Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Angiotensin-(1-7) Improves Islet Function in a Rat Model of Streptozotocin- Induced Diabetes Mellitus by Up-Regulating the Expression of Pdx1/Glut2

Author(s): Jingjing Li, Ruifang Zhu, Yalin Liu, Jinhui Yang, Xiaoyan Wang, Lisha Geng, Tingting Xu and Junhua He*

Volume 21, Issue 1, 2021

Published on: 17 July, 2020

Page: [156 - 162] Pages: 7

DOI: 10.2174/1871530320666200717161538

Price: $65

Abstract

Objective: To observe the effects of angiotensin-(1-7) (Ang-(1-7)) on glucose metabolism, islet function and insulin resistance in a rat model of streptozotocin-induced diabetes mellitus (DM) and investigate its mechanism.

Methods: Thirty-four male Wistar rats were randomly divided into 3 groups: control group, which was fed a standard diet, DM group, high-fat diet and injected with streptozotocin, and Ang-(1-7) group receiving an injection of streptozotocin followed by Ang-(1-7) treatment. Blood glucose level, fasting serum Ang II and insulin levels, and homeostasis model assessment of insulin resistance (HOMA-IR) were measured. The pancreases were collected for histological examination, protein and gene expression analysis.

Results: Compared with the control group, fasting blood glucose, serum angiotensin II level, and HOMA-IR value increased, while serum insulin level decreased in the DM group. Moreover, islet structure was damaged, β cells were irregularly arranged, the cytoplasm was loose in the DM group. Expressions of Pancreatic duodenal homeobox-1 (Pdx1), glucose transporter-2 (Glut2) and glucokinase (Gk) were significantly decreased in the DM group compared with the control group. However, the DM-associated changes were dramatically reversed following Ang-(1-7) treatment.

Conclusion: Ang-(1-7) protects against streptozotocin-induced DM through the improvement of insulin secretion, insulin resistance and islet fibrosis, which is associated with the upregulation of Pdx1, Glut2 and Gk expressions.

Keywords: Angiotensin (1-7), diabetes mellitus, rats, islet function, Pdx1, Glut2, Gk.

Graphical Abstract

[1]
Parajuli, N.; Ramprasath, T.; Patel, V.B.; Wang, W.; Putko, B.; Mori, J.; Oudit, G.Y. Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases. Can. J. Physiol. Pharmacol., 2014, 92(7), 558-565.
[http://dx.doi.org/10.1139/cjpp-2013-0488] [PMID: 24861775]
[2]
Wang, Y.; Tikellis, C.; Thomas, M.C.; Golledge, J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis, 2013, 226(1), 3-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.08.018] [PMID: 22947420]
[3]
Santos, S.H.S.; Andrade, J.M.O. Angiotensin 1-7: a peptide for preventing and treating metabolic syndrome. Peptides, 2014, 59, 34-41.
[http://dx.doi.org/10.1016/j.peptides.2014.07.002] [PMID: 25017239]
[4]
Härdtner, C.; Mörke, C.; Walther, R.; Wolke, C.; Lendeckel, U. High glucose activates the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β-cells. Int. J. Mol. Med., 2013, 32(4), 795-804.
[http://dx.doi.org/10.3892/ijmm.2013.1469] [PMID: 23942780]
[5]
Xiao, X.; Zhang, C.; Ma, X.; Miao, H.; Wang, J.; Liu, L.; Chen, S.; Zeng, R.; Chen, Y.; Bihl, J.C. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp. Cell Res., 2015, 336(1), 58-65.
[http://dx.doi.org/10.1016/j.yexcr.2015.06.010] [PMID: 26101159]
[6]
Cheng, Q.; Leung, P.S. An update on the islet renin-angiotensin system. Peptides, 2011, 32(5), 1087-1095.
[http://dx.doi.org/10.1016/j.peptides.2011.03.003] [PMID: 21396973]
[7]
Sahr, A.; Wolke, C.; Maczewsky, J.; Krippeit-Drews, P.; Tetzner, A.; Drews, G.; Venz, S.; Gürtler, S.; van den Brandt, J.; Berg, S.; Döring, P.; Dombrowski, F.; Walther, T.; Lendeckel, U. The Angiotensin-(1-7)/Mas axis improves pancreatic β-cell function in vitro and in vivo. Endocrinology, 2016, 157(12), 4677-4690.
[http://dx.doi.org/10.1210/en.2016-1247] [PMID: 27715254]
[8]
He, J.; Yang, Z.; Yang, H.; Wang, L.; Wu, H.; Fan, Y.; Wang, W.; Fan, X.; Li, X. Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus. Peptides, 2015, 64, 49-54.
[http://dx.doi.org/10.1016/j.peptides.2014.12.012] [PMID: 25576844]
[9]
Stoffers, D.A.; Thomas, M.K.; Habener, J.F. Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression. Trends Endocrinol. Metab., 1997, 8(4), 145-151.
[http://dx.doi.org/10.1016/S1043-2760(97)00008-8] [PMID: 18406800]
[10]
Zhu, Y.; Liu, Q.; Zhou, Z.; Ikeda, Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res. Ther., 2017, 8(1), 240.
[http://dx.doi.org/10.1186/s13287-017-0694-z] [PMID: 29096722]
[11]
Gao, T.; McKenna, B.; Li, C.; Reichert, M.; Nguyen, J.; Singh, T.; Yang, C.; Pannikar, A.; Doliba, N.; Zhang, T.; Stoffers, D.A.; Edlund, H.; Matschinsky, F.; Stein, R.; Stanger, B.Z. Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab., 2014, 19(2), 259-271.
[http://dx.doi.org/10.1016/j.cmet.2013.12.002] [PMID: 24506867]
[12]
Schwitzgebel, V.M.; Mamin, A.; Brun, T.; Ritz-Laser, B.; Zaiko, M.; Maret, A.; Jornayvaz, F.R.; Theintz, G.E.; Michielin, O.; Melloul, D.; Philippe, J. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J. Clin. Endocrinol. Metab., 2003, 88(9), 4398-4406.
[http://dx.doi.org/10.1210/jc.2003-030046] [PMID: 12970316]
[13]
Coppieters, K.T.; Wiberg, A.; Amirian, N.; Kay, T.W.; von Herrath, M.G. Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals. Diabetes Metab. Res. Rev., 2011, 27(8), 746-754.
[http://dx.doi.org/10.1002/dmrr.1246] [PMID: 22069254]
[14]
Subramanian, M.; Thotakura, B.; Chandra Sekaran, S.P.; Jyothi, A.K.; Sundaramurthi, I. Naringin (4′,5,7-Trihydroxyflavanone 7-rhamnoglucoside) attenuates beta-cell dysfunction in diabetic rats through upregulation of PDX-1. Cells Tissues Organs (Print), 2018, 206(3), 133-143.
[http://dx.doi.org/10.1159/000496506] [PMID: 30884485]
[15]
Ma, Z.A.; Zhao, Z.; Turk, J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res., 2012, 2012(4)703538
[http://dx.doi.org/10.1155/2012/703538] [PMID: 22110477]
[16]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[17]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTMethod. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[18]
Perkins, J.M.; Davis, S.N. The renin-angiotensin-aldosterone system: a pivotal role in insulin sensitivity and glycemic control. Curr. Opin. Endocrinol. Diabetes Obes., 2008, 15(2), 147-152.
[http://dx.doi.org/10.1097/MED.0b013e3282f7026f] [PMID: 18316950]
[19]
Dhaunsi, G.S.; Yousif, M.H.M.; Akhtar, S.; Chappell, M.C.; Diz, D.I.; Benter, I.F. Angiotensin-(1-7) prevents diabetes-induced attenuation in PPAR-γ and catalase activities. Eur. J. Pharmacol., 2010, 638(1-3), 108-114.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.030] [PMID: 20447391]
[20]
Rabelo, L.A.; Alenina, N.; Bader, M. ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens. Res., 2011, 34(2), 154-160.
[http://dx.doi.org/10.1038/hr.2010.235] [PMID: 21124322]
[21]
Hao, P.P.; Chen, Y.G.; Liu, Y.P.; Zhang, M.X.; Yang, J.M.; Gao, F.; Zhang, Y.; Zhang, C. Association of plasma angiotensin-(1-7) level and left ventricular function in patients with type 2 diabetes mellitus. PLoS One, 2013, 8(5)e62788
[http://dx.doi.org/10.1371/journal.pone.0062788] [PMID: 23690953]
[22]
Jarajapu, Y.P.R.; Bhatwadekar, A.D.; Caballero, S.; Hazra, S.; Shenoy, V.; Medina, R.; Kent, D.; Stitt, A.W.; Thut, C.; Finney, E.M.; Raizada, M.K.; Grant, M.B. Activation of the ACE2/angiotensin-(1-7)/Mas receptor axis enhances the reparative function of dysfunctional diabetic endothelial progenitors. Diabetes, 2013, 62(4), 1258-1269.
[http://dx.doi.org/10.2337/db12-0808] [PMID: 23230080]
[23]
Singh, N.; Vasam, G.; Pawar, R.; Jarajapu, Y.P.R. Angiotensin-(1-7) reverses angiogenic dysfunction in corpus cavernosum by acting on the microvasculature and bone marrow-derived cells in diabetes. J. Sex. Med., 2014, 11(9), 2153-2163.
[http://dx.doi.org/10.1111/jsm.12620] [PMID: 24953642]
[24]
Cao, X.; Yang, F.Y.; Xin, Z.; Xie, R.R.; Yang, J.K. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance. Mol. Cell. Endocrinol., 2014, 393(1-2), 30-38.
[http://dx.doi.org/10.1016/j.mce.2014.05.024] [PMID: 24911884]
[25]
Takeda, M.; Yamamoto, K.; Takemura, Y.; Takeshita, H.; Hongyo, K.; Kawai, T.; Hanasaki-Yamamoto, H.; Oguro, R.; Takami, Y.; Tatara, Y.; Takeya, Y.; Sugimoto, K.; Kamide, K.; Ohishi, M.; Rakugi, H. Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice. Diabetes, 2013, 62(1), 223-233.
[http://dx.doi.org/10.2337/db12-0177] [PMID: 22933108]
[26]
Williams, I.M.; Otero, Y.F.; Bracy, D.P.; Wasserman, D.H.; Biaggioni, I.; Arnold, A.C. Chronic angiotensin-(1-7) improves insulin sensitivity in high-fat fed mice independent of blood pressure. Hypertension, 2016, 67(5), 983-991.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06935] [PMID: 26975707]
[27]
Kaneto, H.; Miyatsuka, T.; Kawamori, D.; Yamamoto, K.; Kato, K.; Shiraiwa, T.; Katakami, N.; Yamasaki, Y.; Matsuhisa, M.; Matsuoka, T.A. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr. J., 2008, 55(2), 235-252.
[http://dx.doi.org/10.1507/endocrj.K07E-041] [PMID: 17938503]
[28]
Spaeth, J.M.; Gupte, M.; Perelis, M.; Yang, Y.P.; Cyphert, H.; Guo, S.; Liu, J.H.; Guo, M.; Bass, J.; Magnuson, M.A.; Wright, C.; Stein, R. Defining a novel role for the PDX1 transcription factor in islet β cell maturation and proliferation during weaning. Diabetes, 2017, 66(11), 2830-2839.
[http://dx.doi.org/10.2337/db16-1516] [PMID: 28705881]
[29]
Gao, J.; Yuan, Y.; Chen, Y. PDX1 transfection induces human adipose derived stem cells differentiation into islet-like cells: what is the benefit for diabetic rats? Pharmazie, 2018, 73(4), 213-217.
[PMID: 29609688]
[30]
Kaneto, H.; Matsuoka, T.A.; Kimura, T.; Obata, A.; Shimoda, M.; Kamei, S.; Mune, T.; Kaku, K. Appropriate therapy for type 2 diabetes mellitus in view of pancreatic β-cell glucose toxicity: “the earlier, the better. J. Diabetes, 2016, 8(2), 183-189.
[http://dx.doi.org/10.1111/1753-0407.12331] [PMID: 26223490]
[31]
Chu, K.Y.; Leung, P.S.; Angiotensin, II Type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet β-cell function in young Type 2 diabetic mice. Antioxid. Redox Signal., 2007, 9(7), 869-878.
[http://dx.doi.org/10.1089/ars.2007.1590] [PMID: 17508912]
[32]
Matsuoka, T.; Kajimoto, Y.; Watada, H.; Kaneto, H.; Kishimoto, M.; Umayahara, Y.; Fujitani, Y.; Kamada, T.; Kawamori, R.; Yamasaki, Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest., 1997, 99(1), 144-150.
[http://dx.doi.org/10.1172/JCI119126] [PMID: 9011569]
[33]
Yamamoto, Y.; Miyatsuka, T.; Sasaki, S.; Miyashita, K.; Kubo, F.; Shimo, N.; Takebe, S.; Watada, H.; Kaneto, H.; Matsuoka, T.A.; Shimomura, I. Preserving expression of Pdx1 improves β-cell failure in diabetic mice. Biochem. Biophys. Res. Commun., 2017, 483(1), 418-424.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.128] [PMID: 28017717]
[34]
Wang, L.; Liang, J.; Leung, P.S. The ACE2/Ang-(1-7)/Mas axis regulates the development of pancreatic endocrine cells in mouse embryos. PLoS One, 2015, 10(6)e0128216
[http://dx.doi.org/10.1371/journal.pone.0128216] [PMID: 26029927]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy