Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Use of Bio-Active Compounds of Citrus Fruits as Chemopreventive Agents and Inhibitor of Cancer Cells Viability

Author(s): Mahboubeh Tajaldini and Jahanbakhsh Asadi*

Volume 21, Issue 9, 2021

Published on: 21 July, 2020

Page: [1058 - 1068] Pages: 11

DOI: 10.2174/1871520620666200721105505

Price: $65

Abstract

Common therapy of cancer, such as chemotherapy, has various side effects for the patients. In recent studies, new therapeutic approaches in cancer treatment are adjuvant therapy, along with a reduction in side effects of chemotherapy drugs. Treatment by herbal medicines may have some advantages over treatment with single purified chemicals, also in terms of side effects, the use of plants in cancer treatment is a more secure method. Citrus fruits are one of the most consumed natural products in the world due to the presence of various metabolites and bioactive compounds, such as phenols, flavonoids and, carotenoids. Bioactive compounds of citrus modulate signaling pathways and interact with signaling molecules such as apoptotic and cell cycle (P53, P21, etc.) and thus have a wide range of pharmacological activities, including anti-inflammatory, anti-cancer and oxidative stress. The findings discussed in this review strongly support their potential as anti-cancer agents. Therefore, the purpose of this review was to examine the effects of active compounds in citrus as a therapy agent in cancer treatment.

Keywords: Chemopreventive, citrus, phenolic compound, cancer cells, chemotherapy, herbal medicines.

Graphical Abstract

[2]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer.Breast Cancer Chemosensitivity; Springer: Germany, 2007, pp. 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1]
[3]
Jena, J.; Ranjan, R.; Ranjan, P.; Sarangi, M.K. A study on natural anticancer plants. Int. J. Pharmaceut. Chem. Sci., 2012, 1(1), 365-368.
[4]
Wang, R.; Wang, Y.; Gao, Z.; Qu, X. The comparative study of Acetyl-11-Keto-beta-Boswellic Acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov. Ther., 2014, 8(1), 25-32.
[http://dx.doi.org/10.5582/ddt.8.25] [PMID: 24647155]
[5]
Tajaldini, M.; Samadi, F.; Khosravi, A.; Ghasemnejad, A.; Asadi, J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharmacother., 2020, 121, 109594.
[http://dx.doi.org/10.1016/j.biopha.2019.109594]] [PMID: 31707344]
[6]
Norwood Toro, L.E.; Hader, S.N.; Kong, A.; Rui, H.; Beyer, A.M. Adverse effects of chemotherapy on human microvascular function. FASEB J., 2019, 33(1), lb453-lb453.
[7]
Jia, J.B.; Lall, C.; Tirkes, T.; Gulati, R.; Lamba, R.; Goodwin, S.C. Chemotherapy-related complications in the kidneys and collecting system: An imaging perspective. Insights Imaging, 2015, 6(4), 479-487.
[http://dx.doi.org/10.1007/s13244-015-0417-x] [PMID: 26162467]
[8]
Dietrich, J. Chemotherapy associated central nervous system damage. In:Chemo Fog; Springer: Germany, 2010, pp. 77-85.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_11]
[10]
Collins, L.; Zhu, T.; Guo, J.; Xiao, Z.J.; Chen, C.Y. Phellinus linteus sensitises apoptosis induced by doxorubicin in prostate cancer. Br. J. Cancer, 2006, 95(3), 282-288.
[http://dx.doi.org/10.1038/sj.bjc.6603277] [PMID: 16868541]
[11]
Amaral, R.; dos Santos, S.; Andrade, L.; Severino, P.; Carvalho, A. Natural products as treatment against cancer: A historical and current vision. Clin. Oncol. (R. Coll. Radiol.), 2019, 4, 1562.
[12]
Fimognari, C.; Hrelia, P. Sulforaphane as a promising molecule for fighting cancer. Mutat. Res., 2007, 635(2-3), 90-104.
[http://dx.doi.org/10.1016/j.mrrev.2006.10.004] [PMID: 17134937]
[13]
Banjerdpongchai, R.; Punyati, P.; Nakrob, A.; Pompimon, W.; Kongtawelert, P. 4′-Hydroxycinnamaldehyde from Alpinia galanga (Linn.) induces human leukemic cell apoptosis via mitochondrial and endoplasmic reticulum stress pathways. Asian Pac. J. Cancer Prev., 2011, 12(3), 593-598.
[PMID: 21627350]
[14]
Banjerdpongchai, R.; Khaw-On, P. Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells. Asian Pac. J. Cancer Prev., 2013, 14(12), 7537-7542.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7537] [PMID: 24460330]
[15]
Lin, W.; Tongyi, S. Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumour Biol., 2014, 35(8), 8065-8075.
[http://dx.doi.org/10.1007/s13277-014-2064-0] [PMID: 24839007]
[16]
Gali-Muhtasib, H.; Hmadi, R.; Kareh, M.; Tohme, R.; Darwiche, N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis, 2015, 20(12), 1531-1562.
[http://dx.doi.org/10.1007/s10495-015-1169-2] [PMID: 26362468]
[17]
Soleimani, A.; Asadi, J.; Rostami-Charati, F.; Gharaei, R. High cytotoxicity and apoptotic effects of natural bioactive benzofuran derivative on the MCF-7 breast cancer cell line. Comb. Chem. High Throughput Screen., 2015, 18(5), 505-513.
[http://dx.doi.org/10.2174/1386207318666150430114815] [PMID: 25924658]
[18]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[19]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[20]
Khoo, B.L.; Grenci, G.; Lim, J.S.Y.; Lim, Y.P.; Fong, J.; Yeap, W.H.; Bin Lim, S.; Chua, S.L.; Wong, S.C.; Yap, Y-S.; Lee, S.C.; Lim, C.T.; Han, J. Low-dose anti-inflammatory combinatorial therapy reduced cancer stem cell formation in patient-derived preclinical models for tumour relapse prevention. Br. J. Cancer, 2019, 120(4), 407-423.
[http://dx.doi.org/10.1038/s41416-018-0301-9] [PMID: 30713340]
[21]
Tavangar, F.; Sepehri, H.; Saghaeian Jazi, M.; Asadi, J. Amphotericin B potentiates the anticancer activity of doxorubicin on the MCF-7 breast cancer cells. J. Chem. Biol., 2017, 10(3), 143-150.
[http://dx.doi.org/10.1007/s12154-017-0172-1] [PMID: 28685000]
[22]
Keum, Y-S.; Jeong, W-S.; Kong, A.N. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res., 2004, 555(1-2), 191-202.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.05.024] [PMID: 15476860]
[23]
Kuete, V.; Dzotam, J.K.; Voukeng, I.K.; Fankam, A.G.; Efferth, T. Cytotoxicity of methanol extracts of Annona muricata, Passiflora edulis and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines. Springerplus, 2016, 5(1), 1666.
[http://dx.doi.org/10.1186/s40064-016-3361-4] [PMID: 27730025]
[24]
Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid. Med. Cell. Longev., 2016, 2016 Article ID 3571614.
[http://dx.doi.org/10.1155/2016/3571614]
[25]
Wang, H.; Oo Khor, T.; Shu, L.; Su, Z-Y.; Fuentes, F.; Lee, J-H.; Tony Kong, A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability Anti-Cancer Agents. Med. Chem., 2012, 12(10), 1281-1305.
[26]
Bahmani, M.; Shirzad, H.; Shahinfard, N.; Sheivandi, L.; Rafieian-Kopaei, M. Cancer phytotherapy: Recent views on the role of antioxidant and angiogenesis activities. J. Evid. Based Complementary Altern. Med., 2017, 22(2), 299-309.
[http://dx.doi.org/10.1177/2156587215625157] [PMID: 26753686]
[27]
Rafiq, S.; Kaul, R.; Sofi, S.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci., 2018, 17(4), 351-358.
[http://dx.doi.org/10.1016/j.jssas.2016.07.006]
[28]
Pellati, F.; Benvenuti, S.; Melegari, M.; Firenzuoli, F. Determination of adrenergic agonists from extracts and herbal products of Citrus aurantium L. var. amara by LC. J. Pharm. Biomed. Anal., 2002, 29(6), 1113-1119.
[http://dx.doi.org/10.1016/S0731-7085(02)00153-X] [PMID: 12110397]
[29]
Thirugnanavel, A.; Amutha, R.; Rani, W.B.; Indira, K.; Mareeswari, P.; Muthulaksmi, S.; Parthiban, S. Studies on regulation of flowering in acid lime (Citrus aurantifolia swingle.). Res. J. Agric. Biol. Sci., 2007, 3(4), 239-241.
[30]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[31]
Malleshappa, P.; Kumaran, R.C.; Venkatarangaiah, K.; Parveen, S. Peels of citrus fruits: A potential source of anti-inflammatory and anti-nociceptive agents. Pharmacogn. J., 2018, 10(6s), s172-s178.
[http://dx.doi.org/10.5530/pj.2018.6s.30]]
[32]
Wink, M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol., 2018, 9, 364.
[http://dx.doi.org/10.3389/fphys.2018.00364] [PMID: 29695974]
[33]
Frydman, A.; Weisshaus, O.; Bar-Peled, M.; Huhman, D.V.; Sumner, L.W.; Marin, F.R.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J., 2004, 40(1), 88-100.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02193.x] [PMID: 15361143]
[34]
Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502] [PMID: 28509871]
[35]
Di Donna, L.; Iacopetta, D.; Cappello, A.R.; Gallucci, G.; Martello, E.; Fiorillo, M.; Dolce, V.; Sindona, G. Hypocholesterolaemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): “In vivo” studies. J. Funct. Foods, 2014, 7, 558-568.
[http://dx.doi.org/10.1016/j.jff.2013.12.029]
[36]
Kawaii, S.; Ikuina, T.; Hikima, T.; Tokiwano, T.; Yoshizawa, Y. Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells. Anticancer Res., 2012, 32(12), 5239-5244.
[PMID: 23225422]
[37]
Manthey, J.A.; Guthrie, N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem., 2002, 50(21), 5837-5843.
[http://dx.doi.org/10.1021/jf020121d] [PMID: 12358447]
[38]
Fusco, A.; Savio, V.; Cammarota, M.; Alfano, A.; Schiraldi, C.; Donnarumma, G. Beta-defensin-2 and beta-defensin-3 reduce intestinal damage caused by Salmonella typhimurium modulating the expression of cytokines and enhancing the probiotic activity of enterococcus faecium. J. Immunol. Res., 2017, 2017 Article ID 6976935.
[http://dx.doi.org/10.1155/2017/6976935]
[39]
Jain, C.K.; Majumder, H.K.; Roychoudhury, S. Natural compounds as anticancer agents targeting DNA topoisomerases. Curr. Genomics, 2017, 18(1), 75-92.
[http://dx.doi.org/10.2174/1389202917666160808125213] [PMID: 28503091]
[40]
Bachrach, Z. Contribution of selected medicinal plants for cancer prevention and therapy. Acta Facultatis Medicae Naissensis, 2012, 29(3), 117-123.
[http://dx.doi.org/10.2478/v10283-012-0016-4]
[41]
Qabaha, K.I. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(4), 101-108.
[http://dx.doi.org/10.4314/ajtcam.v10i4.17] [PMID: 24146509]
[42]
Del Caro, A.; Piga, A.; Vacca, V.; Agabbio, M. Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chem., 2004, 84(1), 99-105.
[http://dx.doi.org/10.1016/S0308-8146(03)00180-8]
[43]
Gorinstein, S.; Cvikrova, M.; Machackova, I.; Haruenkit, R.; Park, Y-S.; Jung, S-T.; Yamamoto, K.; Ayala, A.L.M.; Katrich, E.; Trakhtenberg, S. Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem., 2004, 84(4), 503-510.
[http://dx.doi.org/10.1016/S0308-8146(03)00127-4]
[44]
Poulose, S.M.; Harris, E.D.; Patil, B.S. Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutr. Cancer, 2006, 56(1), 103-112.
[http://dx.doi.org/10.1207/s15327914nc5601_14] [PMID: 17176224]
[45]
Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Kumar, V.; Rathore, K.S.; Patil, B.S. Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis. J. Agric. Food Chem., 2011, 59(6), 2314-2323.
[http://dx.doi.org/10.1021/jf104498p] [PMID: 21338095]
[46]
Okumura, N.; Yoshida, H.; Kitagishi, Y.; Murakami, M.; Nishimura, Y.; Matsuda, S. PI3K/AKT/PTEN signaling as a molecular target in leukemia angiogenesis. Adv. Hematol., 2012, 2012, 843085.
[47]
Tarahovsky, Y.S. Plant polyphenols in cell-cell interaction and communication. Plant Signal. Behav., 2008, 3(8), 609-611.
[http://dx.doi.org/10.4161/psb.3.8.6359] [PMID: 19704814]
[48]
Soner, B.C.; Aktug, H.; Acikgoz, E.; Duzagac, F.; Guven, U.; Ayla, S.; Cal, C.; Oktem, G. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int. J. Mol. Med., 2014, 34(5), 1249-1256.
[http://dx.doi.org/10.3892/ijmm.2014.1930] [PMID: 25216351]
[49]
Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem., 2006, 70(1), 178-192.
[http://dx.doi.org/10.1271/bbb.70.178] [PMID: 16428836]
[50]
Zhao, W.; Liu, L.; Xu, S. Intakes of citrus fruit and risk of esophageal cancer: A meta-analysis. Medicine (Baltimore), 2018, 97(13), e0018.
[http://dx.doi.org/10.1097/MD.0000000000010018]] [PMID: 29595629]
[51]
Park, J.H.; Jin, C-Y.; Lee, B.K.; Kim, G-Y.; Choi, Y.H.; Jeong, Y.K. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem. Toxicol., 2008, 46(12), 3684-3690.
[http://dx.doi.org/10.1016/j.fct.2008.09.056] [PMID: 18930780]
[52]
Ghorbani, A.; Nazari, M.; Jeddi-Tehrani, M.; Zand, H. The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: Involvement of PPARγ-dependent mechanism. Eur. J. Nutr., 2012, 51(1), 39-46.
[http://dx.doi.org/10.1007/s00394-011-0187-2] [PMID: 21445621]
[53]
Nazari, M.; Ghorbani, A.; Hekmat-Doost, A.; Jeddi-Tehrani, M.; Zand, H. Inactivation of nuclear factor-κB by citrus flavanone hesperidin contributes to apoptosis and chemo-sensitizing effect in Ramos cells. Eur. J. Pharmacol., 2011, 650(2-3), 526-533.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.053] [PMID: 21044621]
[54]
Hermawan, A.; Meiyanto, E.; Susidarti, R.A. Hesperidin increase cytotoxic effect of doxorubicin in MCF-7 cells. Indones. J. Pharm., 2010, 21(1), 8-17.
[55]
Nandakumar, N.; Rengarajan, T.; Balamurugan, A.; Balasubramanian, M.P. Modulating effects of hesperidin on key carbohydrate-metabolizing enzymes, lipid profile, and membrane-bound adenosine triphosphatases against 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis. Hum. Exp. Toxicol., 2014, 33(5), 504-516.
[http://dx.doi.org/10.1177/0960327113485252] [PMID: 23690228]
[56]
So, F.V.; Guthrie, N.; Chambers, A.F.; Moussa, M.; Carroll, K.K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr. Cancer, 1996, 26(2), 167-181.
[http://dx.doi.org/10.1080/01635589609514473]
[57]
Stanisic, D.; Costa, A.; Fávaro, W.; Tasic, L.; Seabra, A.; Duran, N. Anticancer activities of hesperidin and hesperetin in vivo and their potentially against bladder cancer. J. Nanomed. Nanotechnol., 2018, 9(5), 515.
[58]
Tanaka, T.; Tanaka, T.; Tanaka, M.; Kuno, T. Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. BioMed Res. Int., 2012, 2012 Article ID 516981.
[http://dx.doi.org/10.1155/2012/516981]
[59]
Du, G.Y.; He, S.W.; Zhang, L.; Sun, C.X.; Mi, L.D.; Sun, Z.G. Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG-63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial-mediated apoptosis. Oncol. Lett., 2018, 16(5), 6299-6306.
[http://dx.doi.org/10.3892/ol.2018.9439] [PMID: 30405765]
[60]
Lee, K-A.; Lee, S-H.; Lee, Y-J.; Baeg, S.M.; Shim, J-H. Hesperidin induces apoptosis by inhibiting Sp1 and its regulatory protein in MSTO-211H cells. Biomol. Ther. (Seoul), 2012, 20(3), 273-279.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.273] [PMID: 24130923]
[61]
Cordenonsi, L.M.; Bromberger, N.G.; Raffin, R.P.; Scherman, E.E. Simultaneous separation and sensitive detection of naringin and naringenin in nanoparticles by chromatographic method indicating stability and photodegradation kinetics. Biomed. Chromatogr., 2016, 30(2), 155-162.
[http://dx.doi.org/10.1002/bmc.3531] [PMID: 26053258]
[62]
Amaro, M.I.; Rocha, J.; Vila-Real, H.; Eduardo-Figueira, M.; Mota-Filipe, H.; Sepodes, B.; Ribeiro, M.H. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res. Int., 2009, 42(8), 1010-1017.
[http://dx.doi.org/10.1016/j.foodres.2009.04.016]
[63]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[64]
Martín, M.J.; Marhuenda, E.; Pérez-Guerrero, C.; Franco, J.M. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats. Pharmacology, 1994, 49(3), 144-150.
[http://dx.doi.org/10.1159/000139228] [PMID: 7972328]
[65]
Kanno, S.; Tomizawa, A.; Hiura, T.; Osanai, Y.; Shouji, A.; Ujibe, M.; Ohtake, T.; Kimura, K.; Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull., 2005, 28(3), 527-530.
[http://dx.doi.org/10.1248/bpb.28.527] [PMID: 15744083]
[66]
Le Marchand, L.; Murphy, S.P.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst., 2000, 92(2), 154-160.
[http://dx.doi.org/10.1093/jnci/92.2.154] [PMID: 10639518]
[67]
Tomasik, P. Chemical and functional properties of food saccharides; CRC Press: USA, 2003.
[http://dx.doi.org/10.1201/9780203495728]
[68]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[69]
Kawaguchi, K.; Kikuchi, S.; Hasegawa, H.; Maruyama, H.; Morita, H.; Kumazawa, Y. Suppression of lipopolysaccharide-induced tumor necrosis factor-release and liver injury in mice by naringin. Eur. J. Pharmacol., 1999, 368(2-3), 245-250.
[http://dx.doi.org/10.1016/S0014-2999(98)00867-X] [PMID: 10193661]
[70]
Gordon, P.B.; Holen, I.; Seglen, P.O. Protection by naringin and some other flavonoids of hepatocytic autophagy and endocytosis against inhibition by okadaic acid. J. Biol. Chem., 1995, 270(11), 5830-5838.
[http://dx.doi.org/10.1074/jbc.270.11.5830] [PMID: 7890712]
[71]
Rigby, R.J.; Simmons, J.G.; Greenhalgh, C.J.; Alexander, W.S.; Lund, P.K. Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon. Oncogene, 2007, 26(33), 4833-4841.
[http://dx.doi.org/10.1038/sj.onc.1210286] [PMID: 17297444]
[72]
Chtourou, Y.; Aouey, B.; Kebieche, M.; Fetoui, H. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem. Biol. Interact., 2015, 239, 76-86.
[http://dx.doi.org/10.1016/j.cbi.2015.06.036] [PMID: 26120027]
[73]
Banjerdpongchai, R.; Wudtiwai, B.; Khaw-On, P.; Rachakhom, W.; Duangnil, N.; Kongtawelert, P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol., 2016, 37(1), 227-237.
[http://dx.doi.org/10.1007/s13277-015-3774-7] [PMID: 26194866]
[74]
Lewinska, A.; Siwak, J.; Rzeszutek, I.; Wnuk, M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol. In Vitro, 2015, 29(3), 417-425.
[http://dx.doi.org/10.1016/j.tiv.2014.12.005] [PMID: 25499067]
[75]
Guthrie, N.; Carroll, K. Inhibition of mammary cancer by citrus flavonoids. In:Flavonoids in the Living System; Springer: Germany, 1998, pp. 227-236.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_16]
[76]
Gao, K.; Henning, S.M.; Niu, Y.; Youssefian, A.A.; Seeram, N.P.; Xu, A.; Heber, D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem., 2006, 17(2), 89-95.
[http://dx.doi.org/10.1016/j.jnutbio.2005.05.009] [PMID: 16111881]
[77]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Turkekul, K. Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int., 2018, 6(4), 126-135.
[http://dx.doi.org/10.1016/j.prnil.2017.11.001] [PMID: 30505814]
[78]
Zeng, L.; Zhen, Y.; Chen, Y.; Zou, L.; Zhang, Y.; Hu, F.; Feng, J.; Shen, J.; Wei, B. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF κB/COX 2 caspase-1 pathway in HeLa cervical cancer cells. Int. J. Oncol., 2014, 45(5), 1929-1936.
[http://dx.doi.org/10.3892/ijo.2014.2617] [PMID: 25174821]
[79]
Manna, K.; Das, U.; Das, D.; Kesh, S.B.; Khan, A.; Chakraborty, A.; Dey, S. Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-κB signaling pathways in murine splenocytes. Free Radic. Res., 2015, 49(4), 422-439.
[http://dx.doi.org/10.3109/10715762.2015.1016018] [PMID: 25812588]
[80]
Li, H.; Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Wan, J.; Luo, F.; Zhang, L.; Li, H.; Ren, G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett., 2013, 220(3), 219-228.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.006] [PMID: 23694763]
[81]
Kim, D-I.; Lee, S-J.; Lee, S-B.; Park, K.; Kim, W-J.; Moon, S-K. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 2008, 29(9), 1701-1709.
[http://dx.doi.org/10.1093/carcin/bgn055] [PMID: 18296682]
[82]
Zhang, F.Y.; Du, G.J.; Zhang, L.; Zhang, C.L.; Lu, W.L.; Liang, W. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharm. Res., 2009, 26(4), 914-925.
[http://dx.doi.org/10.1007/s11095-008-9793-y] [PMID: 19067124]
[83]
Fuhr, U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf., 1998, 18(4), 251-272.
[http://dx.doi.org/10.2165/00002018-199818040-00002] [PMID: 9565737]
[84]
Bailey, D.G.; Dresser, G.K.; Kreeft, J.H.; Munoz, C.; Freeman, D.J.; Bend, J.R. Grapefruit-felodipine interaction: effect of unprocessed fruit and probable active ingredients. Clin. Pharmacol. Ther., 2000, 68(5), 468-477.
[http://dx.doi.org/10.1067/mcp.2000.110774] [PMID: 11103749]
[85]
Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet., 2000, 38(1), 41-57.
[http://dx.doi.org/10.2165/00003088-200038010-00003] [PMID: 10668858]
[86]
Lilja, J.J.; Kivistö, K.T.; Neuvonen, P.J. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP3A4 substrate simvastatin. Clin. Pharmacol. Ther., 2000, 68(4), 384-390.
[http://dx.doi.org/10.1067/mcp.2000.110216] [PMID: 11061578]
[87]
Zhang, Y-S.; Li, Y.; Wang, Y.; Sun, S-Y.; Jiang, T.; Li, C.; Cui, S-X.; Qu, X-J. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model. J. Cancer Res. Clin. Oncol., 2016, 142(5), 913-925.
[http://dx.doi.org/10.1007/s00432-015-2097-9] [PMID: 26702935]
[88]
Ramesh, E.; Alshatwi, A.A. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem. Toxicol., 2013, 51, 97-105.
[http://dx.doi.org/10.1016/j.fct.2012.07.033] [PMID: 22847135]
[89]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104(2), 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[90]
Camargo, C.A.; Gomes-Marcondes, M.C.C.; Wutzki, N.C.; Aoyama, H. Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anticancer Res., 2012, 32(1), 129-133.
[PMID: 22213297]
[91]
Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K.; Yano, M.; Tokuda, H.; Nishino, H.; Mimaki, Y.; Sashida, Y.; Kitanaka, S.; Ohigashi, H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res., 2000, 60(18), 5059-5066.
[PMID: 11016629]
[92]
Kandaswami, C.; Perkins, E.; Soloniuk, D.S.; Drzewiecki, G.; Middleton, E., Jr Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Lett., 1991, 56(2), 147-152.
[http://dx.doi.org/10.1016/0304-3835(91)90089-Z] [PMID: 1998943]
[93]
Singh, R.P.; Dhanalakshmi, S.; Tyagi, A.K.; Chan, D.C.; Agarwal, C.; Agarwal, R. Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res., 2002, 62(11), 3063-3069.
[PMID: 12036915]
[94]
Ishiwa, J.; Sato, T.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. A citrus flavonoid, nobiletin, suppresses production and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J. Rheumatol., 2000, 27(1), 20-25.
[PMID: 10648013]
[95]
Tan, W.F.; Lin, L.P.; Li, M.H.; Zhang, Y-X.; Tong, Y.G.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol., 2003, 459(2-3), 255-262.
[http://dx.doi.org/10.1016/S0014-2999(02)02848-0] [PMID: 12524154]
[96]
Kohno, H.; Yoshitani, S.; Tsukio, Y.; Murakami, A.; Koshimizu, K.; Yano, M.; Tokuda, H.; Nishino, H.; Ohigashi, H.; Tanaka, T. Dietary administration of citrus nobiletin inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Life Sci., 2001, 69(8), 901-913.
[http://dx.doi.org/10.1016/S0024-3205(01)01169-9] [PMID: 11488403]
[97]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel-Ghani, T.M.; Serry, A.M. Synthesis and molecular docking studies of new furochromone derivatives as p38α MAPK inhibitors targeting human breast cancer MCF-7 cells. Bioorg. Med. Chem., 2017, 25(8), 2423-2436.
[http://dx.doi.org/10.1016/j.bmc.2017.02.065] [PMID: 28291685]
[98]
Morley, K.L.; Ferguson, P.J.; Koropatnick, J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett., 2007, 251(1), 168-178.
[http://dx.doi.org/10.1016/j.canlet.2006.11.016] [PMID: 17197076]
[99]
Ma, W.; Feng, S.; Yao, X.; Yuan, Z.; Liu, L.; Xie, Y. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells. Sci. Rep., 2015, 5, 18789.
[http://dx.doi.org/10.1038/srep18789] [PMID: 26689156]
[100]
Moon, J.Y.; Cho, M.; Ahn, K.S.; Cho, S.K. Nobiletin induces apoptosis and potentiates the effects of the anticancer drug 5-fluorouracil in p53-mutated SNU-16 human gastric cancer cells. Nutr. Cancer, 2013, 65(2), 286-295.
[http://dx.doi.org/10.1080/01635581.2013.756529] [PMID: 23441616]
[101]
Liu, J.; Wang, S.; Tian, S.; He, Y.; Lou, H.; Yang, Z.; Kong, Y.; Cao, X. Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr. Res., 2018, 62.
[http://dx.doi.org/10.29219/fnr.v62.1323]
[102]
Jiang, Y-P.; Guo, H.; Wang, X-B. Nobiletin (NOB) suppresses autophagic degradation via over-expressing AKT pathway and enhances apoptosis in multidrug-resistant SKOV3/TAX ovarian cancer cells. Biomed. Pharmacother., 2018, 103, 29-37.
[http://dx.doi.org/10.1016/j.biopha.2018.03.126] [PMID: 29635125]
[103]
Yoshimizu, N.; Otani, Y.; Saikawa, Y.; Kubota, T.; Yoshida, M.; Furukawa, T.; Kumai, K.; Kameyama, K.; Fujii, M.; Yano, M.; Sato, T.; Ito, A.; Kitajima, M. Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: Antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment. Pharmacol. Ther., 2004, 20(Suppl. 1), 95-101.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02082.x] [PMID: 15298613]
[104]
Rodríguez, A.; San Andrés, V.; Cervera, M.; Redondo, A.; Alquézar, B.; Shimada, T.; Gadea, J.; Rodrigo, M.; Zacarías, L.; Palou, L.; López, M.M.; Castañera, P.; Peña, L. The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signal. Behav., 2011, 6(11), 1820-1823.
[http://dx.doi.org/10.4161/psb.6.11.16980] [PMID: 22212123]
[105]
Miguel, M-G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[106]
Van der Logt, E.M.; Roelofs, H.M.; van Lieshout, E.M.; Nagengast, F.M.; Peters, W.H. Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases. Anticancer Res., 2004, 24(2B), 843-849.
[PMID: 15161036]
[107]
Lu, X-G.; Zhan, L-B.; Feng, B-A.; Qu, M-Y.; Yu, L-H.; Xie, J-H. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J. Gastroenterol., 2004, 10(14), 2140-2144.
[http://dx.doi.org/10.3748/wjg.v10.i14.2140] [PMID: 15237454]
[108]
Jia, S-S.; Xi, G-P.; Zhang, M.; Chen, Y-B.; Lei, B.; Dong, X-S.; Yang, Y-M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep., 2013, 29(1), 349-354.
[http://dx.doi.org/10.3892/or.2012.2093] [PMID: 23117412]
[109]
Ji, J.; Zhang, L.; Wu, Y-Y.; Zhu, X-Y.; Lv, S-Q.; Sun, X-Z. Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leuk. Lymphoma, 2006, 47(12), 2617-2624.
[http://dx.doi.org/10.1080/00268970600909205] [PMID: 17169807]
[110]
Miller, J.A.; Lang, J.E.; Ley, M.; Nagle, R.; Hsu, C-H.; Thompson, P.A.; Cordova, C.; Waer, A.; Chow, H.H. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer. Cancer Prev. Res. (Phila.), 2013, 6(6), 577-584.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0452] [PMID: 23554130]
[111]
Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther., 2018, 11, 1833-1847.
[http://dx.doi.org/10.2147/OTT.S155716] [PMID: 29670359]
[112]
Said, A.; El Gendy, M.; Raoof, G.A.; Omer, E.; Fouad, R.; El-Kader, A.A.; Weinfeld, M. Cytotoxic activity and volatile components of peel oil of Citrus volkameriana. S. Afr. J. Bot., 2019, 127, 201-207.
[http://dx.doi.org/10.1016/j.sajb.2019.09.005]
[113]
Martínez Conesa, C.; Vicente Ortega, V.; Yáñez Gascón, M.J.; Alcaraz Baños, M.; Canteras Jordana, M.; Benavente-García, O.; Castillo, J. Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. J. Agric. Food Chem., 2005, 53(17), 6791-6797.
[http://dx.doi.org/10.1021/jf058050g] [PMID: 16104801]
[114]
Surichan, S.; Arroo, R.R.; Tsatsakis, A.M.; Androutsopoulos, V.P. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4′ hydroxy tangeretin. Toxicol. In Vitro, 2018, 50, 274-284.
[http://dx.doi.org/10.1016/j.tiv.2018.04.001] [PMID: 29626627]
[115]
Dong, Y.; Cao, A.; Shi, J.; Yin, P.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol. Rep., 2014, 31(4), 1788-1794.
[http://dx.doi.org/10.3892/or.2014.3034] [PMID: 24573532]
[116]
Pan, M-H.; Chen, W-J.; Lin-Shiau, S-Y.; Ho, C-T.; Lin, J-K. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells. Carcinogenesis, 2002, 23(10), 1677-1684.
[http://dx.doi.org/10.1093/carcin/23.10.1677] [PMID: 12376477]
[117]
Van Slambrouck, S.; Parmar, V.S.; Sharma, S.K.; De Bondt, B.; Foré, F.; Coopman, P.; Vanhoecke, B.W.; Boterberg, T.; Depypere, H.T.; Leclercq, G.; Bracke, M.E. Tangeretin inhibits Extracellular-signal-Regulated Kinase (ERK) phosphorylation. FEBS Lett., 2005, 579(7), 1665-1669.
[http://dx.doi.org/10.1016/j.febslet.2004.10.114] [PMID: 15757658]
[118]
Jones, N.A.; Turner, J.; McIlwrath, A.J.; Brown, R.; Dive, C. Cisplatin- and paclitaxel-induced apoptosis of ovarian carcinoma cells and the relationship between bax and bak up-regulation and the functional status of p53. Mol. Pharmacol., 1998, 53(5), 819-826.
[PMID: 9584207]
[119]
Arafa, S.A.; Zhu, Q.; Barakat, B.M.; Wani, G.; Zhao, Q.; El-Mahdy, M.A.; Wani, A.A. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res., 2009, 69(23), 8910-8917.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1543] [PMID: 19903849]
[120]
Ashafa, A.; Sunmonu, T.; Afolayan, A. Effects of leaf and berry extracts of Phytolacca dioica L. on haematological and weight parameters of Wistar rats. Afr. J. Pharm. Pharmacol., 2011, 5(2), 150-154.
[http://dx.doi.org/10.5897/AJPP10.289]
[121]
Uddin, N.; Hasan, M.R.; Hasan, M.M.; Hossain, M.M.; Alam, M.R.; Hasan, M.R.; Islam, A.F.; Rahman, T.; Rana, M.S. Assessment of toxic effects of the methanol extract of Citrus macroptera Montr. Fruit via biochemical and hematological evaluation in female Sprague-Dawley rats. PLoS One, 2014, 9(11), e111101.
[http://dx.doi.org/10.1371/journal.pone.0111101]] [PMID: 25369061]
[122]
Uddin, N.; Hasan, M.R.; Hossain, M.M.; Sarker, A.; Hasan, A.H.; Islam, A.F.; Chowdhury, M.M.H.; Rana, M.S. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac. J. Trop. Biomed., 2014, 4(6), 473-479.
[http://dx.doi.org/10.12980/APJTB.4.2014C1173] [PMID: 25182949]
[123]
Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev., 2007, 12(3), 259-264.
[PMID: 18072821]
[124]
Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospects. J. Agric. Food Chem., 2007, 55(21), 8285-8294.
[http://dx.doi.org/10.1021/jf071797h] [PMID: 17892257]
[125]
Tanaka, T.; Makita, H.; Kawabata, K.; Mori, H.; Kakumoto, M.; Satoh, K.; Hara, A.; Sumida, T.; Tanaka, T.; Ogawa, H. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis, 1997, 18(5), 957-965.
[http://dx.doi.org/10.1093/carcin/18.5.957] [PMID: 9163681]
[126]
Vanhoecke, B.W.; Delporte, F.; Van Braeckel, E.; Heyerick, A.; Depypere, H.T.; Nuytinck, M.; De Keukeleire, D.; Bracke, M.E. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo, 2005, 19(1), 103-107.
[PMID: 15796161]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy