Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nanotechnology Assisted Chemotherapy for Targeted Cancer Treatment: Recent Advances and Clinical Perspectives

Author(s): Huan-Rong Lan, Zhi-Qiang Wu, Li-Hua Zhang, Ke-Tao Jin and Shi-Bing Wang*

Volume 20, Issue 27, 2020

Page: [2442 - 2458] Pages: 17

DOI: 10.2174/1568026620666200722110808

Price: $65

Abstract

Nanotechnology has recently provided exciting platforms in the field of anticancer research with promising potentials for improving drug delivery efficacy and treatment outcomes. Nanoparticles (NPs) possess different advantages over the micro and bulk therapeutic agents, including their capability to carry high payloads of drugs, with prolonged half-life, reduced toxicity of the drugs, and increased targeting efficiency. The wide variety of nanovectors, coupled with different conjugation and encapsulation methods available for different theranostic agents provide promising opportunities to fine-tune the pharmacological properties of these agents for more effective cancer treatment methods. This review discusses applications of NPs-assisted chemotherapy in preclinical and clinical settings and recent advances in design and synthesis of different nanocarriers for chemotherapeutic agents. Moreover, physicochemical properties of different nanocarriers, their impacts on different tumor targeting strategies and effective parameters for efficient targeted drug delivery are discussed. Finally, the current approved NPs-assisted chemotherapeutic agents for clinical applications and under different phases of clinical trials are discussed.

Keywords: Nanoparticles, Chemotherapy, Cancer treatment, Radiochemistry, Targeted drug delivery, MDR.

Graphical Abstract

[1]
Roth, G.A.; Abate, D.; Abate, K.H. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2018, 392, 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7]
[2]
James, S.L.; Abate, D.; Abate, K.H. et alGlobal, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2018, 392, 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7]
[3]
Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; Jones, D.T.W.; Joyce, J.A.; Kearns, P.; Kieran, M.W.; Mellinghoff, I.K.; Merchant, M.; Pfister, S.M.; Pollard, S.M.; Ramaswamy, V.; Rich, J.N.; Robinson, G.W.; Rowitch, D.H.; Sampson, J.H.; Taylor, M.D.; Workman, P.; Gilbertson, R.J. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol., 2019, 16(8), 509-520.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[4]
Martin, D.S. The scientific basis for adjuvant chemotherapy. Cancer Treat. Rev., 1981, 8(3), 169-189.
[http://dx.doi.org/10.1016/S0305-7372(81)80015-1] [PMID: 7030485]
[5]
Ewesuedo, R.B.; Ratain, M.J. Principles of cancer chemotherapy. InOncologic Therapies; Springer: Berlin, 2003, pp. 19-66.
[http://dx.doi.org/10.1007/978-3-642-55780-4_3]
[6]
Dimitrova, N.; Zamudio, J.R.; Jong, R.M.; Soukup, D.; Resnick, R.; Sarma, K.; Ward, A.J.; Raj, A.; Lee, J.; Sharp, P.A.; Jacks, T. Public access nih public access. PLoS One, 2017, 32, 736-740.
[7]
Rezaee, Z.; Yadollahpour, A.; Rashidi, S.; Kunwar, P.S. Radiosensitizing effect of electrochemotherapy: a systematic review of protocols and efficiency. Curr. Drug Targets, 2017, 18(16), 1893-1903.
[http://dx.doi.org/10.2174/1389450118666170622091014] [PMID: 28641523]
[8]
Rodrıguez-Cuevas, S.; Barroso-Bravo, S.; Almanza-Estrada, J.; Cristóbal-Martınez, L.; González-Rodrıguez, E. Electrochemotherapy in primary and metastatic skin tumors: phase ii trial using intralesional bleomycin. Arch. Med. Res., 2001, 32, 273-276.
[9]
Lønning, P.E. Study of suboptimum treatment response: lessons from breast cancer. Lancet Oncol., 2003, 4(3), 177-185.
[http://dx.doi.org/10.1016/S1470-2045(03)01022-2] [PMID: 12623363]
[10]
Mohandas, R.; Gayathri, R.; Priya, V. Cancer nanotechnology: A Review. Drug Invent. Today, 2018, 10, 2719-2726.
[11]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[12]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[13]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 9.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[14]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[15]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[16]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[17]
Zhang, J.; Tang, H.; Liu, Z.; Chen, B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int. J. Nanomedicine, 2017, 12, 8483-8493.
[http://dx.doi.org/10.2147/IJN.S148359] [PMID: 29238188]
[18]
Ling, V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother. Pharmacol., 1997, 40(Suppl.), S3-S8.
[http://dx.doi.org/10.1007/s002800051053] [PMID: 9272126]
[19]
Freyer, G.; Ligneau, B.; Tranchand, B.; Ardiet, C.; Serre-Debeauvais, F.; Trillet-Lenoir, V. Pharmacokinetic studies in cancer chemotherapy: usefulness in clinical practice. Cancer Treat. Rev., 1997, 23(3), 153-169.
[http://dx.doi.org/10.1016/S0305-7372(97)90036-0] [PMID: 9251720]
[20]
Wrigley, E.; Weaver, A.; Jayson, G.; Ranson, M.; Renninson, J.; Prendiville, J.; Dobson, M.; Collins, C.D.; Swindell, R.; Buckley, C.H.; Radford, J.A.; Crowther, D. A randomised trial investigating the dose intensity of primary chemotherapy in patients with ovarian carcinoma: a comparison of chemotherapy given every four weeks with the same chemotherapy given at three week intervals. Ann. Oncol., 1996, 7(7), 705-711.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a010719] [PMID: 8905028]
[21]
Marty, J.J.; Oppenheim, R.C.; Speiser, P. Nanoparticles--a new colloidal drug delivery system. Pharm. Acta Helv., 1978, 53(1), 17-23.
[PMID: 643885]
[22]
Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target., 2013, 21(10), 904-913.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[23]
Velraj, M.; Shruthi, V.; Murugavel, S.; Shanmugam, R. Evaluation of quercetin-loaded poly-lactide-co-glycolide acid silver nanoparticles from the ethanolic extract of mallotus philippensis fruits. Drug Invent. Today, 2018, 10, 253-256.
[24]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[25]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[26]
Lakshmi, P.J.; Anitha, R.; Lakshmi, T. Targeted drug delivery systems used in dentistry - A short review. Drug Invent. Today, 2018, 10, 2747-2751.
[27]
Zottel, A.; Videtič Paska, A.; Jovčevska, I. Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials (Basel), 2019, 12(10), 12.
[http://dx.doi.org/10.3390/ma12101588] [PMID: 31096609]
[28]
Aggarwal, U.; Goyal, A.K.; Rath, G. Development of drug targeting and delivery in cervical cancer. Curr. Cancer Drug Targets, 2018, 18(8), 792-806.
[http://dx.doi.org/10.2174/1568009617666171009165105] [PMID: 29032751]
[29]
Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev., 2003, 55(3), 403-419.
[http://dx.doi.org/10.1016/S0169-409X(02)00226-0] [PMID: 12628324]
[30]
Gajbhiye, V.; Vijayaraj Kumar, P.; Tekade, R.K.; Jain, N.K. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem., 2009, 44(3), 1155-1166.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.012] [PMID: 18760863]
[31]
Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257(1-2), 111-124.
[http://dx.doi.org/10.1016/S0378-5173(03)00132-7] [PMID: 12711167]
[32]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2004, 56(11), 1649-1659.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[33]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[34]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[35]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[36]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[37]
Maeda, H.; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst., 1989, 6(3), 193-210.
[PMID: 2692843]
[38]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[39]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[40]
Satchi-Fainaro, R.; Puder, M.; Davies, J.W.; Tran, H.T.; Sampson, D.A.; Greene, A.K.; Corfas, G.; Folkman, J. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med., 2004, 10(3), 255-261.
[http://dx.doi.org/10.1038/nm1002] [PMID: 14981512]
[41]
Segal, E.; Pan, H.; Benayoun, L.; Kopečková, P.; Shaked, Y.; Kopeček, J.; Satchi-Fainaro, R. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 2011, 32(19), 4450-4463.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.059] [PMID: 21429572]
[42]
Segal, E.; Satchi-Fainaro, R. Design and development of polymer conjugates as anti-angiogenic agents. Adv. Drug Deliv. Rev., 2009, 61(13), 1159-1176.
[http://dx.doi.org/10.1016/j.addr.2009.06.005] [PMID: 19699248]
[43]
Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer, 2002, 99(1), 130-137.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[44]
Kobayashi, T.; Ishida, T.; Okada, Y.; Ise, S.; Harashima, H.; Kiwada, H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm., 2007, 329(1-2), 94-102.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.039] [PMID: 16997518]
[45]
Banerjee, D.; Sengupta, S. Nanoparticles in cancer chemotherapy. Prog. Mol. Biol. Transl. Sci., 2011, 104, 489-507.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00012-7] [PMID: 22093227]
[46]
Mangraviti, A.; Gullotti, D.; Tyler, B.; Brem, H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J. Control. Release, 2016, 240, 443-453.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.031] [PMID: 27016141]
[47]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an Example. In: Handbook of experimental pharmacology; Springer: Berlin, 2010; pp. 3-53.
[48]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8(4), 1172-1181.
[PMID: 11948130]
[49]
Drummond, D.C.; Hong, K.; Park, J.W.; Benz, C.C.; Kirpotin, D.B. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm., 2000, 60, 285-332.
[http://dx.doi.org/10.1016/S0083-6729(00)60022-5] [PMID: 11037627]
[50]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[51]
Sapra, P.; Allen, T.M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res., 2002, 62(24), 7190-7194.
[PMID: 12499256]
[52]
Warenius, H.M.; Galfre, G.; Bleehen, N.M.; Milstein, C. Attempted targeting of a monoclonal antibody in a human tumour xenograft system. Eur. J. Cancer Clin. Oncol., 1981, 17(9), 1009-1015.
[http://dx.doi.org/10.1016/S0277-5379(81)80006-5] [PMID: 7198983]
[53]
Peterson, G.M.; Thomas, J.; Yee, K.C.; Kosari, S.; Naunton, M.; Olesen, I.H. Monoclonal antibody therapy in cancer: When two is better (and considerably more expensive) than one. J. Clin. Pharm. Ther., 2018, 43(6), 925-930.
[http://dx.doi.org/10.1111/jcpt.12750] [PMID: 30047144]
[54]
Pento, J.T. Monoclonal antibodies for the treatment of cancer. Anticancer Res., 2017, 37(11), 5935-5939.
[PMID: 29061772]
[55]
Scott, A.M.; Allison, J.P.; Wolchok, J.D. Monoclonal antibodies in cancer therapy. Cancer Immun., 2012, 12, 14.
[PMID: 22896759]
[56]
Kimiz-Gebologlu, I.; Gulce-Iz, S.; Biray-Avci, C. Monoclonal antibodies in cancer immunotherapy. Mol. Biol. Rep., 2018, 45(6), 2935-2940.
[http://dx.doi.org/10.1007/s11033-018-4427-x] [PMID: 30311129]
[57]
Albanell, J.; Baselga, J. Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc), 1999, 35(12), 931-946.
[PMID: 12973420]
[58]
Peer, D.; Zhu, P.; Carman, C.V.; Lieberman, J.; Shimaoka, M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 4095-4100.
[http://dx.doi.org/10.1073/pnas.0608491104] [PMID: 17360483]
[59]
Chichieveishvili, N.; Khubulava, S.; Korsantiya, B.; Kristesashvili, G.; Pichhaia, G. The possibility of silver nanoparticle use in medicine. Drug Invent. Today, 2018, 10, 1222-1226.
[60]
Crawford, M.; Woodman, R.; Ko Ferrigno, P. Peptide aptamers: tools for biology and drug discovery. Brief. Funct. Genomics Proteomics, 2003, 2(1), 72-79.
[http://dx.doi.org/10.1093/bfgp/2.1.72] [PMID: 15243998]
[61]
Lee, J.H.; Yigit, M.V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev., 2010, 62(6), 592-605.
[http://dx.doi.org/10.1016/j.addr.2010.03.003] [PMID: 20338204]
[62]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[63]
Mohammadi-Asl, J.; Dinarv, G.; Golchin, N.; Saki, N.; Ranjberi, N.; Rashidi, I. The diagnostic value of gene expression of fhl1 in the differential diagnosis of papillary thyroid carcinoma and benign tumors. JIUMS, 2014, 31(266), 2113-2121.
[64]
Garcea, G.; Neal, C.P.; Pattenden, C.J.; Steward, W.P.; Berry, D.P. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur. J. Cancer, 2005, 41(15), 2213-2236.
[http://dx.doi.org/10.1016/j.ejca.2005.04.044] [PMID: 16146690]
[65]
Soheila, N.; Nastaran, R.; Maryam, S.; Nader, S. The diagnostic value of the p53 tumor marker as a prognostic factor in patients with squamous cell carcinoma of the larynx. Biomed. Pharmacol. J., 2015, 8, 9-14.
[http://dx.doi.org/10.13005/bpj/549]
[66]
Gazdar, A.F. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev., 2010, 29(1), 37-48.
[http://dx.doi.org/10.1007/s10555-010-9201-z] [PMID: 20127143]
[67]
Nicholson, R.I.; Gee, J.M.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(Suppl. 4), S9-S15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[68]
Jotte, R.M.; Spigel, D.R. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance. Cancer Med., 2015, 4(11), 1621-1632.
[http://dx.doi.org/10.1002/cam4.506] [PMID: 26310719]
[69]
Bellocq, N.C.; Pun, S.H.; Jensen, G.S.; Davis, M.E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem., 2003, 14(6), 1122-1132.
[http://dx.doi.org/10.1021/bc034125f] [PMID: 14624625]
[70]
Kukowska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R., Jr Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res., 2005, 65(12), 5317-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[71]
Buehler, A.; van Zandvoort, M.A.M.J.; Stelt, B.J.; Hackeng, T.M.; Schrans-Stassen, B.H.G.J.; Bennaghmouch, A.; Hofstra, L.; Cleutjens, J.P.M.; Duijvestijn, A.; Smeets, M.B.; de Kleijn, D.P.V.; Post, M.J.; de Muinck, E.D. cNGR: a novel homing sequence for CD13/APN targeted molecular imaging of murine cardiac angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2681-2687.
[http://dx.doi.org/10.1161/01.ATV.0000245807.65714.0b] [PMID: 16990557]
[72]
Xie, J.; Shen, Z.; Li, K.C.P.; Danthi, N. Tumor angiogenic endothelial cell targeting by a novel integrin-targeted nanoparticle. Int. J. Nanomedicine, 2007, 2(3), 479-485.
[PMID: 18019845]
[73]
Couvreur, P.; Kante, B.; Roland, M.; Speiser, P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci., 1979, 68(12), 1521-1524.
[http://dx.doi.org/10.1002/jps.2600681215] [PMID: 529043]
[74]
Cristofanilli, M.; Charnsangavej, C.; Hortobagyi, G.N. Angiogenesis modulation in cancer research: novel clinical approaches. Nat. Rev. Drug Discov., 2002, 1(6), 415-426.
[http://dx.doi.org/10.1038/nrd819] [PMID: 12119743]
[75]
Basu, S.; Chaudhuri, P.; Sengupta, S. Targeting oncogenic signaling pathways by exploiting nanotechnology. Cell Cycle, 2009, 8(21), 3480-3487.
[http://dx.doi.org/10.4161/cc.8.21.9851] [PMID: 19823014]
[76]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[77]
Harfouche, R.; Basu, S.; Soni, S.; Hentschel, D.M.; Mashelkar, R.A.; Sengupta, S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis, 2009, 12(4), 325-338.
[http://dx.doi.org/10.1007/s10456-009-9154-4] [PMID: 19685150]
[78]
Banerjee, D.; Sengupta, S. Nanoparticles in Cancer Chemotherapy.Progress in Molecular Biology and Translational Science; Elsevier B.V.: Asmterdam, 2011, 104, pp. ()489-507.
[79]
Rabanel, J.M.; Aoun, V.; Elkin, I.; Mokhtar, M.; Hildgen, P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr. Med. Chem., 2012, 19(19), 3070-3102.
[http://dx.doi.org/10.2174/092986712800784702] [PMID: 22612696]
[80]
Durairaj, B.; Santhi, R.; Hemalatha, A. Isolation of chitosan from fish scales of catla catla and synthesis, characterization and screening for larvicidal potential of chitosan-based silver nanoparticles. Drug Invent. Today, 2018, 10, 1357-1362.
[81]
Hu, C-M.J.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[http://dx.doi.org/10.4155/tde.10.13] [PMID: 22816135]
[82]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[83]
Miller, K.; Erez, R.; Segal, E.; Shabat, D.; Satchi-Fainaro, R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew. Chem. Int. Ed. Engl., 2009, 48(16), 2949-2954.
[http://dx.doi.org/10.1002/anie.200805133] [PMID: 19294707]
[84]
Segal, E.; Pan, H.; Ofek, P.; Udagawa, T.; Kopecková, P.; Kopecek, J.; Satchi-Fainaro, R. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One, 2009, 4(4)e5233
[http://dx.doi.org/10.1371/journal.pone.0005233] [PMID: 19381291]
[85]
Drevs, J.; Müller-Driver, R.; Wittig, C.; Fuxius, S.; Esser, N.; Hugenschmidt, H.; Konerding, M.A.; Allegrini, P.R.; Wood, J.; Hennig, J.; Unger, C.; Marmé, D. PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res., 2002, 62(14), 4015-4022.
[PMID: 12124335]
[86]
Reichardt, W.; Hu-Lowe, D.; Torres, D.; Weissleder, R.; Bogdanov, A., Jr Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia, 2005, 7(9), 847-853.
[http://dx.doi.org/10.1593/neo.05139] [PMID: 16229807]
[87]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[http://dx.doi.org/10.1038/nature03794] [PMID: 16049491]
[88]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[89]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[90]
Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[91]
Carvalho, M.R.; Carvalho, C.R.; Maia, F.R.; Caballero, D.; Kundu, S.C.; Reis, R.L.; Oliveira, J.M. Peptide-modified dendrimer nanoparticles for targeted therapy of colorectal cancer. Adv. Ther., 2019, 21900132
[http://dx.doi.org/10.1002/adtp.201900132]
[92]
Ryan, G.M.; McLeod, V.M.; Mehta, D.; Kelly, B.D.; Stanislawski, P.C.; Owen, D.J.; Kaminskas, L.M.; Porter, C.J.H. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site. Nanomedicine (Lond.), 2017, 13(8), 2485-2494.
[http://dx.doi.org/10.1016/j.nano.2017.08.003] [PMID: 28821463]
[93]
Franiak-Pietryga, I.; Ostrowska, K.; Maciejewski, H.; Appelhans, D.; Misiewicz, M.; Ziemba, B.; Bednarek, M.; Bryszewska, M.; Borowiec, M. PPI-G4 glycodendrimers upregulate trail-induced apoptosis in chronic lymphocytic leukemia cells. Macromol. Biosci., 2017, 17(5)1600169
[http://dx.doi.org/10.1002/mabi.201600169] [PMID: 27996200]
[94]
Cheng, Y.; Zhu, J.; Zhao, L.; Xiong, Z.; Tang, Y.; Liu, C.; Guo, L.; Qiao, W.; Shi, X.; Zhao, J. (131)I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine (Lond.), 2016, 11(10), 1253-1266.
[http://dx.doi.org/10.2217/nnm-2016-0001] [PMID: 26940668]
[95]
Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-sensitive and amphiphilic pegylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6865-6877.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[96]
Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med., 2014, 276(6), 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[97]
Schumann, C.; Taratula, O.; Khalimonchuk, O.; Palmer, A.L.; Cronk, L.M.; Jones, C.V.; Escalante, C.A.; Taratula, O. ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and DJ-1 gene suppression. Nanomedicine (Lond.), 2015, 11(8), 1961-1970.
[http://dx.doi.org/10.1016/j.nano.2015.07.005] [PMID: 26238076]
[98]
Chen, Y.Z.; Yao, X.L.; Ruan, G.X.; Zhao, Q.Q.; Tang, G.P.; Tabata, Y.; Gao, J.Q. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol. Appl. Biochem., 2012, 59(5), 346-352.
[http://dx.doi.org/10.1002/bab.1036] [PMID: 23586911]
[99]
Li, J.; Ma, F.K.; Dang, Q.F.; Liang, X.G.; Chen, X.G. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells. Front. Mater. Sci., 2014, 8, 363-372.
[http://dx.doi.org/10.1007/s11706-014-0262-8]
[100]
Xu, Y.; Wen, Z.; Xu, Z. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. Anticancer Res., 2009, 29(12), 5103-5109.
[PMID: 20044623]
[101]
Chokradjaroen, C.; Rujiravanit, R.; Watthanaphanit, A.; Theeramunkong, S.; Saito, N.; Yamashita, K.; Arakawa, R. Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr. Polym., 2017, 167, 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.006] [PMID: 28433142]
[102]
Molinaro, R.; Wolfram, J.; Federico, C.; Cilurzo, F.; Di Marzio, L.; Ventura, C.A.; Carafa, M.; Celia, C.; Fresta, M. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin. Drug Deliv., 2013, 10(12), 1653-1668.
[http://dx.doi.org/10.1517/17425247.2013.840286] [PMID: 24090239]
[103]
Fu, Q.; Lv, P.; Chen, Z.; Ni, D.; Zhang, L.; Yue, H.; Yue, Z.; Wei, W.; Ma, G. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale, 2015, 7(9), 4020-4030.
[http://dx.doi.org/10.1039/C4NR07027E] [PMID: 25653083]
[104]
Yu, B.; Li, X.; Zheng, W.; Feng, Y.; Wong, Y.S.; Chen, T. pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(33), 5409-5418.
[http://dx.doi.org/10.1039/C4TB00399C] [PMID: 32261761]
[105]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[106]
Miculescu, F.; Maidaniuc, A.; Voicu, S.I.; Thakur, V.K.; Stan, G.E.; Ciocan, L.T. Progress in hydroxyapatite-starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain. Chem.& Eng., 2017, 5, 8491-8512.
[http://dx.doi.org/10.1021/acssuschemeng.7b02314]
[107]
Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of tga coupled on-line with ftir and gcms: thermal degradation and water adsorption capacity. Polym. Degrad. Stabil., 2015, 112, 1-9.
[http://dx.doi.org/10.1016/j.polymdegradstab.2014.12.006]
[108]
Paraskar, A.S.; Soni, S.; Chin, K.T.; Chaudhuri, P.; Muto, K.W.; Berkowitz, J.; Handlogten, M.W.; Alves, N.J.; Bilgicer, B.; Dinulescu, D.M.; Mashelkar, R.A.; Sengupta, S. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc. Natl. Acad. Sci. USA, 2010, 107(28), 12435-12440.
[http://dx.doi.org/10.1073/pnas.1007026107] [PMID: 20616005]
[109]
Samprasit, W.; Rojanarata, T.; Akkaramongkolporn, P.; Ngawhirunpat, T.; Kaomongkolgit, R.; Opanasopit, P. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containing α-mangostin. AAPS PharmSciTech, 2015, 16(5), 1140-1152.
[http://dx.doi.org/10.1208/s12249-015-0300-6] [PMID: 25716329]
[110]
Wang, X.; Chen, H.; Luo, Z.; Fu, X. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydr. Polym., 2016, 138, 192-200.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.006] [PMID: 26794752]
[111]
Constantinides, P.P. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res., 1995, 12(11), 1561-1572.
[http://dx.doi.org/10.1023/A:1016268311867] [PMID: 8592652]
[112]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[113]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[114]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[115]
Silva, A.C.; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E.B.; Ferreira, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces, 2011, 86(1), 158-165.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.035] [PMID: 21530187]
[116]
Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (sln) for controlled drug delivery. i. production, characterization and sterilization. J. Control. Release, 1994, 30, 83-96.
[http://dx.doi.org/10.1016/0168-3659(94)90047-7]
[117]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[118]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[119]
Weinmann, H.J.; Brasch, R.C.; Press, W.R.; Wesbey, G.E. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am. J. Roentgenol., 1984, 142(3), 619-624.
[http://dx.doi.org/10.2214/ajr.142.3.619] [PMID: 6607655]
[120]
Yadollahpour, A.; Venkateshwarlu, G. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging. Int. J. Pharm. Technol., 2016, 8, 11379-11393.
[121]
Mohs, A.M.; Lu, Z.R. Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opin. Drug Deliv., 2007, 4(2), 149-164.
[http://dx.doi.org/10.1517/17425247.4.2.149] [PMID: 17335412]
[122]
Sipkins, D.A.; Cheresh, D.A.; Kazemi, M.R.; Nevin, L.M.; Bednarski, M.D.; Li, K.C.P. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med., 1998, 4(5), 623-626.
[http://dx.doi.org/10.1038/nm0598-623] [PMID: 9585240]
[123]
Maeng, J.H.; Lee, D.H.; Jung, K.H.; Bae, Y.H.; Park, I.S.; Jeong, S.; Jeon, Y.S.; Shim, C.K.; Kim, W.; Kim, J.; Lee, J.; Lee, Y.M.; Kim, J.H.; Kim, W.H.; Hong, S.S. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010, 31(18), 4995-5006.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.068] [PMID: 20347138]
[124]
Kojima, C.; Turkbey, B.; Ogawa, M.; Bernardo, M.; Regino, C.A.S.; Bryant, L.H., Jr; Choyke, P.L.; Kono, K.; Kobayashi, H. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine (Lond.), 2011, 7(6), 1001-1008.
[http://dx.doi.org/10.1016/j.nano.2011.03.007] [PMID: 21515406]
[125]
Klemm, P.J.; Floyd, W.C.; Smiles, D.E.; Fréchet, J.M.J.; Raymond, K.N. Improving t1 and t2 magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III). Hydroxypyridinone Complexes. Contrast Media Mol. Imaging, 2012, 7, 95-99.
[http://dx.doi.org/10.1002/cmmi.483] [PMID: 22344885]
[126]
Kluza, E.; van der Schaft, D.W.J.; Hautvast, P.A.I.; Mulder, W.J.M.; Mayo, K.H.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett., 2010, 10(1), 52-58.
[http://dx.doi.org/10.1021/nl902659g] [PMID: 19968235]
[127]
Samei, E.; Saunders, R.S.; Badea, C.T.; Ghaghada, K.B.; Hedlund, L.W.; Qi, Y.; Yuan, H.; Bentley, R.C.; Mukundan, S. Jr Micro-CT imaging of breast tumors in rodents using a liposomal, nanoparticle contrast agent. Int. J. Nanomedicine, 2009, 4, 277-282.
[http://dx.doi.org/10.2147/IJN.S7881] [PMID: 20011244]
[128]
Zhan, C.; Gu, B.; Xie, C.; Li, J.; Liu, Y.; Lu, W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release, 2010, 143(1), 136-142.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.020] [PMID: 20056123]
[129]
Zhan, C.; Li, B.; Hu, L.; Wei, X.; Feng, L.; Fu, W.; Lu, W. Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5482-5485.
[http://dx.doi.org/10.1002/anie.201100875] [PMID: 21542074]
[130]
Benny, O.; Fainaru, O.; Adini, A.; Cassiola, F.; Bazinet, L.; Adini, I.; Pravda, E.; Nahmias, Y.; Koirala, S.; Corfas, G.; D’Amato, R.J.; Folkman, J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat. Biotechnol., 2008, 26(7), 799-807.
[http://dx.doi.org/10.1038/nbt1415] [PMID: 18587385]
[131]
Kooijmans, S.A.A.; Fliervoet, L.A.L.; van der Meel, R.; Fens, M.H.A.M.; Heijnen, H.F.G.; van Bergen En Henegouwen, P.M.P.; Vader, P.; Schiffelers, R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release, 2016, 224, 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[132]
Nasongkla, N.; Shuai, X.; Ai, H.; Weinberg, B.D.; Pink, J.; Boothman, D.A.; Gao, J. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6323-6327.
[http://dx.doi.org/10.1002/anie.200460800] [PMID: 15558662]
[133]
Deng, J.; Ding, X.; Zhang, W.; Peng, Y.; Wang, J.; Long, X.; Li, P.; Chan, A.S. Carbon nanotube-polyaniline hybrid materials. Eur. Polym. J., 2002, 38, 2497-2501.
[http://dx.doi.org/10.1016/S0014-3057(02)00165-9]
[134]
Murugesan, S.; Mousa, S.A.; O’connor, L.J.; Lincoln, D.W., II; Linhardt, R.J. Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett., 2007, 581(6), 1157-1160.
[http://dx.doi.org/10.1016/j.febslet.2007.02.022] [PMID: 17331505]
[135]
Mignani, S.; Rodrigues, J.; Tomas, H.; Caminade, A.M.; Laurent, R.; Shi, X.; Majoral, J.P. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Science China Materials, 2018, 61, 1367-1386.
[http://dx.doi.org/10.1007/s40843-018-9244-5]
[136]
Hermanson, G.T. Bioconjugate Techniques; Elsevier: Amsterdam, 2013.
[137]
Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R.A.; Sengupta, S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano, 2009, 3(9), 2505-2514.
[http://dx.doi.org/10.1021/nn900318y] [PMID: 19681636]
[138]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Dye-doped fluorescent nanoparticles in molecular imaging: A review of recent advances and future opportunities. Mat. Sc. Res. India, 2014, 11(2)
[http://dx.doi.org/10.13005/msri/110203 ]
[139]
Yu, Y.; Xu, Q.; He, S.; Xiong, H.; Zhang, Q.; Xu, W.; Ricotta, V.; Bai, L.; Zhang, Q.; Yu, Z.; Ding, J.; Xiao, H.; Zhou, D. Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev., 2019, 387, 154-179.
[http://dx.doi.org/10.1016/j.ccr.2019.01.020]
[140]
Yan, J.; Estévez, M.C.; Smith, J.E.; Wang, K.; He, X.; Wang, L.; Tan, W. Dye-Doped nanoparticles for bioanalysis. Nano Today, 2007, 2, 44-50.
[http://dx.doi.org/10.1016/S1748-0132(07)70086-5]
[141]
Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.035] [PMID: 31978444]
[142]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[143]
Wang, Z.; Cuschieri, A. Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int. J. Mol. Sci., 2013, 14(5), 9111-9125.
[http://dx.doi.org/10.3390/ijms14059111] [PMID: 23624604]
[144]
Thomas, G.; Boudon, J.; Maurizi, L.; Moreau, M.; Walker, P.; Severin, I.; Oudot, A.; Goze, C.; Poty, S.; Vrigneaud, J.M.; Demoisson, F.; Denat, F.; Brunotte, F.; Millot, N. Innovative magnetic nanoparticles for pet/mri bimodal imaging. ACS Omega, 2019, 4(2), 2637-2648.
[http://dx.doi.org/10.1021/acsomega.8b03283] [PMID: 31459499]
[145]
Jiang, S.; Gnanasammandhan, M.K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface, 2010, 7(42), 3-18.
[http://dx.doi.org/10.1098/rsif.2009.0243] [PMID: 19759055]
[146]
Ma, L.; Wu, S-M.; Huang, J.; Ding, Y.; Pang, D-W.; Li, L. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma, 2008, 117(2), 181-187.
[http://dx.doi.org/10.1007/s00412-007-0136-2] [PMID: 18046569]
[147]
Bentolila, L.A.; Weiss, S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys., 2006, 45(1), 59-70.
[http://dx.doi.org/10.1385/CBB:45:1:59] [PMID: 16679564]
[148]
Tholouli, E.; Sweeney, E.; Barrow, E.; Clay, V.; Hoyland, J.A.; Byers, R.J. Quantum dots light up pathology. J. Pathol., 2008, 216(3), 275-285.
[http://dx.doi.org/10.1002/path.2421] [PMID: 18814189]
[149]
Gao, X.; Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol., 2003, 21(9), 371-373.
[http://dx.doi.org/10.1016/S0167-7799(03)00209-9] [PMID: 12948664]
[150]
Bentolila, L.A.; Ebenstein, Y.; Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med., 2009, 50(4), 493-496.
[http://dx.doi.org/10.2967/jnumed.108.053561] [PMID: 19289434]
[151]
Byers, R.J.; Hitchman, E.R. Quantum dots brighten biological imaging. Prog. Histochem. Cytochem., 2011, 45(4), 201-237.
[http://dx.doi.org/10.1016/j.proghi.2010.11.001] [PMID: 21196026]
[152]
True, L.D.; Gao, X. Quantum dots for molecular pathology: their time has arrived. J. Mol. Diagn., 2007, 9(1), 7-11.
[http://dx.doi.org/10.2353/jmoldx.2007.060186] [PMID: 17251330]
[153]
Mulder, W.J.M.; Koole, R.; Brandwijk, R.J.; Storm, G.; Chin, P.T.K.; Strijkers, G.J.; de Mello Donegá, C.; Nicolay, K.; Griffioen, A.W. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett., 2006, 6(1), 1-6.
[http://dx.doi.org/10.1021/nl051935m] [PMID: 16402777]
[154]
Cai, W.; Shin, D.W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S.X.; Gambhir, S.S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett., 2006, 6(4), 669-676.
[http://dx.doi.org/10.1021/nl052405t] [PMID: 16608262]
[155]
Lewis, J.D.; Destito, G.; Zijlstra, A.; Gonzalez, M.J.; Quigley, J.P.; Manchester, M.; Stuhlmann, H. Viral nanoparticles as tools for intravital vascular imaging. Nat. Med., 2006, 12(3), 354-360.
[http://dx.doi.org/10.1038/nm1368] [PMID: 16501571]
[156]
González-Gamboa, I.; Manrique, P.; Sánchez, F.; Ponz, F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. J. Biotechnol., 2017, 254, 17-24.
[http://dx.doi.org/10.1016/j.jbiotec.2017.06.014] [PMID: 28625680]
[157]
Steele, J.F.C.; Peyret, H.; Saunders, K.; Castells-Graells, R.; Marsian, J.; Meshcheriakova, Y.; Lomonossoff, G.P. Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(4), 9.
[http://dx.doi.org/10.1002/wnan.1447] [PMID: 28078770]
[158]
Villagrana-Escareño, M.V.; Reynaga-Hernández, E.; Galicia-Cruz, O.G.; Durán-Meza, A.L.; De la Cruz-González, V.; Hernández-Carballo, C.Y.; Ruíz-García, J. VLPs derived from the ccmv plant virus can directly transfect and deliver heterologous genes for translation into mammalian cells. BioMed Res. Int., 2019, 20194630891
[http://dx.doi.org/10.1155/2019/4630891] [PMID: 31781617]
[159]
Sunshine, J.C.; Bishop, C.J.; Green, J.J. Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery. Ther. Deliv., 2011, 2(4), 493-521.
[http://dx.doi.org/10.4155/tde.11.14] [PMID: 22826857]
[160]
Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomedicine, 2007, 2(4), 715-733.
[PMID: 18203438]
[161]
Doan, D.N.P.; Lee, K.C.; Laurinmäki, P.; Butcher, S.; Wong, S.M.; Dokland, T. Three-dimensional reconstruction of hibiscus chlorotic ringspot virus. J. Struct. Biol., 2003, 144(3), 253-261.
[http://dx.doi.org/10.1016/j.jsb.2003.10.001] [PMID: 14643194]
[162]
Sherman, M.B.; Guenther, R.H.; Tama, F.; Sit, T.L.; Brooks, C.L.; Mikhailov, A.M.; Orlova, E.V.; Baker, T.S.; Lommel, S.A. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol., 2006, 80(21), 10395-10406.
[http://dx.doi.org/10.1128/JVI.01137-06] [PMID: 16920821]
[163]
Sachse, C.; Chen, J.Z.; Coureux, P.D.; Stroupe, M.E.; Fändrich, M.; Grigorieff, N. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol., 2007, 371(3), 812-835.
[http://dx.doi.org/10.1016/j.jmb.2007.05.088] [PMID: 17585939]
[164]
Green, J.J.; Zugates, G.T.; Langer, R.; Anderson, D.G. Poly(beta-amino esters): procedures for synthesis and gene delivery. Methods Mol. Biol., 2009, 480, 53-63.
[http://dx.doi.org/10.1007/978-1-59745-429-2_4] [PMID: 19085119]
[165]
Cormode, D.P.; Jarzyna, P.A.; Mulder, W.J.M.; Fayad, Z.A. Modified natural nanoparticles as contrast agents for medical imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 329-338.
[http://dx.doi.org/10.1016/j.addr.2009.11.005] [PMID: 19900496]
[166]
Zhu, L.; Kalimuthu, S.; Oh, J.M.; Gangadaran, P.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials, 2019, 190-191, 38-50.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.034] [PMID: 30391801]
[167]
Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev., 2006, 58(14), 1505-1522.
[http://dx.doi.org/10.1016/j.addr.2006.09.014] [PMID: 17118484]
[168]
Brunel, F.M.; Lewis, J.D.; Destito, G.; Steinmetz, N.F.; Manchester, M.; Stuhlmann, H.; Dawson, P.E. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett., 2010, 10(3), 1093-1097.
[http://dx.doi.org/10.1021/nl1002526] [PMID: 20163184]
[169]
Briley-Saebo, K.C.; Geninatti-Crich, S.; Cormode, D.P.; Barazza, A.; Mulder, W.J.M.; Chen, W.; Giovenzana, G.B.; Fisher, E.A.; Aime, S.; Fayad, Z.A. High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. J. Phys. Chem. B, 2009, 113(18), 6283-6289.
[http://dx.doi.org/10.1021/jp8108286] [PMID: 19361222]
[170]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[171]
Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci., 2011, 43(3), 174-179.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]
[172]
Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release, 2007, 121(1-2), 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[173]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[174]
Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(38), 4972-4982.
[http://dx.doi.org/10.1039/c3tb20761g] [PMID: 32261087]
[175]
Gedda, G.; Pandey, S.; Bhaisare, M.L.; Wu, H.F. Carbon dots as nanoantennas for anti-inflammatory drug analysis using surface-assisted laser desorption/ionization time-of-flight mass spectrometry in serum. RSC Advances, 2014, 4, 38027-38033.
[http://dx.doi.org/10.1039/C4RA04267K]
[176]
Erol, O.; Uyan, I.; Hatip, M.; Yilmaz, C.; Tekinay, A.B.; Guler, M.O. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine (Lond.), 2018, 14(7), 2433-2454.
[http://dx.doi.org/10.1016/j.nano.2017.03.021] [PMID: 28552644]
[177]
Chaudhuri, P.; Harfouche, R.; Soni, S.; Hentschel, D.M.; Sengupta, S. Shape effect of carbon nanovectors on angiogenesis. ACS Nano, 2010, 4(1), 574-582.
[http://dx.doi.org/10.1021/nn901465h] [PMID: 20043662]
[178]
Scott, J.H.J.; Majetich, S.A. Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys. Rev. B Condens. Matter, 1995, 52(17), 12564-12571.
[http://dx.doi.org/10.1103/PhysRevB.52.12564] [PMID: 9980415]
[179]
Bhattacharya, K.; Mukherjee, S.P.; Gallud, A.; Burkert, S.C.; Bistarelli, S.; Bellucci, S.; Bottini, M.; Star, A.; Fadeel, B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine (Lond.), 2016, 12(2), 333-351.
[http://dx.doi.org/10.1016/j.nano.2015.11.011] [PMID: 26707820]
[180]
Injac, R.; Prijatelj, M.; Strukelj, B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol. Biol., 2013, 1028, 75-100.
[http://dx.doi.org/10.1007/978-1-62703-475-3_5] [PMID: 23740114]
[181]
Kumar, M.; Raza, K. C60-fullerenes as drug delivery carriers for anticancer agents: promises and hurdles. Pharm. Nanotechnol., 2017, 5(3), 169-179.
[PMID: 29361902]
[182]
Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S.; Sun, Y.P. Fullerene-conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces, 2010, 2(5), 1384-1389.
[http://dx.doi.org/10.1021/am100037y] [PMID: 20420365]
[183]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy