Review Article

Gene Therapy, A Novel Therapeutic Tool for Neurological Disorders: Current Progress, Challenges and Future Prospective

Author(s): Ashif Iqubal, Mohammad Kashif Iqubal, Aamir Khan, Javed Ali, Sanjula Baboota and Syed Ehtaishamul Haque*

Volume 20, Issue 3, 2020

Page: [184 - 194] Pages: 11

DOI: 10.2174/1566523220999200716111502

Price: $65

Abstract

Neurological disorders are one of the major threat for health care system as they put enormous socioeconomic burden. All aged populations are susceptible to one or other neurological problems with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present, available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases, they provide only palliative effect. It was also found that the molecular etiology of neurological disorders is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the injury, environmental toxins and by some existing disease. Therefore, to take care of this situation, gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion, silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors (viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy of therapy. Considerable progress has been made to improve vector design, gene selection and targeted delivery. This review article deals with the current status of gene therapy in neurological disorders along with its clinical relevance, challenges and future prospective.

Keywords: CRISPR/Cas9, vectors, siRNA, gene editing, neurorestoration, clinical trial.

Graphical Abstract

[1]
Keynejad RC, Frodl T, Kanaan R, Pariante C, Reuber M, Nicholson TR. Stress and functional neurological disorders: mechanistic insights. J Neurol Neurosurg Psychiatry 2019; 90(7): 813-21.
[http://dx.doi.org/10.1136/jnnp-2018-318297] [PMID: 30409887]
[2]
Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: A summary report and call to action. Ann Neurol 2017; 81(4): 479-84.
[http://dx.doi.org/10.1002/ana.24897] [PMID: 28198092]
[3]
Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of dementia in the United States. N Engl J Med 2013; 368(14): 1326-34.
[http://dx.doi.org/10.1056/NEJMsa1204629] [PMID: 23550670]
[4]
Patel V, Chisholm D, Dua T, Laxminarayan R. Medina-M. Mental, neurological, and substance use disorders. In: disease control priorities, 3rd ed. Washington (DC): The World Bank; 2016; Vol 4.
[http://dx.doi.org/10.1596/978-1-4648-0426-7 ] [PMID: 27227198]
[5]
Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis 2017; 2(1-2): 1-71.
[http://dx.doi.org/10.3233/TRD-160005] [PMID: 29152458]
[6]
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120: 11-9.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[7]
Iqubal A, Sharma S, Sharma K, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211: 172-81.
[http://dx.doi.org/10.1016/j.lfs.2018.09.025] [PMID: 30227132]
[8]
Pena SA, Iyengar R, Eshraghi RS, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2020; 28(2): 111-28.
[http://dx.doi.org/10.1080/1061186X.2019.1630415] [PMID: 31195838]
[9]
Tsagkaris C, Papakosta V, Miranda AV, et al. Gene therapy for Angelman syndrome: Contemporary approaches and future endeavors. Curr Gene Ther 2020; 19(6): 359-66.
[http://dx.doi.org/10.2174/1566523220666200107151025] [PMID: 31914913]
[10]
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015]
[11]
Tiklová K, Nolbrant S, Fiorenzano A, Bjorklund AK, Sharma Y, Heuer A, et al. Single cell gene expression analysis reveals human stem cell-derived graft composition in a cell therapy model of Parkinson’s disease. bioRxiv 2019.
[http://dx.doi.org/10.1101/720870 ]
[12]
Joshi CR, Labhasetwar V, Ghorpade A. Destination brain: the past, present, and future of therapeutic gene delivery. J Neuroimmune Pharmacol 2017; 12(1): 51-83.
[http://dx.doi.org/10.1007/s11481-016-9724-3] [PMID: 28160121]
[13]
Zhong L, Xu Y, Zhuo R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 2019; 10(1): 1-6.
[PMID: 30602773]
[14]
Schmitt A, Simons M, Cantuti-Castelvetri L, Falkai P. A new role for oligodendrocytes and myelination in schizophrenia and affective disorders? Eur Arch Psychiatry Clin Neurosci 2019; 269(4): 371-2.
[http://dx.doi.org/10.1007/s00406-019-01019-8] [PMID: 31076838]
[15]
Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59: 6-11.
[http://dx.doi.org/10.1016/j.jocn.2018.10.034] [PMID: 30385170]
[16]
Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 2008; 13(4): 359-69.
[http://dx.doi.org/10.3233/JAD-2008-13402] [PMID: 18487845]
[17]
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Brain Res Rev 2010; 64(2): 328-63.
[http://dx.doi.org/10.1016/j.brainresrev.2010.05.003] [PMID: 20685221]
[18]
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2019; S0169- 409X(19): 30238-8..
[http://dx.doi.org/10.1016/j.addr.2019.11.009] [PMID: 31790711]
[19]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[20]
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014; 11(4): 817-39.
[http://dx.doi.org/10.1007/s13311-014-0299-5] [PMID: 25159276]
[21]
Puhl DL, D’Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull 2019; 150: 216-30.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.024] [PMID: 31173859]
[22]
Duque S, Joussemet B, Riviere C, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17(7): 1187-96.
[http://dx.doi.org/10.1038/mt.2009.71] [PMID: 19367261]
[23]
Gessler DJ, Tai PW, Li J, Gao G. Intravenous infusion of AAV for widespread gene delivery to the nervous system in adeno-associated virus vectors. New York, NY: Humana Press 2019; pp. 143-63.
[24]
Caffery B, Lee JS, Alexander-Bryant AA. Vectors for glioblastoma gene therapy: viral & non-viral delivery strategies. Nanomaterials (Basel) 2019; 9(1): 105.
[http://dx.doi.org/10.3390/nano9010105] [PMID: 30654536]
[25]
Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 2019; 101(5): 839-62.
[http://dx.doi.org/10.1016/j.neuron.2019.02.017] [PMID: 30844402]
[26]
Hudry E, Wu HY, Arbel-Ornath M, et al. Inhibition of the NFAT pathway alleviates amyloid β neurotoxicity in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(9): 3176-92.
[http://dx.doi.org/10.1523/JNEUROSCI.6439-11.2012] [PMID: 22378890]
[27]
Quintino L, Manfré G, Wettergren EE, Namislo A, Isaksson C, Lundberg C. Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson’s disease. Mol Ther 2013; 21(12): 2169-80.
[http://dx.doi.org/10.1038/mt.2013.169] [PMID: 23881415]
[28]
Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767-73.
[http://dx.doi.org/10.1126/science.290.5492.767] [PMID: 11052933]
[29]
Kiyota T, Yamamoto M, Schroder B, et al. AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, β-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 2009; 17(5): 803-9.
[http://dx.doi.org/10.1038/mt.2009.44] [PMID: 19277012]
[30]
Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in huntington disease mouse models. Mol Ther Methods Clin Dev 2019; 13: 334-43.
[http://dx.doi.org/10.1016/j.omtm.2019.03.002] [PMID: 30984798]
[31]
Valdmanis PN, Kay MA. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther 2017; 28(4): 361-72.
[http://dx.doi.org/10.1089/hum.2016.171] [PMID: 28073291]
[32]
Desclaux M, Teigell M, Amar L, et al. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PLoS One 2009; 4(7) e6227
[http://dx.doi.org/10.1371/journal.pone.0006227] [PMID: 19597552]
[33]
Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J 2003; 17(11): 1508-10.
[http://dx.doi.org/10.1096/fj.02-1183fje] [PMID: 12824287]
[34]
Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22(4): 524-8.
[http://dx.doi.org/10.1038/s41593-019-0352-0] [PMID: 30858603]
[35]
Aronin N, DiFiglia M. Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 2014; 29(11): 1455-61.
[http://dx.doi.org/10.1002/mds.26020] [PMID: 25164989]
[36]
Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014; 111(31): 11461-6.
[http://dx.doi.org/10.1073/pnas.1405186111] [PMID: 25049410]
[37]
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in perinatology 2018; 42(8): 487-500.
[38]
Redd Bowman KE, Lu P, Vander Mause ER, Lim CS. Advances in delivery vectors for gene therapy in liver cancer. Ther Deliv 2020; 11(1): 833-50.
[http://dx.doi.org/10.4155/tde-2019-0076] [PMID: 31840560]
[39]
McMahon MA, Cleveland D. Gene therapy: gene-editing therapy for neurological disease. Nat Rev Neurol 2017; 13(1): 7.
[http://dx.doi.org/10.1038/nrneurol.2016.190]
[40]
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[41]
Manfredsson FP, Benskey MJ, Eds. Viral vectors for gene therapy: methods and protocols. Humana Press 2019.
[http://dx.doi.org/10.1007/978-1-4939-9065-8]
[42]
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25(1): 7-18.
[http://dx.doi.org/10.1177/1535676019899502]
[43]
Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007; 369(9579): 2097-105.
[http://dx.doi.org/10.1016/S0140-6736(07)60982-9] [PMID: 17586305]
[44]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[45]
Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2017; 8: 87-104.
[http://dx.doi.org/10.1016/j.omtm.2017.11.007] [PMID: 29326962]
[46]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[47]
Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014; 25(5): 461-74.
[http://dx.doi.org/10.1089/hum.2013.200] [PMID: 24484067]
[48]
Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009; 17(6): 1053-63.
[http://dx.doi.org/10.1038/mt.2009.17] [PMID: 19240687]
[49]
Goins WF, Huang S, Hall B, Marzulli M, Cohen JB, Glorioso JC. Engineering HSV-1 vectors for gene therapy. In: Herpes Simplex Virus. New York, NY: Humana 2020; pp. 73-90.
[50]
Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA (T87Q)-Globin gene. Hum Gene Ther 2016; 27(2): 148-65.
[http://dx.doi.org/10.1089/hum.2016.007] [PMID: 26886832]
[51]
Kalesnykas G, Kokki E, Alasaarela L, et al. Comparative study of adeno-associated virus, adenovirus, bacu lovirus and lentivirus vectors for gene therapy of the eyes. Curr Gene Ther 2017; 17(3): 235-47.
[http://dx.doi.org/10.2174/1566523217666171003170348] [PMID: 28982327]
[52]
Tan VTY, Mockett BG, Ohline SM, et al. Lentivirus-mediated expression of human secreted amyloid precursor protein-alpha prevents development of memory and plasticity deficits in a mouse model of Alzheimer’s disease. Mol Brain 2018; 11(1): 7.
[http://dx.doi.org/10.1186/s13041-018-0348-9] [PMID: 29426354]
[53]
Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23-36.
[http://dx.doi.org/10.1182/blood-2013-01-306647] [PMID: 23596044]
[54]
Choi J, Rui Y, Kim J, et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine (Lond) 2020; 23 102115
[http://dx.doi.org/10.1016/j.nano.2019.102115] [PMID: 31655205]
[55]
Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Glioblastoma targeted gene therapy based on pEGFP/p53-loaded superparamagnetic iron oxide nanoparticles. Curr Gene Ther 2017; 17(1): 59-69.
[http://dx.doi.org/10.2174/1566523217666170605115829] [PMID: 28578643]
[56]
Osipova O, Sharoyko V, Zashikhina N, et al. Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells. Pharmaceutics 2020; 12(1): 39.
[http://dx.doi.org/10.3390/pharmaceutics12010039] [PMID: 31906576]
[57]
Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv 2016; 13(10): 1433-45.
[http://dx.doi.org/10.1080/17425247.2016.1188802] [PMID: 27249310]
[58]
Zhang C, Zhang S, Zhi D, Zhao Y, Cui S, Cui J. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids Surf 2020; 58 5124054
[http://dx.doi.org/10.1016/j.colsurfa.2019.124054]
[59]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51..
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[60]
Federici T, Taub JS, Baum GR, et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 2012; 19(8): 852-9.
[http://dx.doi.org/10.1038/gt.2011.130] [PMID: 21918551]
[61]
Dang CH, Aubert M, De Silva Feelixge HS, et al. In vivo dynamics of AAV-mediated gene delivery to sensory neurons of the trigeminal ganglia. Sci Rep 2017; 7(1): 927.
[http://dx.doi.org/10.1038/s41598-017-01004-y] [PMID: 28424485]
[62]
Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70(21): 1980-3.
[http://dx.doi.org/10.1212/01.wnl.0000312381.29287.ff] [PMID: 18401019]
[63]
Kunwar S, Chang SM, Prados MD, et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 2006; 20(4) E15
[PMID: 16709020]
[64]
Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012; 23(4): 377-81.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[65]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[66]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[67]
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019; 16(1): 166-75.
[http://dx.doi.org/10.1007/s13311-018-00694-0] [PMID: 30542906]
[68]
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21(2): 103-15.
[http://dx.doi.org/10.1038/s41583-019-0257-7] [PMID: 31907406]
[69]
Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 1998; 339(16): 1130-43.
[http://dx.doi.org/10.1056/NEJM199810153391607] [PMID: 9770561]
[70]
Jarraya B, Boulet S, Ralph GS, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 2009; 1(2): 2ra4.
[http://dx.doi.org/10.1126/scitranslmed.3000130] [PMID: 20368163]
[71]
Azzouz M, Ralph S, Wong L-F, et al. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 2004; 15(6): 985-90.
[http://dx.doi.org/10.1097/00001756-200404290-00011] [PMID: 15076720]
[72]
Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 2002; 22(23): 10302-12.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10302.2002] [PMID: 12451130]
[73]
Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010; 18(9): 1731-5.
[http://dx.doi.org/10.1038/mt.2010.135] [PMID: 20606642]
[74]
Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral vector-mediated gene transfer of glutamic acid decarboxylase for chronic pain treatment: a literature review. Hum Gene Ther 2020; 31(7-8): 405-14.
[http://dx.doi.org/10.1089/hum.2019.359]
[75]
Muñoz MD, de la Fuente N, Sánchez-Capelo A. TGF-β/Smad3 signalling modulates GABA neurotransmission: Implications in Parkinson’s disease. Int J Mol Sci 2020; 21(2): 590.
[http://dx.doi.org/10.3390/ijms21020590] [PMID: 31963327]
[76]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[77]
Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010; 9(12): 1164-72.
[http://dx.doi.org/10.1016/S1474-4422(10)70254-4] [PMID: 20970382]
[78]
Shu C, Yan X, Zhang X, Wang Q, Cao S, Wang J. Tumor-induced mortality in adult primary supratentorial glioblastoma multiforme with different age subgroups. Future Oncol 2019; 15(10): 1105-14.
[http://dx.doi.org/10.2217/fon-2018-0719] [PMID: 30880453]
[79]
Izquierdo M, Martín V, de Felipe P, et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther 1996; 3(6): 491-5.
[PMID: 8789798]
[80]
Immonen A, Vapalahti M, Tyynelä K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10(5): 967-72.
[http://dx.doi.org/10.1016/j.ymthe.2004.08.002] [PMID: 15509514]
[81]
Lang FF, Bruner JM, Fuller GN, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003; 21(13): 2508-18.
[http://dx.doi.org/10.1200/JCO.2003.21.13.2508] [PMID: 12839017]
[82]
Yun J, Sonabend AM, Ulasov IV, et al. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery. J Clin Neurosci 2012; 19(6): 875-80.
[http://dx.doi.org/10.1016/j.jocn.2011.12.016] [PMID: 22516547]
[83]
Li J, Sun M, Wang X. The adverse-effect profile of lacosamide. Expert Opin Drug Saf 2020; 19(2): 131-8.
[http://dx.doi.org/10.1080/14740338.2020.1713089]
[84]
Paradiso B, Marconi P, Zucchini S, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci USA 2009; 106(17): 7191-6.
[http://dx.doi.org/10.1073/pnas.0810710106] [PMID: 19366663]
[85]
Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 2012; 4(161) 161ra152
[http://dx.doi.org/10.1126/scitranslmed.3004190] [PMID: 23147003]
[86]
Snowball A, Chabrol E, Wykes RC, et al. Epilepsy gene therapy using an engineered potassium channel. J Neurosci 2019; 39(16): 3159-69.
[http://dx.doi.org/10.1523/JNEUROSCI.1143-18.2019] [PMID: 30755487]
[87]
Noè F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131(Pt 6): 1506-15.
[http://dx.doi.org/10.1093/brain/awn079] [PMID: 18477594]
[88]
Noe F, Vaghi V, Balducci C, et al. Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 2010; 17(5): 643-52.
[http://dx.doi.org/10.1038/gt.2010.23] [PMID: 20220782]
[89]
Mesraoua B, Deleu D, Kullmann DM, et al. Novel therapies for epilepsy in the pipeline. Epilepsy Behav 2019; 97: 282-90.
[http://dx.doi.org/10.1016/j.yebeh.2019.04.042] [PMID: 31284159]
[90]
Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull 2019; 151: 46-54.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.008] [PMID: 30468847]
[91]
Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 2011; 52(3): 589-601.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02947.x] [PMID: 21275977]
[92]
Wang X, Li T. Role of adenosine kinase inhibitor in adenosine augmentation therapy for epilepsy: a potential novel drug for epilepsy. Curr Drug Targets 2020; 21(3): 252-7.
[http://dx.doi.org/10.2174/1389450119666191014104347] [PMID: 31633474]
[93]
Jack CR Jr. Alzheimer Disease, Biomarkers, and Clinical Symptoms-Quo Vadis?-Reply. JAMA Neurol 2020; 77(3): 394.
[http://dx.doi.org/10.1001/jamaneurol.2019.4962] [PMID: 32011648]
[94]
Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr 2020; 39(1): 16-27.
[http://dx.doi.org/10.1080/07315724.2019.1683379] [PMID: 31829802]
[95]
Libon DJ, Lamar M, Swenson RA, Heilman KM, Eds. Vascular disease, Alzheimer's disease, and mild cognitive impairment: advancing an integrated approach. Oxford University Press 2020; 9(1): pp. 76-92..
[96]
Mufson EJ, Counts SE, Ginsberg SD, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 2019; 13: 533-44.
[http://dx.doi.org/10.3389/fnins.2019.00533] [PMID: 31312116]
[97]
Huang Z, Li J, Zhou J, Zhang J. Alzheimer’s disease and nerve growth factor gene therapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019; 44(12): 1413-8.
[PMID: 31969507]
[98]
Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene therapy for neurologic disease: a neurosurgical review. World Neurosurg 2019; 121: 261-73.
[http://dx.doi.org/10.1016/j.wneu.2018.09.097] [PMID: 30253990]
[99]
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14(6): 931-8.
[http://dx.doi.org/10.4103/1673-5374.250570] [PMID: 30761996]
[100]
Li Y, Wang Y, Wang J, et al. Expression of neprilysin in skeletal muscle by ultrasound-mediated gene transfer (Sonoporation) reduces amyloid burden for AD. Mol Ther Methods Clin Dev 2020; 17: 300-8.
[http://dx.doi.org/10.1016/j.omtm.2019.12.012] [PMID: 32021878]
[101]
Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-β peptide in vivo. Gene Ther 2006; 13(14): 1068-79.
[http://dx.doi.org/10.1038/sj.gt.3302719] [PMID: 16541122]
[102]
Mandel RJ. CERE-110, An adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther 2010; 12(2): 240-7.
[PMID: 20373268]
[103]
Piedrahita D, Hernández I, López-Tobón A, et al. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer’s mice. J Neurosci 2010; 30(42): 13966-76.
[http://dx.doi.org/10.1523/JNEUROSCI.3637-10.2010] [PMID: 20962218]
[104]
Quan Q, Qian Y, Li X, Li M. CDK5 participates in amyloid-β production by regulating PPARγ phosphorylation in primary rat hippocampal neurons. J Alzheimers Dis 2019; 71(2): 443-60.
[http://dx.doi.org/10.3233/JAD-190026] [PMID: 31403945]
[105]
Jain KK. Neuroprotection in huntington disease the handbook of neuroprotection. New York, NY: Humana 2019; pp. 587-607.
[http://dx.doi.org/10.1007/978-1-4939-9465-6_9]
[106]
Zala D, Bensadoun JC, Pereira de Almeida L, et al. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol 2004; 185(1): 26-35.
[http://dx.doi.org/10.1016/j.expneurol.2003.09.002] [PMID: 14697316]
[107]
Colpo GD, Furr Stimming E, Teixeira AL. Stem cells in animal models of Huntington disease: A systematic review. Mol Cell Neurosci 2019; 95: 43-50.
[http://dx.doi.org/10.1016/j.mcn.2019.01.006] [PMID: 30685323]
[108]
Shannon KM. Recent advances in the treatment of Huntington’s disease: Targeting DNA and RNA. CNS Drugs 2020; 34(3): 219-28.
[http://dx.doi.org/10.1007/s40263-019-00695-3] [PMID: 31933283]
[109]
Spronck EA, Valles-Sanchez A, Heikkinen T, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in Huntington disease mouse models. Hum Gene Ther 2017; 28: A78.
[110]
Hwang JY, Won JS, Nam H, Lee HW, Joo KM. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precis Future Med 2018; 2(2): 53-65.
[http://dx.doi.org/10.23838/pfm.2018.00037]
[111]
Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA. Transl Neurodegener 2017; 6(1): 30.
[http://dx.doi.org/10.1186/s40035-017-0101-9] [PMID: 29209494]
[112]
Shen F, Fan Y, Su H, et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 2008; 15(1): 30-9.
[http://dx.doi.org/10.1038/sj.gt.3303048] [PMID: 17960159]
[113]
Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014; 10(4): 204-16.
[http://dx.doi.org/10.1038/nrneurol.2014.24] [PMID: 24614516]
[114]
Deviatkin AA, Vakulenko YA, Akhmadishina LV, et al. Emerging concepts and challenges in rheumatoid arthritis. Gen Ther 2020; 8(1): 9.
[115]
Thrasher AJ, Williams DA. Evolving gene therapy in primary immunodeficiency. Mol Ther 2017; 25(5): 1132-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.018] [PMID: 28366768]
[116]
Sinnett SE, Hector RD, Gadalla KKE, et al. Improved MECP2 gene therapy extends the survival of MeCP2-null mice without apparent toxicity after intracisternal delivery. Mol Ther Methods Clin Dev 2017; 5: 106-15.
[http://dx.doi.org/10.1016/j.omtm.2017.04.006] [PMID: 28497072]
[117]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[118]
Nyamay’Antu A, Dumont M, Kedinger V, Erbacher P. Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy. Cell Gene Ther Insights 2019; 5: 51-7.
[http://dx.doi.org/10.18609/cgti.2019.007]
[119]
Humbert JM, Halary F. Viral and non-viral methods to genetically modify dendritic cells. Curr Gene Ther 2012; 12(2): 127-36.
[http://dx.doi.org/10.2174/156652312800099580] [PMID: 22424555]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy