Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Pathophysiological Effects of Sulfur Mustard on Skin and its Current Treatments: Possible Application of Phytochemicals

Author(s): Mehdi Hassanpour, Fateme Hajihassani, Mina Abdollahpourasl, Omid Cheraghi, Nasser Aghamohamadzade, Reza Rahbargazi, Mohammad Nouri, Younes Pilehvar-Soltanahmadi, Nosratollah Zarghami, Abolfazl Akbarzadeh, Yunes Panahi* and Amirhossein Sahebkar*

Volume 24, Issue 1, 2021

Published on: 17 July, 2020

Page: [3 - 19] Pages: 17

DOI: 10.2174/1386207323666200717150414

Price: $65

Abstract

Background: Sulfur-(SM) and nitrogen (NM)-based mustards are the mutagenic incapacitating compounds which are widely used in vesicating the chemical warfare and cause toxicity in many organs, especially skin. SM, as a potent vesicating agent, contributes to the destruction of skin in dermis and epidermis layers. The progression of the lesion depends on the concentration of SM and the duration of exposure. Body responses start with pruritus, erythema, edema and xerosis, which lead to the accumulation of immune cells in the target sites and recruitment of mast cells and paracrine-mediated activity. Pro-inflammatory effectors are accumulated in the epidermis, hair follicles, and sebaceous glands resulting in the destruction of the basement membrane beneath the epidermis. There is still no satisfactory countermeasure against SM-induced lesions in clinical therapy, and the symptomatic or supportive treatments are routine management approaches.

Objective: The current review highlights the recent progression of herbal medicines application in SM-induced injuries through the illustrative examples and also demonstrates their efficacies, properties and mechanism of actions as therapeutic agents.

Conclusion: Phytochemicals and herbal extracts with anti-bacterial, anti-inflammatory and antioxidant properties have been recently shown to hold therapeutic promise against the SM-induced cutaneous complications. The present review discusses the possible application of herbal medicines in the healing of SM-induced injuries.

Keywords: Sulfur mustard, skin injury, wound healing, phytochemical therapy, SM-induced injuries, herbal medicines.

[1]
Razavi, S.M.; Davoudi, S.; Saghafinia, M.; Salamati, P. Effects of sulfur mustard on the skin and their management: reviewing the studies conducted on Iranian chemical victims. Iran J Dermatol, 2013, 16(53), 21-30.
[2]
Ghasemi, H.; Owlia, P.; Jalali-Nadoushan, M.R.; Pourfarzam, S.; Azimi, G.; Yarmohammadi, M-E.; Shams, J.; Fallahi, F.; Moaiedmohseni, S.; Moin, A.; Yaraee, R.; Vaez-Mahdavi, M.R.; Faghihzadeh, S.; Mohammad Hassan, Z.; Soroush, M.R.; Naghizadeh, M.M.; Ardestani, S.K.; Ghazanfari, T. A clinicopathological approach to sulfur mustard-induced organ complications: a major review. Cutan. Ocul. Toxicol., 2013, 32(4), 304-324.
[http://dx.doi.org/10.3109/15569527.2013.781615] [PMID: 23590683]
[3]
Ferguson, M.W.; O’Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2004, 359(1445), 839-850.
[http://dx.doi.org/10.1098/rstb.2004.1475] [PMID: 15293811]
[4]
O’Brien, L.; Pandit, A. Silicon gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst. Rev., 2006, (1)CD003826
[http://dx.doi.org/10.1002/14651858.CD003826.pub2] [PMID: 16437463]
[5]
Kontochristopoulos, G.; Stefanaki, C.; Panagiotopoulos, A.; Stefanaki, K.; Argyrakos, T.; Petridis, A.; Katsambas, A. Intralesional 5-fluorouracil in the treatment of keloids: an open clinical and histopathologic study. J. Am. Acad. Dermatol., 2005, 52(3 Pt 1), 474-479.
[http://dx.doi.org/10.1016/j.jaad.2004.09.018] [PMID: 15761426]
[6]
Tziotzios, C.; Profyris, C.; Sterling, J. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures. J. Am. Acad. Dermatol., 2012, 66(1), 13-24.
[http://dx.doi.org/10.1016/j.jaad.2011.08.035] [PMID: 22177632]
[7]
Portou, M.J.; Baker, D.; Abraham, D.; Tsui, J. The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul. Pharmacol., 2015, 71, 31-36.
[http://dx.doi.org/10.1016/j.vph.2015.02.007] [PMID: 25869514]
[8]
Gu, T.Y. Mechanism and treatment of sulfur mustard-induced cutaneous injury. Chin. J. Traumatol., 2014, 17(6), 345-350.
[PMID: 25471431]
[9]
Debouzy, J.C.; Aous, S.; Dabouis, V.; Neveux, Y.; Gentilhomme, E. Phospholipid matrix as a target for sulfur mustard (HD): NMR study in model membrane systems. Cell Biol. Toxicol., 2002, 18(6), 397-408.
[http://dx.doi.org/10.1023/A:1020815723009] [PMID: 12484550]
[10]
Ghabili, K.; Agutter, P.S.; Ghanei, M.; Ansarin, K.; Panahi, Y.; Shoja, M.M. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit. Rev. Toxicol., 2011, 41(5), 384-403.
[http://dx.doi.org/10.3109/10408444.2010.541224] [PMID: 21329486]
[11]
Imani, S.; Panahi, Y.; Salimian, J.; Fu, J.; Ghanei, M. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran. J. Basic Med. Sci., 2015, 18(8), 723-736.
[PMID: 26557960]
[12]
McNutt, P.M.; Nguyen, D.L.; Nelson, M.R.; Lyman, M.E.; Eisen, M.M.; Ondeck, C.A.; Wolfe, S.E.; Pagarigan, K.T.; Mangkhalakhili, M.C.; Kniffin, D.M.; Hamilton, T.A. Corneal Endothelial Cell Toxicity Determines Long-Term Outcome After Ocular Exposure to Sulfur Mustard Vapor. Cornea, 2020, 39(5), 640-648.
[http://dx.doi.org/10.1097/ICO.0000000000002278] [PMID: 32044824]
[13]
Balali-Mood, M.; Hefazi, M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam. Clin. Pharmacol., 2005, 19(3), 297-315.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00325.x] [PMID: 15910653]
[14]
Panahi, Y.; Rajaee, S.M.; Sahebkar, A. Molecular and Cellular Mechanism of Cutaneous Injuries Due to Exposure to Sulfur Mustard. Lett. Drug Des. Discov., 2018, 15(9), 1012-1018.
[http://dx.doi.org/10.2174/1570180814666171026160410]
[15]
Panahi, Y.; Fattahi, A.; Zarei, F.; Ghasemzadeh, N.; Mohammadpoor, A.; Abroon, S.; Nojadeh, J.N.; Khojastefard, M.; Akbarzadeh, A.; Ghasemnejad, T. Next-generation sequencing approaches for the study of genome and epigenome toxicity induced by sulfur mustard. Arch. Toxicol., 2018, 92(12), 3443-3457.
[http://dx.doi.org/10.1007/s00204-018-2294-9] [PMID: 30155719]
[16]
Jenner, J.; Graham, S.J. Treatment of sulphur mustard skin injury. Chem. Biol. Interact., 2013, 206(3), 491-495.
[http://dx.doi.org/10.1016/j.cbi.2013.10.015] [PMID: 24513294]
[17]
ZOU Zm ZHAO J.q. CHENG J DAN G.r JIANG F. YE F. DONG Z.j.. Progress in development of drugs against sulfur mustardinduced injury Chinese Journal of Pharmacology and Toxicology 2010, 6, 24.
[18]
Kehe, K.; Balszuweit, F.; Steinritz, D.; Thiermann, H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology, 2009, 263(1), 12-19.
[http://dx.doi.org/10.1016/j.tox.2009.01.019] [PMID: 19651324]
[19]
Debiak, M.; Kehe, K.; Bürkle, A. Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology, 2009, 263(1), 20-25.
[http://dx.doi.org/10.1016/j.tox.2008.06.002] [PMID: 18602966]
[20]
Kehe, K.; Raithel, K.; Kreppel, H.; Jochum, M.; Worek, F.; Thiermann, H. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch. Toxicol., 2008, 82(7), 461-470.
[http://dx.doi.org/10.1007/s00204-007-0265-7] [PMID: 18046540]
[21]
Sayer, N.M.; Whiting, R.; Green, A.C.; Anderson, K.; Jenner, J.; Lindsay, C.D. Direct binding of sulfur mustard and chloroethyl ethyl sulphide to human cell membrane-associated proteins; implications for sulfur mustard pathology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(17-18), 1426-1432.
[http://dx.doi.org/10.1016/j.jchromb.2009.11.030] [PMID: 20004628]
[22]
Vijayaraghavan, R.; Sugendran, K.; Pant, S.C.; Husain, K.; Malhotra, R.C. Dermal intoxication of mice with bis(2-chloroethyl)sulphide and the protective effect of flavonoids. Toxicology, 1991, 69(1), 35-42.
[http://dx.doi.org/10.1016/0300-483X(91)90151-P] [PMID: 1926154]
[23]
Pant, S.C.; Vijayaraghavan, R.; Kannan, G.M.; Ganesan, K. Sulphur mustard induced oxidative stress and its prevention by sodium 2,3-dimercapto propane sulphonic acid (DMPS) in mice. Biomed. Environ. Sci., 2000, 13(3), 225-232.
[PMID: 11198225]
[24]
Kumar, O.; Sugendran, K.; Vijayaraghavan, R. Protective effect of various antioxidants on the toxicity of sulphur mustard administered to mice by inhalation or percutaneous routes. Chem. Biol. Interact., 2001, 134(1), 1-12.
[http://dx.doi.org/10.1016/S0009-2797(00)00209-X] [PMID: 11248218]
[25]
Jafari, M. Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology, 2007, 231(1), 30-39.
[http://dx.doi.org/10.1016/j.tox.2006.11.048] [PMID: 17222496]
[26]
Husain, K.; Dube, S.N.; Sugendran, K.; Singh, R.; Das Gupta, S.; Somani, S.M. Effect of topically applied sulphur mustard on antioxidant enzymes in blood cells and body tissues of rats. J. Appl. Toxicol., 1996, 16(3), 245-248.
[http://dx.doi.org/10.1002/(SICI)1099-1263(199605)16:3<245:AID-JAT339>3.0.CO;2-3] [PMID: 8818865]
[27]
Paromov, V.; Suntres, Z.; Smith, M.; Stone, W.L. Sulfur mustard toxicity following dermal exposure: role of oxidative stress, and antioxidant therapy. J. Burns Wounds, 2007, 7e7
[PMID: 18091984]
[28]
Panahi, Y.; Sahebkar, A.; Amiri, M.; Davoudi, S.M.; Beiraghdar, F.; Hoseininejad, S.L.; Kolivand, M. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br. J. Nutr., 2012, 108(7), 1272-1279.
[http://dx.doi.org/10.1017/S0007114511006544] [PMID: 22099425]
[29]
Tahmasbpour Marzony, E.; Ghanei, M.; Panahi, Y. Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp. Lung Res., 2016, 42(4), 217-226.
[http://dx.doi.org/10.1080/01902148.2016.1194501] [PMID: 27266564]
[30]
Joseph, L.B.; Composto, G.M.; Heck, D.E. Tissue injury and repair following cutaneous exposure of mice to sulfur mustard. Ann. N. Y. Acad. Sci., 2016, 1378(1), 118-123.
[http://dx.doi.org/10.1111/nyas.13125] [PMID: 27371823]
[31]
Cao, Z.; Said, N.; Amin, S.; Wu, H.K.; Bruce, A.; Garate, M.; Hsu, D.K.; Kuwabara, I.; Liu, F-T.; Panjwani, N. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J. Biol. Chem., 2002, 277(44), 42299-42305.
[http://dx.doi.org/10.1074/jbc.M200981200] [PMID: 12194966]
[32]
Joseph, L.B.; Gerecke, D.R.; Heck, D.E.; Black, A.T.; Sinko, P.J.; Cervelli, J.A.; Casillas, R.P.; Babin, M.C.; Laskin, D.L.; Laskin, J.D. Structural changes in the skin of hairless mice following exposure to sulfur mustard correlate with inflammation and DNA damage. Exp. Mol. Pathol., 2011, 91(2), 515-527.
[http://dx.doi.org/10.1016/j.yexmp.2011.05.010] [PMID: 21672537]
[33]
Joseph, L.B.; Heck, D.E.; Cervelli, J.A.; Composto, G.M.; Babin, M.C.; Casillas, R.P.; Sinko, P.J.; Gerecke, D.R.; Laskin, D.L.; Laskin, J.D. Structural changes in hair follicles and sebaceous glands of hairless mice following exposure to sulfur mustard. Exp. Mol. Pathol., 2014, 96(3), 316-327.
[http://dx.doi.org/10.1016/j.yexmp.2014.03.002] [PMID: 24662110]
[34]
Kehe, K.; Thiermann, H.; Balszuweit, F.; Eyer, F.; Steinritz, D.; Zilker, T. Acute effects of sulfur mustard injury--Munich experiences. Toxicology, 2009, 263(1), 3-8.
[http://dx.doi.org/10.1016/j.tox.2009.04.060] [PMID: 19482056]
[35]
Shakarjian, M.P.; Heck, D.E.; Gray, J.P.; Sinko, P.J.; Gordon, M.K.; Casillas, R.P.; Heindel, N.D.; Gerecke, D.R.; Laskin, D.L.; Laskin, J.D. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol. Sci., 2010, 114(1), 5-19.
[http://dx.doi.org/10.1093/toxsci/kfp253] [PMID: 19833738]
[36]
Graham, J.S.; Schoneboom, B.A. Historical perspective on effects and treatment of sulfur mustard injuries. Chem. Biol. Interact., 2013, 206(3), 512-522.
[http://dx.doi.org/10.1016/j.cbi.2013.06.013] [PMID: 23816402]
[37]
Panahi, Y.; Davoudi, S.M.; Beiraghdar, F.; Amiri, M.; Saadat, A.; Marzony, E.T.; Naghizadeh, M.M.; Sahebkar, A. Serum levels of interleukins 2, 4, 6, and 10 in veterans with chronic sulfur mustard-induced pruritus: a cross-sectional study. Skinmed, 2013, 11(4), 205-209.
[PMID: 24053005]
[38]
Emadi, S.N.; Hosseini-Khalili, A.; Soroush, M.R.; Davoodi, S.M.; Aghamiri, S.S. Mustard gas scarring with specific pigmentary, trophic and vascular charactristics (case report, 16-year post-exposure). Ecotoxicol. Environ. Saf., 2008, 69(3), 574-576.
[http://dx.doi.org/10.1016/j.ecoenv.2007.01.003] [PMID: 17382390]
[39]
Brodsky, B.; Trivedi, S.; Peddada, S.; Flagler, N.; Wormser, U.; Nyska, A. Early effects of iodine on DNA synthesis in sulfur mustard-induced skin lesions. Arch. Toxicol., 2006, 80(4), 212-216.
[http://dx.doi.org/10.1007/s00204-005-0032-6] [PMID: 16252085]
[40]
Qabar, A.; Nelson, M.; Guzman, J.; Corun, C.; Hwang, B.J.; Steinberg, M. Modulation of sulfur mustard induced cell death in human epidermal keratinocytes using IL-10 and TNF-α. J. Biochem. Mol. Toxicol., 2005, 19(4), 213-225.
[http://dx.doi.org/10.1002/jbt.20089] [PMID: 16173061]
[41]
Rice, P. Sulphur mustard injuries of the skin. Pathophysiology and management. Toxicol. Rev., 2003, 22(2), 111-118.
[http://dx.doi.org/10.2165/00139709-200322020-00006] [PMID: 15071821]
[42]
Tewari-Singh, N.; Agarwal, C.; Huang, J.; Day, B.J.; White, C.W.; Agarwal, R. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo. J. Pharmacol. Exp. Ther., 2011, 336(2), 450-459.
[http://dx.doi.org/10.1124/jpet.110.173708] [PMID: 20974699]
[43]
Cowan, F.M.; Broomfield, C.A.; Lenz, D.E.; Smith, W.J. Putative role of proteolysis and inflammatory response in the toxicity of nerve and blister chemical warfare agents: implications for multi-threat medical countermeasures. J. Appl. Toxicol., 2003, 23(3), 177-186.
[http://dx.doi.org/10.1002/jat.901] [PMID: 12794939]
[44]
Simbulan-Rosenthal, C.M.; Ray, R.; Benton, B.; Soeda, E.; Daher, A.; Anderson, D.; Smith, W.J.; Rosenthal, D.S. Calmodulin mediates sulfur mustard toxicity in human keratinocytes. Toxicology, 2006, 227(1-2), 21-35.
[http://dx.doi.org/10.1016/j.tox.2006.06.019] [PMID: 16935404]
[45]
Evison, D.; Brown, R.F.; Rice, P. The treatment of sulphur mustard burns with laser debridement. J. Plast. Reconstr. Aesthet. Surg., 2006, 59(10), 1087-1093.
[http://dx.doi.org/10.1016/j.bjps.2006.02.010] [PMID: 16996434]
[46]
Graham, J.S.; Stevenson, R.S.; Mitcheltree, L.W.; Hamilton, T.A.; Deckert, R.R.; Lee, R.B.; Schiavetta, A.M. Medical management of cutaneous sulfur mustard injuries. Toxicology, 2009, 263(1), 47-58.
[http://dx.doi.org/10.1016/j.tox.2008.07.067] [PMID: 18762227]
[47]
Wang, Y.; Wu, B-D.; Lin, Y. GUO, L.; XIE, J.-W., Progress in research on intra-body markers of sulfur mustard injury and their detection techniques. Bull. Acad. Mil. Med. Sci., 2009, 33(3), 278-281. [J
[48]
Lomash, V.; Jadhav, S.E.; Ahmed, F.; Vijayaraghavan, R.; Pant, S.C. Evaluation of wound-healing formulation against sulphur mustard-induced skin injury in mice. Hum. Exp. Toxicol., 2012, 31(6), 588-605.
[http://dx.doi.org/10.1177/0960327111429139] [PMID: 22144726]
[49]
Ishida, H.; Ray, R.; Amnuaysirikul, J.; Ishida, K.; Ray, P. Nitric oxide synthase gene transfer overcomes the inhibition of wound healing by sulfur mustard in a human keratinocyte in vitro model. ISRN Toxicol., 2012.
[http://dx.doi.org/10.5402/2012/190429]
[50]
Khaheshi, I.; Keshavarz, S.; Imani Fooladi, A.A.; Ebrahimi, M.; Yazdani, S.; Panahi, Y.; Shohrati, M.; Nourani, M.R. Loss of expression of TGF-βs and their receptors in chronic skin lesions induced by sulfur mustard as compared with chronic contact dermatitis patients. BMC Dermatol., 2011, 11(1), 2.
[http://dx.doi.org/10.1186/1471-5945-11-2] [PMID: 21235789]
[51]
Panahi, Y.; Davoudi, S.M.; Beiraghdar, F.; Saadat, A.; Sahebkar, A. Relationship between levels of IFNγ, TNFα, and TGFβ and pruritus in sulfur mustard-exposed veterans. J. Immunotoxicol., 2013, 10(2), 173-177.
[http://dx.doi.org/10.3109/1547691X.2012.707697] [PMID: 22994697]
[52]
Marwah, R.G.; Fatope, M.O.; Al Mahrooqi, R.; Varma, G.B.; Al Abadi, H.; Al-Burtamani, S.K.S. Antioxidant capacity of some edible and wound healing plants in Oman. Food Chem., 2007, 101(2), 465-470.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.001]
[53]
Basha, S.K.; Sudarshanam, G. Multiple herbal therapy-Antimicrobial activity of wound healing paste (Pasuru) used by Sugali tribes of Yerramalais of Kurnool district., Andhra Pradesh, India. Int. J. Pharm. Tech. Res., 2011, 3(3)
[54]
Jayaprakasam, R.; Ravi, T. Evaluation of anti arthritic activity of the root extract of Acalypha indica Linn. using in vitro techniques International journal of phytopharmacy, 2013, 2(6), 169-173.
[55]
Ganeshkumar, M.; Ponrasu, T.; Krithika, R.; Iyappan, K.; Gayathri, V.S.; Suguna, L. Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen. J. Ethnopharmacol., 2012, 142(1), 14-22.
[http://dx.doi.org/10.1016/j.jep.2012.04.005] [PMID: 22521732]
[56]
Balakrishnan, N.; Panda, A.; Raj, N.; Shrivastava, A.; Prathani, R. The evaluation of nitric oxide scavenging activity of Acalypha indica Linn root. Asian J. Res. Chem, 2009, 2(2), 148-150. [AJRC
[57]
Batubara, I.; Wahyuni, W.T.; Firdaus, I. In Utilization of AntingAnting (Acalypha indica) Leaves as Antibacterial IOP Conference Series: Earth and Environmental Science 2016, p. 012038.
[http://dx.doi.org/10.1088/1755-1315/31/1/012038]
[58]
Rajaselvam, J.; Benilasmily, J.; Meena, R. A study of antimicrobial activity of Acalypha Indica against selected microbial species. Int. J. Pharm. Sci. Res., 2012, 3(9), 473-476.
[59]
Saranraj, P.; Stella, D.; Sathiyaseelan, K.; Samuel, S. Antibacterial potentiality of ethanol and ethyl acetate extract of Acalypha indica against human pathogenic bacteria. Journal of Ecobiotechnology, 2010, 2(7)
[60]
Sakthi, S. S.; Geetha, M.; Saranraj, P. Pharmacological screening of Datura metel and Acalypha indica for its antifungal activity against pathogenic fungi International journal of pharmaceutical science and health care, 2011, 2(1), 15-30.
[61]
Selvamani, S.; Balamurugan, S. Antibacterial and antifungal activities of different organic solvent extracts of Acalypha indica (Linn.). Asian Journal of Plant Science and Research, 2015, 5(5), 52-55.
[62]
Solomon, R.J.; Kallidass, S.; Vimalan, J. Isolation, identification and study of antimicrobial property of a bioactive compound in an Indian medicinal plant Acalypha indica (Indian-nettle). World J. Microbiol. Biotechnol., 2005, 21(6-7), 1231-1236.
[http://dx.doi.org/10.1007/s11274-005-1479-6]
[63]
Somchit, M.; Rashid, R.A.; Abdullah, A.; Zuraini, A.; Zakaria, Z.; Sulaiman, M.; Arifah, A.; Mutalib, A. In vitro antimicrobial activity of leaves of Acalypha indica Linn (Euphorbiaceae). Afr. J. Microbiol. Res., 2010, 4(20), 2133-2136.
[64]
Hnatyszyn, O.; Juárez, S.; Ouviña, A.; Martino, V.; Zacchino, S.; Ferraro, G. Phytochemical Analysis and Antifungal Evaluation of Sebastiania commersoniana. Extracts. Pharm. Biol., 2007, 45(5), 404-406.
[http://dx.doi.org/10.1080/13880200701215216]
[65]
Rahman, M.A.; Bachar, S.C.; Rahmatullah, M. Analgesic and antiinflammatory activity of methanolic extract of Acalypha indica Linn. Pak. J. Pharm. Sci., 2010, 23(3), 256-258.
[PMID: 20566436]
[66]
Muthuvelan, B.; Raja, R.B. Studies on the efficiency of different extraction procedures on the anti microbial activity of selected medicinal plants. World J. Microbiol. Biotechnol., 2008, 24(12), 2837-2842.
[http://dx.doi.org/10.1007/s11274-008-9814-3]
[67]
Ruslan, N.F. Evaluation of Acalypha Indica Extracts for Antioxidant and Antibacterial Activities; Universiti Teknologi Malaysia, 2015.
[68]
Sanseera, D.; Niwatananun, W.; Liawruangrath, B.; Liawruangrath, S.; Baramee, A.; Trisuwan, K.; Pyne, S. G. Antioxidant and anticancer activities from aerial parts of Acalypha indica Linn., 2012.
[69]
Agar, O.T.; Dikmen, M.; Ozturk, N.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules, 2015, 20(10), 17976-18000.
[http://dx.doi.org/10.3390/molecules201017976] [PMID: 26437391]
[70]
Turkoglu, I.; Turkoglu, S.; Celik, S.; Kahyaoglu, M. Antioxidant and antimicrobial activities of Turkish endemic Achillea species. Afr. J. Microbiol. Res., 2010, 4(19), 2034-2042.
[71]
Kotan, R.; Cakir, A.; Dadasoglu, F.; Aydin, T.; Cakmakci, R.; Ozer, H.; Kordali, S.; Mete, E.; Dikbas, N. Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric., 2010, 90(1), 145-160.
[http://dx.doi.org/10.1002/jsfa.3799] [PMID: 20355025]
[72]
Kazemi, M.; Rostami, H. Chemical composition and biological activities of Iranian Achillea wilhelmsii L. essential oil: a high effectiveness against Candida spp. and Escherichia strains. Nat. Prod. Res., 2015, 29(3), 286-288.
[http://dx.doi.org/10.1080/14786419.2014.953949] [PMID: 25209950]
[73]
Turkmenoglu, F.P.; Agar, O.T.; Akaydin, G.; Hayran, M.; Demirci, B. Characterization of volatile compounds of eleven achillea species from turkey and biological activities of essential oil and methanol extract of A. hamzaoglui arabacı & budak. Molecules, 2015, 20(6), 11432-11458.
[http://dx.doi.org/10.3390/molecules200611432] [PMID: 26111175]
[74]
Sevindik, E.; Abacı, Z.T.; Yamaner, C.; Ayvaz, M. Determination of the chemical composition and antimicrobial activity of the essential oils of Teucrium polium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnol. Biotechnol. Equip., 2016, 30(2), 375-380.
[http://dx.doi.org/10.1080/13102818.2015.1131626]
[75]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[76]
Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil Bearing Plants, 2015, 18(6), 1382-1394.
[http://dx.doi.org/10.1080/0972060X.2014.981600]
[77]
Zaman, K. Pharmacognostical and Phytochemical Studies on The Leaf And Stem Bark Of Annona Reticulata Linn. Journal of Pharmacognosy and Phytochemistry, 2013, 1(5)
[78]
Chen, J.; Wu, G.; Wang, J.; Lu, C.; Zhang, W.; Jiang, J. Sulfation techniques of Bletilla striata polysaccharide by orthogonal design. Chin. Tradit. Herbal Drugs, 2005, 36, 43-46.
[79]
Wang, Y.; Liu, D.; Chen, S.; Wang, Y.; Jiang, H.; Yin, H. A new glucomannan from Bletilla striata: structural and anti-fibrosis effects. Fitoterapia, 2014, 92, 72-78.
[http://dx.doi.org/10.1016/j.fitote.2013.10.008] [PMID: 24513571]
[80]
Lin, J-H.; Lu, C-T.; Hu, J-J.; Chen, Y-S.; Huang, C-H.; Lou, C-W. Property evaluation of Bletilla striata/polyvinyl alcohol nano fibers and composite dressings. J. Nanomater., 2012, 2012, 5.
[http://dx.doi.org/10.1155/2012/519516]
[81]
Liu, B.S.; Huang, T.B. A novel wound dressing composed of nonwoven fabric coated with chitosan and herbal extract membrane for wound healing. Polym. Compos., 2010, 31(6), 1037-1046.
[82]
Wang, W.; Meng, H. Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata. Fitoterapia, 2015, 101, 12-18.
[http://dx.doi.org/10.1016/j.fitote.2014.11.005] [PMID: 25447157]
[83]
Luo, Y.; Diao, H.; Xia, S.; Dong, L.; Chen, J.; Zhang, J. A physiologically active polysaccharide hydrogel promotes wound healing. J. Biomed. Mater. Res. A, 2010, 94(1), 193-204.
[http://dx.doi.org/10.1002/jbm.a.32711] [PMID: 20128009]
[84]
Wang, C.; Sun, J.; Luo, Y.; Xue, W.; Diao, H.; Dong, L.; Chen, J.; Zhang, J. A polysaccharide isolated from the medicinal herb Bletilla striata induces endothelial cells proliferation and vascular endothelial growth factor expression in vitro. Biotechnol. Lett., 2006, 28(8), 539-543.
[http://dx.doi.org/10.1007/s10529-006-0011-x] [PMID: 16614890]
[85]
Feng, W.; Zhao, T.; Mao, G.; Zou, Y.; Zheng, D.; Wang, W.; Zheng, W.; Zhu, Y.; Gu, X.; Yang, L. A Novel Ointment to Treat Donor Sites in Scald Mouse. Lat. Am. J. Pharm., 2015, 34(5), 907-916.
[86]
He, X.; Wang, X.; Fang, J.; Zhao, Z.; Huang, L.; Guo, H.; Zheng, X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., 2017, 195, 20-38.
[http://dx.doi.org/10.1016/j.jep.2016.11.026] [PMID: 27865796]
[87]
Baljinder, S.; Neerja, J.; Renu, B.; Dharmendra, K.; Vikas, G. Anti microbial potential of poly herbo-mineral formulation JatyadiTaila-A review. Int. J. Res. Ayurveda Pharm., 2011, 2(1), 151-156.
[88]
Durkar, A.; Patil, R.; Naik, S. ypolipidemic and antioxidant activity of ethanolic extract of Symplocos racemosa Roxb hyperlipidemic rats: an evidence of participation of oxidative stress in hyperlipidemia 2014.
[89]
Lodhi, M.A.; Abbasi, M.A.; Choudhary, M.I.; Ahmad, V.U. Kinetics studies on triacontanyl palmitate: a urease inhibitor. Nat. Prod. Res., 2007, 21(8), 721-725.
[http://dx.doi.org/10.1080/14786410600906913] [PMID: 17616900]
[90]
Rai, N.; Tiwari, L.; Sharma, R.K.; Verma, A. Pharmaco-botanical Profile on Emblica officinalis Gaertn. A Pharmacopoeial Herbal Drug. Research & Reviews. J. Bot., 2012, 1(1)
[91]
Balasubramanian, S.; Ganesh, D.; Suryanarayana, V. GC-MS analysis of phyto components in the methanolic extract of Azadirachta indica (Neem). Int. J. Pharma Bio Sci., 2014, 5(4), 258-262.
[92]
Bhattacharya, A.; Chatterjee, A.; Ghosal, S.; Bhattacharya, S. K. ntioxidant activity of active tannoid principles of Emblica officinalis (amla) 1999.
[93]
Kumaran, A.; Karunakaran, R.J. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum. Nutr., 2006, 61(1), 1-5.
[http://dx.doi.org/10.1007/s11130-006-0001-0] [PMID: 16688481]
[94]
Kim, H.Y.; Okubo, T.; Juneja, L.R.; Yokozawa, T. The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model. Br. J. Nutr., 2010, 103(4), 502-512.
[http://dx.doi.org/10.1017/S0007114509991978] [PMID: 19878614]
[95]
Shukla, V.; Vashistha, M.; Singh, S.N. Evaluation of antioxidant profile and activity of amalaki (Emblica officinalis), spirulina and wheat grass. Indian J. Clin. Biochem., 2009, 24(1), 70-75.
[http://dx.doi.org/10.1007/s12291-009-0012-3] [PMID: 23105810]
[96]
Hari Kumar, K.B.; Sabu, M.C.; Lima, P.S.; Kuttan, R. Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis gaertn and its protective role against γ-radiation induced damages in mice. J. Radiat. Res. (Tokyo), 2004, 45(4), 549-555.
[http://dx.doi.org/10.1269/jrr.45.549] [PMID: 15635265]
[97]
Sultana, S.; Ahmed, S.; Jahangir, T. Emblica officinalis and hepatocarcinogenesis: a chemopreventive study in Wistar rats. J. Ethnopharmacol., 2008, 118(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2007.04.021] [PMID: 18467048]
[98]
Kumar, R.; Saxena, V.; Shamsi, M. B.; Venkatesh, S.; Dada, R. Herbo-mineral supplementation in men with idiopathic oligoasthenoteratospermia: A double blind randomized placebocontrolled trial Indian journal of urology: IJU: journal of the Urological Society of India, 2011, 27(3), 357.
[http://dx.doi.org/10.4103/0970-1591.85440]
[99]
McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jäger, A.K.; Eloff, J.N.; van Staden, J. An investigation on the biological activity of Combretum species. J. Ethnopharmacol., 2001, 75(1), 45-50.
[http://dx.doi.org/10.1016/S0378-8741(00)00405-0] [PMID: 11282442]
[100]
Chaudhari, M.; Mengi, S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytother. Res., 2006, 20(9), 799-805.
[http://dx.doi.org/10.1002/ptr.1857] [PMID: 16835874]
[101]
Sirdaarta, J. Matthews, B.; White, A.; Cock, I.E. GC-MS and LC-MS analysis of Kakadu plum fruit extracts displaying inhibitory activity against microbial triggers of multiple sclerosis. Pharmacogn. Commun., 2015, 5(2), 100.
[http://dx.doi.org/10.5530/pc.2015.2.2]
[102]
Johnson, P.D. Acerola (Malpighia glabra L., M. punicifolia L., M. emarginata DC): agriculture, production and nutrition.Plants in Human Health and Nutrition Policy; Karger Publishers, 2003, Vol. 91, pp. 67-75.
[http://dx.doi.org/10.1159/000069930]
[103]
Rex, J.; Muthukumar, N.; Selvakumar, P. Phytochemicals as a potential source for antimicrobial, anti-oxidant and wound healing-A review. MOJ Biorg Org Chem, 2018, 2(2), 61-70.
[104]
Rane, M.M.; Mengi, S.A. Comparative effect of oral administration and topical application of alcoholic extract of Terminalia arjuna bark on incision and excision wounds in rats. Fitoterapia, 2003, 74(6), 553-558.
[http://dx.doi.org/10.1016/S0367-326X(03)00118-7] [PMID: 12946717]
[105]
Li, K.; Diao, Y.; Zhang, H.; Wang, S.; Zhang, Z.; Yu, B.; Huang, S.; Yang, H. Tannin extracts from immature fruits of Terminalia chebula Fructus Retz. promote cutaneous wound healing in rats. BMC Complement. Altern. Med., 2011, 11(1), 86.
[http://dx.doi.org/10.1186/1472-6882-11-86] [PMID: 21982053]
[106]
Moon, E-J.; Lee, Y.M.; Lee, O-H.; Lee, M-J.; Lee, S-K.; Chung, M-H.; Park, Y-I.; Sung, C-K.; Choi, J-S.; Kim, K-W. A novel angiogenic factor derived from Aloe vera gel: β-sitosterol, a plant sterol. Angiogenesis, 1999, 3(2), 117-123.
[http://dx.doi.org/10.1023/A:1009058232389] [PMID: 14517429]
[107]
Khan, M.S.A.; Jais, A.M.M.; Zakaria, Z.A.; Mohtarruddin, N.; Ranjbar, M.; Khan, M.; Jabeen, A.; Ahmad, M.; Khanam, A.; Yahya, S.A. Wound healing potential of Leathery Murdah, Terminalia coriacea (Roxb.) Wight & Arn. Phytopharmacology, 2012, 3, 158-168.
[108]
Choi, S.W.; Son, B.W.; Son, Y.S.; Park, Y.I.; Lee, S.K.; Chung, M.H. The wound-healing effect of a glycoprotein fraction isolated from aloe vera. Br. J. Dermatol., 2001, 145(4), 535-545.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04410.x] [PMID: 11703278]
[109]
Tian, B.; Hua, Y. Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chem., 2005, 91(3), 413-418.
[http://dx.doi.org/10.1016/j.foodchem.2004.06.018]
[110]
Yen, G-C.; Duh, P-D.; Chuang, D-Y. Antioxidant activity of anthraquinones and anthrone. Food Chem., 2000, 70(4), 437-441.
[http://dx.doi.org/10.1016/S0308-8146(00)00108-4]
[111]
Gomes, A.; Neuwirth, O.; Freitas, M.; Couto, D.; Ribeiro, D.; Figueiredo, A.G.; Silva, A.M.; Seixas, R.S.; Pinto, D.C.; Tomé, A.C.; Cavaleiro, J.A.; Fernandes, E.; Lima, J.L. Synthesis and antioxidant properties of new chromone derivatives. Bioorg. Med. Chem., 2009, 17(20), 7218-7226.
[http://dx.doi.org/10.1016/j.bmc.2009.08.056] [PMID: 19781949]
[112]
Simons, S.S., Jr; Pratt, W.B. Glucocorticoid receptor thiols and steroid-binding activity. Methods Enzymol., 1995, 251, 406-422.
[http://dx.doi.org/10.1016/0076-6879(95)51144-X] [PMID: 7651222]
[113]
Arunkumar, S.; Muthuselvam, M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J. Agric. Sci., 2009, 5(5), 572-576.
[114]
Panahi, Y.; Davoudi, S.M.; Sahebkar, A.; Beiraghdar, F.; Dadjo, Y.; Feizi, I.; Amirchoopani, G.; Zamani, A. Efficacy of Aloe vera/olive oil cream versus betamethasone cream for chronic skin lesions following sulfur mustard exposure: a randomized double-blind clinical trial. Cutan. Ocul. Toxicol., 2012, 31(2), 95-103.
[http://dx.doi.org/10.3109/15569527.2011.614669] [PMID: 21988705]
[115]
Tabandeh, M.R.; Oryan, A.; Mohammadalipour, A. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat. Int. J. Biol. Macromol., 2014, 65, 424-430.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.055] [PMID: 24491493]
[116]
Yagi, A.; Kabash, A.; Okamura, N.; Haraguchi, H.; Moustafa, S.M.; Khalifa, T.I. Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in Aloe vera. Planta Med., 2002, 68(11), 957-960.
[http://dx.doi.org/10.1055/s-2002-35666] [PMID: 12451482]
[117]
Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212.
[http://dx.doi.org/10.1016/S0891-5849(01)00480-4] [PMID: 11368918]
[118]
Jettanacheawchankit, S.; Sasithanasate, S.; Sangvanich, P.; Banlunara, W.; Thunyakitpisal, P. Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing. J. Pharmacol. Sci., 2009, 109(4), 525-531.
[http://dx.doi.org/10.1254/jphs.08204FP] [PMID: 19372635]
[119]
Chithra, P.; Sajithlal, G.B.; Chandrakasan, G. Influence of Aloe vera on collagen turnover in healing of dermal wounds in rats. Indian J. Exp. Biol., 1998, 36(9), 896-901.
[PMID: 9854430]
[120]
Chithra, P.; Sajithlal, G.B.; Chandrakasan, G. Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Mol. Cell. Biochem., 1998, 181(1-2), 71-76.
[http://dx.doi.org/10.1023/A:1006813510959] [PMID: 9562243]
[121]
Hosseinimehr, S.J.; Khorasani, G.; Azadbakht, M.; Zamani, P.; Ghasemi, M.; Ahmadi, A. Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Mol. Cell. Biochem., 2010, 181(1), 71-76.
[122]
Rodríguez-Bigas, M.; Cruz, N.I.; Suárez, A. Comparative evaluation of aloe vera in the management of burn wounds in guinea pigs. Plast. Reconstr. Surg., 1988, 81(3), 386-389.
[http://dx.doi.org/10.1097/00006534-198803000-00012] [PMID: 3340673]
[123]
Pandey, R.; Mishra, A. Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens. Appl. Biochem. Biotechnol., 2010, 160(5), 1356-1361.
[http://dx.doi.org/10.1007/s12010-009-8577-0] [PMID: 19263248]
[124]
van Vuuren, S.F.; Naidoo, D. An antimicrobial investigation of plants used traditionally in southern Africa to treat sexually transmitted infections. J. Ethnopharmacol., 2010, 130(3), 552-558.
[http://dx.doi.org/10.1016/j.jep.2010.05.045] [PMID: 20561928]
[125]
Khan, S.; Imran, M.; Butt, T.T.; Ali Shah, S.W.; Sohail, M.; Malik, A.; Das, S.; Thu, H.E.; Adam, A.; Hussain, Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy; Trends Food Sci. Tech, 2018, pp. 8-22.
[126]
Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr., 2020, 60(6), 887-939.
[http://dx.doi.org/10.1080/10408398.2018.1552244]
[127]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778]
[128]
Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/CEJ.0b013e32832c389e]
[129]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[130]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037]
[131]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071]
[132]
Shehzad, A.; Rehman, G.; Lee, Y.S. Curcumin in inflammatory diseases. Biofactors, 2013, 39(1), 69-77.
[http://dx.doi.org/10.1002/biof.1066] [PMID: 23281076]
[133]
Bierhaus, A.; Zhang, Y.; Quehenberger, P.; Luther, T.; Haase, M.; Müller, M.; Mackman, N.; Ziegler, R.; Nawroth, P.P. The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb. Haemost., 1997, 77(4), 772-782.
[http://dx.doi.org/10.1055/s-0038-1656049] [PMID: 9134658]
[134]
Hsu, Y-C.; Chen, M-J.; Yu, Y-M.; Ko, S-Y.; Chang, C-C. Suppression of TGF-β1/SMAD pathway and extracellular matrix production in primary keloid fibroblasts by curcuminoids: its potential therapeutic use in the chemoprevention of keloid. Arch. Dermatol. Res., 2010, 302(10), 717-724.
[http://dx.doi.org/10.1007/s00403-010-1075-y] [PMID: 20717830]
[135]
Phan, T-T.; Sun, L.; Bay, B-H.; Chan, S-Y.; Lee, S-T. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar-derived fibroblasts in vitro: therapeutic implication for excessive scarring. J. Trauma, 2003, 54(6), 1212-1224.
[http://dx.doi.org/10.1097/01.TA.0000030630.72836.32] [PMID: 12813346]
[136]
Sidhu, G.S.; Mani, H.; Gaddipati, J.P.; Singh, A.K.; Seth, P.; Banaudha, K.K.; Patnaik, G.K.; Maheshwari, R.K. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen., 1999, 7(5), 362-374.
[http://dx.doi.org/10.1046/j.1524-475X.1999.00362.x] [PMID: 10564565]
[137]
Kant, V.; Gopal, A.; Kumar, D.; Pathak, N.N.; Ram, M.; Jangir, B.L.; Tandan, S.K.; Kumar, D. Curcumin-induced angiogenesis hastens wound healing in diabetic rats. J. Surg. Res., 2015, 193(2), 978-988.
[http://dx.doi.org/10.1016/j.jss.2014.10.019] [PMID: 25454972]
[138]
Panchatcharam, M.; Miriyala, S.; Gayathri, V.S.; Suguna, L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol. Cell. Biochem., 2006, 290(1-2), 87-96.
[http://dx.doi.org/10.1007/s11010-006-9170-2] [PMID: 16770527]
[139]
Majtan, J. Honey: an immunomodulator in wound healing. Wound Repair Regen., 2014, 22(2), 187-192.
[http://dx.doi.org/10.1111/wrr.12117] [PMID: 24612472]
[140]
Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: a focus on Manuka honey. Foods, 2014, 3(3), 420-432.
[http://dx.doi.org/10.3390/foods3030420] [PMID: 28234328]
[141]
Molan, P.C. Potential of honey in the treatment of wounds and burns. Am. J. Clin. Dermatol., 2001, 2(1), 13-19.
[http://dx.doi.org/10.2165/00128071-200102010-00003] [PMID: 11702616]
[142]
Alam, F.; Islam, M.A.; Gan, S.H.; Khalil, M.I. Honey: a potential therapeutic agent for managing diabetic wounds. Evid. Based Complement. and Alternat. Med., 2014.
[http://dx.doi.org/10.1155/2014/169130]
[143]
Hussein, S.Z.; Mohd Yusoff, K.; Makpol, S.; Mohd Yusof, Y.A. Gelam honey inhibits the production of proinflammatory, mediators NO, PGE2, TNF-α, and IL-6 in carrageenan-induced acute paw edema in rats. Evid. Based Complement. and Alternat. Med., 2012.
[http://dx.doi.org/10.1155/2014/169130]]
[144]
Deldar, Y.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Montazer Saheb, S.; Rahmati-Yamchi, M.; Zarghami, N. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 706-716.
[PMID: 28595461]
[145]
Hwang, H.J.; Park, H.J.; Chung, H-J.; Min, H-Y.; Park, E-J.; Hong, J-Y.; Lee, S.K. Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells. J. Nutr. Biochem., 2006, 17(5), 356-362.
[http://dx.doi.org/10.1016/j.jnutbio.2005.08.009] [PMID: 16214327]
[146]
Gheldof, N.; Wang, X-H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem., 2002, 50(21), 5870-5877.
[http://dx.doi.org/10.1021/jf0256135] [PMID: 12358452]
[147]
Majtan, J.; Kumar, P.; Majtan, T.; Walls, A.F.; Klaudiny, J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp. Dermatol., 2010, 19(8), e73-e79.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00994.x] [PMID: 19845754]
[148]
Efem, S.E. Clinical observations on the wound healing properties of honey. Br. J. Surg., 1988, 75(7), 679-681.
[http://dx.doi.org/10.1002/bjs.1800750718] [PMID: 3416123]
[149]
Subrahmanyam, M. Topical application of honey in treatment of burns. Br. J. Surg., 1991, 78(4), 497-498.
[http://dx.doi.org/10.1002/bjs.1800780435] [PMID: 2032114]
[150]
Rostagno, M.A.; Prado, J.M. Natural product extraction: principles and applications; Royal Society of Chemistry, 2013.
[http://dx.doi.org/10.1039/9781849737579]
[151]
Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci., 2013, 16(5), 760-820.
[http://dx.doi.org/10.18433/J3831V] [PMID: 24393557]
[152]
Morimoto, N.; Takemoto, S.; Kawazoe, T.; Suzuki, S. Nicotine at a low concentration promotes wound healing. J. Surg. Res., 2008, 145(2), 199-204.
[http://dx.doi.org/10.1016/j.jss.2007.05.031] [PMID: 17644111]
[153]
Zyuz’kov, G.N.; Krapivin, A.V.; Nesterova, Y.V.; Povetieva, T.N.; Zhdanov, V.V.; Suslov, N.I.; Fomina, T.I.; Udut, E.V.; Miroshnichenko, L.A.; Simanina, E.V.; Semenov, A.A.; Kravtsova, S.S.; Dygai, A.M. Mechanisms of regeneratory effects of baikal aconite diterpene alkaloids. Bull. Exp. Biol. Med., 2012, 153(6), 846-850.
[http://dx.doi.org/10.1007/s10517-012-1841-2] [PMID: 23113300]
[154]
Dong, Y.; He, L.; Chen, F. Enhancement of wound healing by taspine and its effect on fibroblast. Zhong Yao Cai, 2005, 28(7), 579-582.
[PMID: 16252727]
[155]
Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50(1), 27-34.
[http://dx.doi.org/10.1016/0378-8741(96)85514-0] [PMID: 8778504]
[156]
Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials, 2003, 24(16), 2767-2772.
[http://dx.doi.org/10.1016/S0142-9612(03)00059-0] [PMID: 12711523]
[157]
Fu, S.C.; Hui, C.W.; Li, L.C.; Cheuk, Y.C.; Qin, L.; Gao, J.; Chan, K-M. Total flavones of Hippophae rhamnoides promotes early restoration of ultimate stress of healing patellar tendon in a rat model. Med. Eng. Phys., 2005, 27(4), 313-321.
[http://dx.doi.org/10.1016/j.medengphy.2004.12.011] [PMID: 15823472]
[158]
Clericuzio, M.; Tinello, S.; Burlando, B.; Ranzato, E.; Martinotti, S.; Cornara, L.; La Rocca, A. Flavonoid oligoglycosides from Ophioglossum vulgatum L. having wound healing properties. Planta Med., 2012, 78(15), 1639-1644.
[http://dx.doi.org/10.1055/s-0032-1315149] [PMID: 22936389]
[159]
Süntar, I.P.; Akkol, E.K.; Yalçin, F.N.; Koca, U.; Keleş, H.; Yesilada, E. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J. Ethnopharmacol., 2010, 129(1), 106-114.
[http://dx.doi.org/10.1016/j.jep.2010.01.051] [PMID: 20132876]
[160]
Ghosh, S.; Samanta, A.; Mandal, N.B.; Bannerjee, S.; Chattopadhyay, D. Evaluation of the wound healing activity of methanol extract of Pedilanthus tithymaloides (L.) Poit leaf and its isolated active constituents in topical formulation. J. Ethnopharmacol., 2012, 142(3), 714-722.
[http://dx.doi.org/10.1016/j.jep.2012.05.048] [PMID: 22683906]
[161]
Ma, Z.; Ahmad, J.; Zhang, H.; Khan, I.; Muhammad, S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S. Afr. J. Bot., 2019.
[http://dx.doi.org/10.1016/j.sajb.2018.12.002]
[162]
Süntar, I.P.; Akkol, E.K.; Yilmazer, D.; Baykal, T.; Kirmizibekmez, H.; Alper, M.; Yeşilada, E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol., 2010, 127(2), 468-477.
[http://dx.doi.org/10.1016/j.jep.2009.10.011] [PMID: 19833187]
[163]
Tabandeh, M.R.; Oryan, A.; Mohhammad-Alipour, A.; Tabatabaei-Naieni, A. Silibinin regulates matrix metalloproteinase 3 (stromelysine1) gene expression, hexoseamines and collagen production during rat skin wound healing. Phytother. Res., 2013, 27(8), 1149-1153.
[http://dx.doi.org/10.1002/ptr.4839] [PMID: 22976003]
[164]
Bui, N.T.; Ho, M.T.; Kim, Y.M.; Lim, Y.; Cho, M. Flavonoids promoting HaCaT migration: II. Molecular mechanism of 4′,6,7-trimethoxyisoflavone via NOX2 activation. Phytomedicine, 2014, 21(4), 570-577.
[http://dx.doi.org/10.1016/j.phymed.2013.10.010] [PMID: 24388604]
[165]
Oztürk, N.; Korkmaz, S.; Oztürk, Y.; Başer, K.H. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med., 2006, 72(4), 289-294.
[http://dx.doi.org/10.1055/s-2005-916198] [PMID: 16557467]
[166]
Mai, L-M.; Lin, C-Y.; Chen, C-Y.; Tsai, Y-C. Synergistic effect of bismuth subgallate and borneol, the major components of Sulbogin, on the healing of skin wound. Biomaterials, 2003, 24(18), 3005-3012.
[http://dx.doi.org/10.1016/S0142-9612(03)00126-1] [PMID: 12895572]
[167]
Akdemir, Z.; Kahraman, C.; Tatlı, I.I.; Küpeli Akkol, E.; Süntar, I.; Keles, H. Bioassay-guided isolation of anti-inflammatory, antinociceptive and wound healer glycosides from the flowers of Verbascum mucronatum Lam. J. Ethnopharmacol., 2011, 136(3), 436-443.
[http://dx.doi.org/10.1016/j.jep.2010.05.059] [PMID: 20621642]
[168]
Zhang, K.; Qian, Y.; Wang, H.; Fan, L.; Huang, C.; Yin, A.; Mo, X. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J. Biomed. Mater. Res. A, 2010, 95(3), 870-881.
[http://dx.doi.org/10.1002/jbm.a.32895] [PMID: 20824649]
[169]
Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol., 2012, 143(2), 656-663.
[http://dx.doi.org/10.1016/j.jep.2012.07.028] [PMID: 22885071]
[170]
Villegas, L.F.; Marçalo, A.; Martin, J.; Fernández, I.D.; Maldonado, H.; Vaisberg, A.J.; Hammond, G.B. (+)-epi-Alpha-bisabolol [correction of bisbolol] is the wound-healing principle of Peperomia galioides: investigation of the in vivo wound-healing activity of related terpenoids. J. Nat. Prod., 2001, 64(10), 1357-1359.
[http://dx.doi.org/10.1021/np0102859] [PMID: 11678668]
[171]
Park, T-J.; Park, Y-S.; Lee, T-G.; Ha, H.; Kim, K-T. Inhibition of acetylcholine-mediated effects by borneol. Biochem. Pharmacol., 2003, 65(1), 83-90.
[http://dx.doi.org/10.1016/S0006-2952(02)01444-2] [PMID: 12473382]
[172]
Annan, K.; Houghton, P.J. Two novel lupane triterpenoids from Paullinia pinnata L. with fibroblast stimulatory activity. J. Pharm. Pharmacol., 2010, 62(5), 663-668.
[http://dx.doi.org/10.1211/jpp.62.05.0016] [PMID: 20609071]
[173]
Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S.; Baumgartner, S. Effects of lipophilic extract of viscum album L. And oleanolic acid on migratory activity of NIH/3T3 fibroblasts and on HaCat keratinocytes. Evid. Based Complement. and Alternat. Med., 2013.
[174]
Coldren, C.D.; Hashim, P.; Ali, J.M.; Oh, S-K.; Sinskey, A.J.; Rha, C. Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med., 2003, 69(8), 725-732.
[http://dx.doi.org/10.1055/s-2003-42791] [PMID: 14531023]
[175]
Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs. Evid. Based Complement. and Alternat. Med., 2012.
[176]
Dembitsky, V.M. Chemistry and biodiversity of the biologically active natural glycosides. Chem. Biodivers., 2004, 1(5), 673-781.
[http://dx.doi.org/10.1002/cbdv.200490060] [PMID: 17191879]
[177]
Clericuzio, M.; Burlando, B.; Gandini, G.; Tinello, S.; Ranzato, E.; Martinotti, S.; Cornara, L. Keratinocyte wound healing activity of galactoglycerolipids from the fern Ophioglossum vulgatum L. J. Nat. Med., 2014, 68(1), 31-37.
[http://dx.doi.org/10.1007/s11418-013-0759-y] [PMID: 23508568]
[178]
Kim, Y.S.; Cho, I-H.; Jeong, M-J.; Jeong, S-J.; Nah, S.Y.; Cho, Y-S.; Kim, S.H.; Go, A.; Kim, S.E.; Kang, S.S.; Moon, C.J.; Kim, J.C.; Kim, S.H.; Bae, C.S. Therapeutic effect of total ginseng saponin on skin wound healing. J. Ginseng Res., 2011, 35(3), 360-367.
[http://dx.doi.org/10.5142/jgr.2011.35.3.360] [PMID: 23717081]
[179]
Esposito, D.; Munafo, J.P., Jr; Lucibello, T.; Baldeon, M.; Komarnytsky, S.; Gianfagna, T.J. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro. J. Ethnopharmacol., 2013, 148(2), 433-440.
[http://dx.doi.org/10.1016/j.jep.2013.04.032] [PMID: 23644411]
[180]
Kurisu, M.; Nakasone, R.; Miyamae, Y.; Matsuura, D.; Kanatani, H.; Yano, S.; Shigemori, H. Induction of hepatocyte growth factor production in human dermal fibroblasts by caffeic acid derivatives. Biol. Pharm. Bull., 2013, 36(12), 2018-2021.
[http://dx.doi.org/10.1248/bpb.b13-00596] [PMID: 24292062]
[181]
Funes, L.; Laporta, O.; Cerdán-Calero, M.; Micol, V. Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes. Chem. Phys. Lipids, 2010, 163(2), 190-199.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.11.004] [PMID: 19925782]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy