predicted by genetic markers in autophagy-related genes (GOIA study II). Inflamm Bowel Dis 2013; 19(2): 230-9.
[http://dx.doi.org/10.1002/ibd.23007 ] [PMID: 22573572]
[56]
Maeda K, Saigo C, Kito Y, Sakuratani T, Yoshida K, Takeuchi T. Expression of TMEM207 in Colorectal Cancer: Relation between TMEM207 and Intelectin-1. J Cancer 2016; 7(2): 207-13.
[http://dx.doi.org/10.7150/jca.13732 ] [PMID: 26819645]
[57]
Kawashima K, Maeda K. Saigo, C Adiponectin and intelectin-1: important adipokine players in obesity-related colorectal carcinogenesis. Int J Mol Sci 2017; (April): 18. Epub ahead of print
[http://dx.doi.org/10.3390/ijms18040866.]
[58]
Kim H-J, Kang U-B, Lee H, et al. Profiling of differentially expressed proteins in stage IV colorectal cancers with good and poor outcomes. J Proteomics 2012; 75(10): 2983-97.
[http://dx.doi.org/10.1016/j.jprot.2011.12.002 ] [PMID: 22178445]
[59]
Aleksandrova K, di Giuseppe R, Isermann B, et al. Circulating Omentin as a Novel Biomarker for Colorectal Cancer Risk: Data from the EPIC-Potsdam Cohort Study. Cancer Res 2016; 76(13): 3862-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3464 ] [PMID: 27216184]
[60]
Barrett JC, Hansoul S, Nicolae DL, et al. Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008; 40(8): 955-62.
[http://dx.doi.org/10.1038/ng.175 ] [PMID: 18587394]
[61]
Padhukasahasram B, Halperin E, Wessel J, et al. Presymptomatic risk assessment for chronic non-communicable diseases. PLoS One 2010; 5(12), e14338
[http://dx.doi.org/10.1371/journal.pone.0014338 ] [PMID: 21217814]
[62]
Zhang C, Wang W, Zhang H, Wei L, Guo S. Association of FCGR2A rs1801274 polymorphism with susceptibility to autoimmune diseases: A meta-analysis. Oncotarget 2016; 7(26): 39436-43.
[http://dx.doi.org/10.18632/oncotarget.9831 ] [PMID: 27270653]
[63]
Shepshelovich D, Townsend AR, Espin-Garcia O, et al. Fc-gamma receptor polymorphisms, cetuximab therapy, and overall survival in the CCTG CO.20 trial of metastatic colorectal cancer. Cancer Med 2018; 7(11): 5478-87.
[http://dx.doi.org/10.1002/cam4.1819 ] [PMID: 30318772]
[64]
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol 2018; 8: 1908.
[http://dx.doi.org/10.3389/fimmu.2017.01908 ] [PMID: 29379499]
[65]
Tanaka, T, Kobunai, T, Yamamoto, Y, et al. Assessment of the changes in mitochondrial gene polymorphism in ulcerative colitis and the etiology of ulcerative colitis-associated colorectal cancer. Anticancer Res 2020; 40(1): 101-7.
[http://dx.doi.org/10.21873/anticanres.13931] [PMID: 31892558]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy