Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress in Iron-Catalyzed Reactions Towards the Synthesis of Bioactive Five- and Six-Membered Heterocycles

Author(s): Laksmikanta Adak* and Tubai Ghosh

Volume 24, Issue 22, 2020

Page: [2634 - 2664] Pages: 31

DOI: 10.2174/1385272824999200714102103

Price: $65

Abstract

Heterocyclic compounds are the largely diverse organic molecules and find prevalent applications in the fine chemical industry, medicinal chemistry and agricultural science. They are also among the most commonly bearing frameworks in numerous drugs and pharmaceutical substances. Therefore, the development of convenient, efficient and environmentally benign methods to produce various types of heterocyclic compounds is an attractive area of research. For the synthesis and functionalization of heterocycles, enormous achievements have been attributed over the past decades. Recently, ironcatalyzed reactions have accomplished a noteworthy development in the synthesis of heterocycles. This review highlights some remarkable achievements in the iron-catalyzed synthesis of heterocyclic compounds published in the last five years.

Keywords: Catalysis, iron, earth-abundant transition metal, synthetic methods, five-membered heterocycles, six-membered heterocycles.

Graphical Abstract

[1]
(a) Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed; Wiley-Blackwell: Oxford, 2010.
(b) Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry III; Taylor, R.J.K., Ed.; Elsevier: Oxford, 2008.
(c) Orru, R.V.A. Synthesis of Heterocycles via Multicomponent Reaction I; Ruijter, E., Ed.; Springer: Berlin, 2010.
[http://dx.doi.org/10.1007/978-3-642-12675-8]
(d) Eycken, E. Microwave-Assisted Synthesis of Heterocycles; Kappe, C.O., Ed.; Springer: Berlin, 2006.
[http://dx.doi.org/10.1007/11497363]
(e) Gribble, G.W. Recent developments in indole ring synthesismethodology and applications. In: J. Chem. Soc. Perkin Trans; , 2000; 1, pp. 1045-1075.
[http://dx.doi.org/10.1039/a909834h]
(f) Gilchrist, T.A. Synthesis of aromatic heterocycles. J. Chem. Soc. Perkin Trans., 1998, 1, 615-628.
[http://dx.doi.org/10.1039/a704493c]
(g) Amishiro, N.; Okamoto, A.; Murakata, C.; Tamaoki, T.; Okabe, M.; Saito, H. Synthesis and antitumor activity of duocarmycin derivatives: modification of segment-A of A-ring pyrrole compounds. J. Med. Chem., 1999, 42(15), 2946-2960.
[http://dx.doi.org/10.1021/jm990094r] [PMID: 10425104]
[2]
(a) Chin, Y.W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J., 2006, 8(2), e239-e253.
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
(b) Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
(c) Cordell, G.A.; Beattie, M.L.Q.; Fransworth, N.R. The potential of alkaloids production. Metab. Eng., 2001, 4, 41-48.
[3]
(a) Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Life and Society; Wiley: Chichester, 1997.
(b) Baran, P.S.; Guerrero, C.A.; Ambhaikar, N.B.; Hafensteiner, B.D. Short, enantioselective total synthesis of stephacidin A. Angew. Chem. Int. Ed. Engl., 2005, 44(4), 606-609.
[http://dx.doi.org/10.1002/anie.200461864] [PMID: 15586393]
(c) Köhling, P.; Schmidt, A.M.; Eilbracht, P. Tandem hydroformylation/Fischer indole synthesis: a novel and convenient approach to indoles from olefins. Org. Lett., 2003, 5(18), 3213-3216.
[http://dx.doi.org/10.1021/ol0350184] [PMID: 12943390]
(d) Yang, S.; Denny, W.A. A new short synthesis of 3-substituted 5-amino-1- (chloromethyl)-1,2-dihydro-3H-benzo[e]indoles (amino-CBIs). J. Org. Chem., 2002, 67(25), 8958-8961.
[http://dx.doi.org/10.1021/jo0263115] [PMID: 12467414]
(e) Caron, S.; Vazquez, E.; Stevens, R.W.; Nakao, K.; Koike, H.; Murata, Y. Efficient synthesis of [6-chloro-2-(4-chlorobenzoyl)-1H-indol-3-yl]-acetic acid, a novel COX-2 inhibitor. J. Org. Chem., 2003, 68(10), 4104-4107.
[http://dx.doi.org/10.1021/jo034274r] [PMID: 12737602]
(f) Jiang, B.; Yang, C.G.; Wang, J. Enantioselective synthesis of marine indole alkaloid hamacanthin B. J. Org. Chem., 2002, 67(4), 1396-1398.
[http://dx.doi.org/10.1021/jo0108109] [PMID: 11846695]
[4]
(a) Joule, J.A. Product Class 13: Indole and Its Derivatives; Theime, 2001.
(b) Grohe, K. Antibiotics-the new generation[including nalidixic acid and fluoroquinolones such as ciprofloxacin. Chem. Britain, 1992, 28, 34-36.
(c) Wentland, M.P.; Cornett, J.B. Quinolone antibacterial agents. Ann. Rpt. Med. Chem., 1985, 20, 145-154.
[5]
(a) Katritzky, A.R.; Pozharskii, A.F. Handbook of Heterocyclic Chemistry; Pergamon, 2003.
(b) Yamamoto, Y. Science of Synthesis, Houben-Weyl Methods of Molecular Transformations, Six-Membered Hetarenes with Two Identical Heteroatoms; Thieme Verlag: Stuttgart, 2004, p. 16.
[6]
(a) El Ashry, E.S.H.; El-Nemr, A. Synthesis of Naturally Occurring Nitrogen Heterocycles from Carbohydrates; Blackwell: Oxford, 2005.
[http://dx.doi.org/10.1002/9780470988619]
(b) Vicario, J.L.; Badia, D.; Carrillo, L. New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Research Signpost: Kerala, 2005.
(c) Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. . Chem. Rev., 2004, 104(6), 3079-3159.
[http://dx.doi.org/10.1021/cr0201068] [PMID: 15186189]
(d) Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270] [PMID: 16836303]
(e) Joule, J.A.; Mills, K. Heterocyclic Chemistry at a Glance; John Wiley & Sons: Germany, 2007.
(f) Katritzky, R.; Ramsden, C.A.; Screeven, E.F.V.; Taylor, R.J.K. Comprehensive Heterocyclic Chemistry III; Elsevier: New York, 2008.
(g) Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3395-3442.
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054]
(h) Agarwal, S.; Cämmerer, S.; Filali, S.; Fröhner, W.; Knöll, J.; Krahl, M.P.; Reddy, K.R.; Knölker, H.J. Novel routes to pyrroles, indoles and carbazolesapplications in natural product synthesis. Curr. Org. Chem., 2005, 9, 1601-1614.
[http://dx.doi.org/10.2174/138527205774370496]
(i) Knölker, H.J. Synthesis of biologically active carbazole alkaloids using organometallic chemistry. Curr. Org. Synth., 2004, 1, 309-331.
[http://dx.doi.org/10.2174/1570179043366594]
[7]
(a) Majumdar, K.C.; Mondal, S. Recent developments in the synthesis of fused sultams. . Chem. Rev., 2011, 111(12), 7749-7773.
[http://dx.doi.org/10.1021/cr1003776] [PMID: 21894896]
(b) Majumdar, K.C.; Taher, A.; Nandi, R.K. Synthesis of heterocycles by domino-Knoevenagel–hetero-Diels–Alder reactions. Tetrahedron, 2012, 68, 5693-5718.
[http://dx.doi.org/10.1016/j.tet.2012.04.098]
(c) Majumdar, K.C.; Sinha, B. Palladium-mediated total synthesis of bioactive natural products. Synthesis, 2013, 45, 1271-1299.
[http://dx.doi.org/10.1055/s-0032-1316918]
(d) Majumdar, K.C.; Samanta, S.; Sinha, B. Recent developments in palladium-catalyzed formation of five- and six-membered fused heterocycles. Synthesis, 2012, 44, 817-847.
[http://dx.doi.org/10.1055/s-0031-1289734]
(e) Majumdar, K.C. Regioselective formation of medium-ring heterocycles of biological relevance by intramolecular cyclization. RSC Adv., 2011, 1, 1152-1170.
[http://dx.doi.org/10.1039/C1RA00494H]
(f) Majumdar, K.C.; Debnath, P.; De, N.; Roy, B. Metal-catalyzed heterocyclization: synthesis of five- and six-membered nitrogen heterocycles through carbon-nitrogen bond forming reactions. Curr. Org. Chem., 2011, 15, 1760-1801.
[http://dx.doi.org/10.2174/138527211795656633]
(g) Majumdar, K.C.; Chattopadhyay, B.; Maji, P.K.; Chattopadhyay, S.K.; Samanta, S. Recent development in palladium-mediated synthesis of nitrogen heterocycles. Heterocycles, 2010, 81, 795-866.
[http://dx.doi.org/10.3987/REV-09-662-2] [PMID: ]
(h) Majumdar, K.C.; Chattopadhyay, B.; Ray, K. Formation of five- and sixmembered heterocyclic compounds by ringclosing metathesis. Curr. Org. Synth., 2010, 7, 153-176.
[http://dx.doi.org/10.2174/157017910790820292]
(i) Majumdar, K.C.; Roy, B.; Debnath, P.; Taher, A. Metal-mediated heterocyclization: synthesis of heterocyclic compounds containing more than one heteroatom through carbon-heteroatom bond forming reactions. Curr. Org. Chem., 2010, 14, 846-887.
[http://dx.doi.org/10.2174/138527210791111876]
(j) Bauer, I.; Knölker, H.J. Synthesis of pyrrole and carbazole alkaloids. Top. Curr. Chem., 2012, 309, 203-253.
[http://dx.doi.org/10.1007/128_2011_192] [PMID: 21728136]
(k) Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2012, 112(6), 3193-3328.
[http://dx.doi.org/10.1021/cr200447s] [PMID: 22480243]
[8]
(a) Bauer, E.B. Recent advances in iron catalysis in organic synthesis. Curr. Org. Chem., 2008, 12, 1341-1369.
[http://dx.doi.org/10.2174/138527208786241556]
(b) Prokopcová, H.; Bergman, S.D.; Aelvoet, K.; Smout, V.; Herrebout, W.; Van der Veken, B.; Meerpoel, L.; Maes, B.U.W. C-2 arylation of piperidines through directed transition-metal-catalyzed sp3 C-H activation. Chemistry, 2010, 16(44), 13063-13067.
[http://dx.doi.org/10.1002/chem.201001887] [PMID: 20981669]
(c) Lundgren, R.J.; Stradiotto, M. Transition-metal-catalyzed trifluoromethylation of aryl halides. Angew. Chem. Int. Ed. Engl., 2010, 49(49), 9322-9324.
[http://dx.doi.org/10.1002/anie.201004051] [PMID: 20878960]
(d) Walker, D.B.; Howqeqo, J.; Davis, A.P. Synthesis of regioselectively functionalized pyrenes via transition-metal-catalyzed electrocyclization. Synthesis, 2010, 21, 3686-3692.
(e) Zhou, Y.; Zhao, J.; Liu, L. Meta-selective transition-metal catalyzed arene C-H bond functionalization. Angew. Chem. Int. Ed. Engl., 2009, 48(39), 7126-7128.
[http://dx.doi.org/10.1002/anie.200902762] [PMID: 19655360]
(f) Li, Q.; Yu, Z.X. Conjugated diene-assisted allylic C-H bond activation: cationic Rh(I)-catalyzed syntheses of polysubstituted tetrahydropyrroles, tetrahydrofurans, and cyclopentanes from ene-2-dienes. J. Am. Chem. Soc., 2010, 132(13), 4542-4543.
[http://dx.doi.org/10.1021/ja100409b] [PMID: 20232873]
(g) Djakovitch, L.; Batail, N.; Genelot, M. Recent advances in the synthesis of N-containing heteroaromatics via heterogeneously transition metal catalysed cross-coupling reactions. Molecules, 2011, 16(6), 5241-5267.
[http://dx.doi.org/10.3390/molecules16065241] [PMID: 21701436]
(h) Ranu, B.C.; Chatterjee, T.; Mukherjee, N.; Maity, P.; Majhi, B. Synthesis of bioactive five- and six-membered heterocycles catalyzed by heterogeneous supported metals. In:Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G., Ed.; Elsevier: Oxford, 2015.
[9]
Wang, C.X.; Wan, B.S. Recent advances in the iron-catalyzed cycloaddition reactions. Chin. Sci. Bull., 2012, 57, 2338-2351.
[http://dx.doi.org/10.1007/s11434-012-5141-z]
[10]
Fürstner, A. Iron catalysis in organic synthesis: a critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci., 2016, 2(11), 778-789.
[http://dx.doi.org/10.1021/acscentsci.6b00272] [PMID: 27981231]
[11]
(a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104(12), 6217-6254.
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700]
(b) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications; Wiley-VCH: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527623273]
(c) Morris, R.H. Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev., 2009, 38(8), 2282-2291.
[http://dx.doi.org/10.1039/b806837m] [PMID: 19623350]
(d) Sun, C.L.; Li, B.J.; Shi, Z.J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111(3), 1293-1314.
[http://dx.doi.org/10.1021/cr100198w] [PMID: 21049955]
(e) Junge, K.; Schröder, K.; Beller, M. Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chem. Commun. (Camb.), 2011, 47(17), 4849-4859.
[http://dx.doi.org/10.1039/c0cc05733a] [PMID: 21437312]
(f) Mancheño, O.G. New trends towards well-defined low-valent iron catalysts. Angew. Chem. Int. Ed. Engl., 2011, 50(10), 2216-2218.
[http://dx.doi.org/10.1002/anie.201007271] [PMID: 21305680]
(g) Plietker, B.; Beller, M. Iron Catalysis: Fundamentals and Applications; Springer: Berlin, 2011.
[http://dx.doi.org/10.1007/978-3-642-14670-1]
(h) Blanchard, S.; Derat, E.; Murr, M.D.; Fensterbank, L.; Malacria, M. Mourie-Mansuy, V. Non-innocent ligands: new opportunities in iron catalysis. Eur. J. Inorg. Chem., 2012, 376-389.
[http://dx.doi.org/10.1002/ejic.201100985]
(i) Darwish, M.; Wills, M. Asymmetric catalysis using iron complexes– ‘Ruthenium Lite’? Catal. Sci. Technol., 2012, 2, 243-255.
[http://dx.doi.org/] [PMID: 10.1039/C1CY00390A]
(j) Mousseau, J.J.; Charette, A.B. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions. Acc. Chem. Res., 2013, 46(2), 412-424.
[http://dx.doi.org/10.1021/ar300185z] [PMID: 23098328]
(k) Gopalaiah, K. Chiral iron catalysts for asymmetric synthesis. Chem. Rev., 2013, 113(5), 3248-3296.
[http://dx.doi.org/10.1021/cr300236r] [PMID: 23461563]
(l) Knölker, H.J. Organoiron Chemistry. Organometallics in Synthesis; Wiley: Hoboken, 2013.
(m) Rana, S.; Modak, A.; Maity, S.; Patra, T.; Maity, D. Iron catalysis in synthetic chemistry In:Progress in Inorganic Chemistry; Knrlin, K.D., Ed.; John Wiley & Sons: Hoboken, 2014, 59, pp. 1-95.
(n) Bauer, I.; Knölker, H.J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u] [PMID: 25751710]
[12]
(a) Guérinot, A.; Cossy, J. Iron-catalyzed C–C cross-couplings using organometallics. Top. Curr. Chem. (Cham), 2016, 374(4), 49.
[http://dx.doi.org/10.1007/s41061-016-0047-x] [PMID: 27573401]
(b) Legros, J.; Figadère, B. Iron-promoted C-C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555.
[http://dx.doi.org/10.1039/C5NP00059A] [PMID: 26395292]
[13]
(a) Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M. Iron-catalyzed cross-coupling reactions. Org. React., 2014, 83, 1.
[http://dx.doi.org/10.1002/0471264180.or083.01]
(b) Czaplik, W.M.; Mayer, M.; Cvengroš, J.; von Wangelin, A.J. Coming of age: sustainable iron-catalyzed cross-coupling reactions. ChemSusChem., 2009, 2, 396-417.
[http://dx.doi.org/10.1002/cssc.200900055] [PMID: 19425040]
(c) Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res., 2008, 41, 1500-1511.
[http://dx.doi.org/10.1021/ar800039x]
[14]
(a) Iwamoto, T.; Okuzono, C.; Adak, L.; Jin, M.; Nakamura, M. Iron-catalysed enantioselective Suzuki–Miyaura coupling of racemic alkyl bromides. Chem. Commun., 2019, 55, 1128-1131.
[http://dx.doi.org/10.1039/C8CC09523J]
(b) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H.C.; Shing, T.K.M.; Nakamura, M. Synthesis of aryl Cglycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc., 2017, 139, 10693-10701.
[http://dx.doi.org/10.1021/jacs.7b03867]
(c) Jin, M.; Adak, L.; Nakamura, M. Iron-catalyzed enantioselective crosscoupling reactions of a-chloroesters with aryl Grignard reagents. J. Am. Chem. Soc., 2015, 137, 7128-7134.
[http://dx.doi.org/10.1021/jacs.5b02277]
(d) Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto, T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. Kumada–Tamao–Corriu coupling of alkyl halides catalyzed by an iron–bisphosphine complex Chem. Lett., 2011, 40, 1030-1032.
[http://dx.doi.org/10.1246/cl.2011.1030]
(e) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. Iron-catalyzed crosscoupling of primary and secondary alkyl halides with aryl Grignard reagents. J. Am. Chem. Soc., 2004, 126, 3686-3687.
[http://dx.doi.org/10.1021/ja049744t]
(f) Bedford, R.B.; Carter, E.; Cogswell, P.M.; Gower, N.J.; Haddow, M.F.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J. Simplifying iron-phosphine catalysts for cross-coupling reactions. Angew. Chem. Int. Ed., 2013, 52, 1285-1288.
[http://dx.doi.org/10.1002/anie.201207868]
(g) Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun., 2009, 45, 1216-1218.
[http://dx.doi.org/10.1039/B820879D]
(h) Kawamura, S.; Kawabata, T.; Ishizuka, K.; Nakamura, M. Iron-catalysed cross-coupling of halohydrins with aryl aluminium reagents: a protecting-group-free strategy attaining remarkable rate enhancement and diastereoinduction. Chem. Commun., 2012, 48, 9376-9378.
[http://dx.doi.org/10.1039/C2CC34185A]
(i) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-catalyzed Suzuki−Miyaura coupling of alkyl halides. J. Am. Chem. Soc., 2010, 132, 10674-10676.
[http://dx.doi.org/10.1021/ja103973a]
(j) Bedford, R.B.; Brenner, P.B.; Carter, E.; Carvell, T.W.; Cogswell, P.M.; Gallagher, T.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J.; Pye, D.R. Expedient iron-catalyzed coupling of alkyl, benzyl and allyl halides with arylboronic esters. Chem. Eur. J., 2014, 20, 7935-7938.
[http://dx.doi.org/10.1002/chem.201402174]
[15]
(a) Majumdar, K.C.; De, N.; Ghosh, T.; Roy, B. Iron-catalyzed synthesis of heterocycles. Tetrahedron, 2014, 40, 4827-4868.
[http://dx.doi.org/10.1016/j.tet.2014.04.025]
(b) Mandal, S.K.; Chattopadhyay, A.P. Iron-catalyzed synthesis of heterocycles. IOSR J. Appl. Chem., 2016, 9, 40-65.
(c) Jena, A.K.; Sahu, S.J. Review on Fe-catalyzed carbon-carbon, carbon-heteroatom oxidative coupling reactions: en route to heterocycles. Chem. Pharma. Res., 2017, 9, 315-341.
(d) Elwahy, A.H.M.; Shaaban, M.R. Synthesis of heterocycles catalyzed by iron oxide nanoparticles. Heterocycles, 2017, 94, 595-655.
[http://dx.doi.org/10.3987/REV-16-854]
(e) Sreedevi, R.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Recent trends in iron-catalyzed reactions towards the synthesis of nitrogen-containing heterocycles. Adv. Synth. Catal., 2019, 361, 2236-2249.
[http://dx.doi.org/10.1002/adsc.201801471]
(f) Mishra, M.; Mohapatra, S.; Mishra, N.P.; Jena, B.K.; Panda, P.; Nayak, S. Recent advances in iron(III) chloride catalyzed synthesis of heterocycles. Tetrahedron Lett., 2019, 60150925
[http://dx.doi.org/10.1016/j.tetlet.2019.07.016]
[16]
Fan, H.; Peng, J.; Hamann, M.T.; Hu, J.F. Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev., 2008, 108(1), 264-287.
[http://dx.doi.org/10.1021/cr078199m] [PMID: 18095718]
[17]
(a) Sundberg, R.J. Comprehensive Heterocyclic Chemistry; Katritzky, A.R; Rees, C.W., Ed.; Pergamon Press: Oxford, 1984, Vol. 4, p. 314.
(b) Gribble, G.W. Comprehensive Heterocyclic Chemistry II; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. ., Eds.; Pergamon-Elsevier Science:; Amsterdam, 1996.
[18]
Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-catalyzed sustainable synthesis of pyrrole. Org. Lett., 2017, 19(1), 6-9.
[http://dx.doi.org/10.1021/acs.orglett.6b02819] [PMID: 27958754]
[19]
Zhao, M.N.; Ren, Z.H.; Yang, D.S.; Guan, Z.H. Iron-catalyzed radical cycloaddition of 2H-azirines and enamides for the synthesis of pyrroles. Org. Lett., 2018, 20(5), 1287-1290.
[http://dx.doi.org/10.1021/acs.orglett.7b04007] [PMID: 29420042]
[20]
Tasior, M.; Koszarna, B.; Young, D.C.; Bernard, B.; Jacquemin, D.; Gryko, D.; Gryko, G.T. Fe(III)-catalyzed synthesis of pyrrolo[3,2-b]pyrroles: formation of new dyes and photophysical studies. Org. Chem. Front., 2019, 6, 2939-2948.
[http://dx.doi.org/10.1039/C9QO00675C]
[21]
Moghaddam, F.M.; Foroushani, B.K.; Rezvani, H.R. Nickel ferrite nanoparticles: an efficient and reusable nano catalyst for a neat, one-pot and four-component synthesis of pyrroles. RSC Advances, 2015, 5, 18092-18096.
[http://dx.doi.org/10.1039/C4RA09348H]
[22]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Advances, 2016, 6, 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[23]
Hennessy, E.T.; Betley, T.A. Complex N-heterocycle synthesis via iron-catalyzed, direct C-H bond amination. Science, 2013, 340(6132), 591-595.
[http://dx.doi.org/10.1126/science.1233701] [PMID: 23641113]
[24]
Kim, J.G.; Son, Y.H.; Seo, J.W.; Kang, E.J. Iron-catalyzed tandem cyclization and cross-coupling reactions of iodoalkanes and aryl Grignard reagents. Eur. J. Org. Chem., 2015, 2015(8), 1781-1789.
[http://dx.doi.org/10.1002/ejoc.201403511]
[25]
Pérez, S.J.; Purino, M.A.; Cruz, D.A.; Soria, J.M.L.; Carballo, R.M.; Ramírez, M.A.; Fernández, I.; Martín, V.S.; Padrón, J.I. Enantiodivergent synthesis of (1)-and (2)-pyrrolidine 197B: synthesis of trans-2,5-disubstituted pyrrolidines by intramolecular hydroamination. Chemistry, 2016, 22(43), 15529-15535.
[http://dx.doi.org/10.1002/chem.201602708] [PMID: 27624405]
[26]
Bagh, B.; Broere, D.L.J.; Sinha, V.; Kuijpers, P.F.; van Leest, N.P.; de Bruin, B.; Demeshko, S.; Siegler, M.A.; van der Vlugt, J.I. vander Vlugt, J. I. Catalytic synthesis of N-heterocycles via direct C(sp3)–H amination using an air-stable iron(III) species with a redox-active ligand. J. Am. Chem. Soc., 2017, 139(14), 5117-5124.
[http://dx.doi.org/10.1021/jacs.7b00270] [PMID: 28298089]
[27]
Iovan, D.A.; Wilding, M.J.T.; Baek, Y.; Hennessy, E.T.; Betley, T.A. Diastereoselective C-H bond amination for disubstituted pyrrolidines. Angew. Chem. Int. Ed. Engl., 2017, 56(49), 15599-15602.
[http://dx.doi.org/10.1002/anie.201708519] [PMID: 29024289]
[28]
Wei, D.; Netkaew, C.; Darcel, C. Iron-catalysed switchable synthesis of pyrrolidines vs pyrrolidinones by reductive amination of levulinic acid derivatives via hydrosilylation. Adv. Synth. Catal., 2019, 361, 1781-1786.
[http://dx.doi.org/10.1002/adsc.201801656]
[29]
Liu, C.; Zhang, Q.; Li, H.; Guo, S.; Xiao, B.; Deng, W.; Liu, L.; He, W. Cu/Fe catalyzed intermolecular oxidative amination of benzylic C-H bonds. Chemistry, 2016, 22(18), 6208-6212.
[http://dx.doi.org/10.1002/chem.201600107] [PMID: 26919545]
[30]
Sundberg, R. Indoles; Academic Press: London, 1996. (b) Sharma, V.; Kumar, P.; Pathak, J. Biological importance of the indole nucleus in recent years: a comprehensive review. J. Heterocycl. Chem., 2010, 47, 491-502.
[http://dx.doi.org/10.1002/jhet.349]
[31]
Alt, I.T.; Plietker, B. Iron-catalyzed intramolecular C(sp2)−H amination. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1519-1522.
[http://dx.doi.org/10.1002/anie.201510045] [PMID: 26663257]
[32]
Yin, Z.; Wang, Z.; Wu, X.F. Iron-catalyzed regioselective synthesis of 3-arylindoles. ChemistrySelect, 2017, 2, 6689-6692.
[http://dx.doi.org/10.1002/slct.201701530]
[33]
Henry, M.C.; Senn, H.M.; Sutherland, A.; Sutherland, A. Synthesis of functionalized indolines and dihydrobenzofurans by iron and copper catalyzed aryl C–N and C–O bond formation. J. Org. Chem., 2019, 84(1), 346-364.
[http://dx.doi.org/10.1021/acs.joc.8b02888] [PMID: 30520304]
[34]
(a) Schmidt, A.D.A. Recent advances in the chemistry of pyrazoles. properties, biological activities, and syntheses. Curr. Org. Chem., 2011, 15, 1423-1463.
[http://dx.doi.org/10.2174/138527211795378263]
(b) Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem., 2004, 47(14), 3693-3696.
[http://dx.doi.org/10.1021/jm030394f] [PMID: 15214796]
[35]
Panda, N.; Ojha, S. Facile synthesis of pyrazoles by iron-catalyzed regioselective cyclization of hydrazone and 1,2-diol under ligand-free conditions. J. Organomet. Chem., 2018, 861, 244-251.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.043]
[36]
Rakhtshah, J.; Salehzadeh, S.; Gowdini, E.; Maleki, F.; Baghery, S.; Zolfigol, M.A. Synthesis of pyrazole derivatives in the presence of a dioxomolybdenum complex supported on silica coated magnetite nanoparticles as an efficient and easily recyclable catalyst. RSC Advances, 2016, 6, 104875-104885.
[http://dx.doi.org/10.1039/C6RA20988B]
[37]
Maleki, B.; Eshghi, H.; Barghamadi, M.; Nasiri, N.; Khojastehnezhad, A.; Ashrafi, S.S.; Pourshiani, O. Silica-coated magnetic NiFe2O4 nanoparticles supported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2016, 42, 3071-3093.
[http://dx.doi.org/10.1007/s11164-015-2198-8]
[38]
Gangu, K.K.; Suresh, M.; Surya, M.; Jonnalagadda, S.B. Novel iron doped calcium oxalates as promising heterogeneous catalysts for one-pot multi-component synthesis of pyranopyrazoles. RSC Advances, 2017, 7, 423-432.
[http://dx.doi.org/10.1039/C6RA25372E]
[39]
Suman, S.; Agarwala, A.; Shrivastava, R. Sulfonic acid functionalized silica-coated CuFe2O4 core-shell nanoparticles: an efficient and magnetically separable heterogeneous catalyst for syntheses of 2-pyrazole-3-aminoimidazo- fused poly heterocycles. New J. Chem., 2016, 40, 9788-9794.
[http://dx.doi.org/10.1039/C6NJ02264B]
[40]
Tamm, I. Amberlite IR-120 catalyzed, microwave-assisted rapid synthesis of 2-aryl-benzimidazoles. Science, 1957, 126, 1235-1236.
[41]
Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin, B.; Liu, P.; Li, J. A facile FeCl3/I2-catalyzed aerobic oxidative coupling reaction: synthesis of tetrasubstituted imidazoles from amidines and chalcones. Org. Lett., 2015, 17(15), 3872-3875.
[http://dx.doi.org/10.1021/acs.orglett.5b01854] [PMID: 26196356]
[42]
El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M. CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron, 2015, 71, 2579-2584.
[http://dx.doi.org/10.1016/j.tet.2015.02.057]
[43]
Maleki, A.; Alrezvani, Z.; Maleki, S. Design, preparation and characterization of urea-functionalized Fe3O4/SiO2 magnetic nanocatalyst and application for the one-pot multi component synthesis of substituted imidazole derivatives. Catal. Commun., 2015, 69, 29-33.
[http://dx.doi.org/10.1016/j.catcom.2015.05.014]
[44]
Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Iron-catalyzed synthesis of 2H-imidazoles from oxime acetates and vinyl azides under redox-neutral conditions. Org. Lett., 2017, 19(6), 1370-1373.
[http://dx.doi.org/10.1021/acs.orglett.7b00203] [PMID: 28248514]
[45]
Yu, J.; Lu, M. Synthesis of benzimidazoles via iron-catalyzed aerobic oxidation reaction of imine derivatives with o-phenylenediamine. Synth. Commun., 2015, 45, 2148-2157.
[http://dx.doi.org/10.1080/00397911.2015.1062987]
[46]
Kumar, M. Richa; Sharma, S.; Bhatt, V. Iron(III) chloride-catalyzed decarboxylative–deaminative functionalization of phenylglycine: a tandem synthesis of quinazolinones and benzimidazoles. Adv. Synth. Catal., 2015, 357, 2862-2868.
[http://dx.doi.org/10.1002/adsc.201500335]
[47]
Gopalaiah, K.; Chandrudu, S.N. Iron(II) bromide-catalyzed oxidative coupling of benzylamines with ortho-substituted anilines: synthesis of 1,3-benzazoles. RSC Advances, 2015, 5, 5015-5023.
[http://dx.doi.org/10.1039/C4RA12490A]
[48]
Kumar, S.S.; Kavitha, H.P. Synthesis and biological applications of triazole derivatives. Mini Rev. Org. Chem., 2013, 10, 40-65.
[http://dx.doi.org/10.2174/1570193X11310010004]
[49]
Shaterian, H.R.; Moradi, F. Preparation of 7-amino-1,3-dioxo-1,2,3,5-tetrahydropyrazolo [1,2-a][1,2,4]triazole using magnetic Fe3O4 nanoparticles coated by (3-aminopropyl)-triethoxysilane as catalyst. Res. Chem. Intermed., 2015, 41, 223-229.
[http://dx.doi.org/10.1007/s11164-013-1184-2]
[50]
Dong, D-Q.; Zhang, H.; Wang, Z-L. Synthesis of N-2-aryl-substituted 1,2,3-triazoles mediated by magnetic and recoverable CuFe2O4 nanoparticles. Res. Chem. Intermed., 2016, 42, 6231-6243.
[http://dx.doi.org/10.1007/s11164-016-2457-3]
[51]
Nino, A.D.; Merino, P.; Algieri, V.; Nardi, M.; Gioia, M.L.D.; Russo, B.; Tallarida, M.A.; Mai-uolo, L. Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(III) chloride as an efficient and reusable homogeneous catalyst. Catalysts, 2018, 8, 364-371.
[http://dx.doi.org/10.20944/preprints201807.0620.v1]
[52]
Rohand, T.; Mkpenie, V.N.; Haddad, M.H.; Marko, I.E. A novel iron-catalyzed one-pot synthesis of 3-amino-1,2,4-triazoles. J. Heterocycl. Chem., 2019, 56, 690-695.
[http://dx.doi.org/10.1002/jhet.3450]
[53]
Kim, B.Y.; Ahn, J.B.; Lee, H.W.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Hong, C.I.; Yoon, S.S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem., 2004, 39(5), 433-447.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.001] [PMID: 15110969]
[54]
Yi, Y.; Zhao, M.N.; Ren, Z.H.; Wang, Y.Y.; Guan, Z.H. Synthesis of symmetrical pyridines by iron-catalyzed cyclization of ketoxime acetates and aldehydes. Green Chem., 2017, 19, 1023-1027.
[http://dx.doi.org/10.1039/C6GC03137D]
[55]
Gopalaiah, K.; Rao, D.C.; Mahiya, K.; Tiwari, A. Iron-catalyzed aerobic oxidative cleavage and construction of C−N bonds: a facile method for synthesis of 2,4,6-trisubstituted pyridines. Asian J. Org. Chem., 2018, 7, 1872-1881.
[http://dx.doi.org/10.1002/ajoc.201800312]
[56]
Zhao, M.N.; Ren, Z.H.; Yu, L.; Wang, Y.Y.; Guan, Z.H. Iron-catalyzed cyclization of ketoxime carboxylates and tertiary anilines for the synthesis of pyridines. Org. Lett., 2016, 18(5), 1194-1197.
[http://dx.doi.org/10.1021/acs.orglett.6b00326] [PMID: 26910876]
[57]
Eshghi, H.; Haghbeen, K. Nanomagnetic organic–inorganic hybrid (Fe@Si-Gu-Prs): a novel mag-netically green catalyst for the synthesis of tetrahydropyridine derivatives at room temperature un-der solvent-free conditions. Tetrahedron, 2015, 71, 436-444.
[http://dx.doi.org/10.1016/j.tet.2014.12.010]
[58]
Bamoniri, A.; Fouladgar, S. SnCl4-functionalized nano-Fe3O4 encapsulated-silica particles as a novel heterogeneous solid acid for the synthesis of 1,4-dihydropyridine derivatives. RSC Advances, 2015, 5, 78483-78490.
[http://dx.doi.org/10.1039/C5RA12734C]
[59]
Naik, T.R.R.; Shivashankar, S.A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed syn-thesis of Hantzsch 1,4-dihydropyridines in water. Tetrahedron Lett., 2016, 57, 4046-4049.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[60]
Gonnard, L.; Guerinot, A.; Cossy, J. Iron-catalyzed synthesis of α-dienyl five- and six-membered N-heterocycles. Eur. J. Org. Chem., 2017, 2017(41), 6160-6167.
[http://dx.doi.org/10.1002/ejoc.201700977]
[61]
Payra, S.; Saha, A.; Wu, C-M.; Selvaratnam, B.; Mahoney, L.; Verma, S.K.; Thareja, S.; Koodali, R.; Banerjee, S. Fe–SBA-15 catalyzed synthesis of 2-alkoxyimidazo[1,2-a]pyridines and screening of their in silico selectivity and binding affinity to biological targets. New J. Chem., 2016, 40, 9753-9760.
[http://dx.doi.org/10.1039/C6NJ02134D]
[62]
Chen, Z.; Ye, M. Iron(III)-catalyzed synthesis of 3-aroylimidazo[1,2-a]pyridines from 2-aminopyridines and ynals. Tetrahedron Lett., 2018, 59, 667-670.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.018]
[63]
Douglas, T.; Pordea, A.; Dowden, J. Iron-catalyzed indolizine synthesis from pyridines, diazo compounds, and alkynes. Org. Lett., 2017, 19(23), 6396-6399.
[http://dx.doi.org/10.1021/acs.orglett.7b03252] [PMID: 29144763]
[64]
(a) Balasubramanian, M.; Keay, J.G. Comprehensive Heterocyclic Chemistry II; Katritzky, A.R.; Rees, C.W. .; Scriven, E.F.V., Eds.; Pergamon Press: Oxford, 1996; Vol. 5, p. 245.
[http://dx.doi.org/10.1016/B978-008096518-5.00109-X]
(b) Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1997, 14(1), 11-20.
[http://dx.doi.org/10.1039/np9971400011] [PMID: 9121729]
(c) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed; Wiley-VCH: Weinheim, 2003, p. 316.
[http://dx.doi.org/10.1002/352760183X]
(d) Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[65]
Stein, A.L.; Rosário, A.R. Zeni, G. Synthesis of 3-organoseleno-substituted quinolines through cy-clization of 2-amino-phenylprop-1-yn-3-ols promoted by iron(III) chloride with diorganyl dise-lenides. Eur. J. Org. Chem., 2015, 5640-5648.
[http://dx.doi.org/10.1002/ejoc.201500766]
[66]
Mahato, S.; Mukherjee, A.; Santra, S.; Zyryanov, G.V.; Majee, A. Facile synthesis of substituted quinolines by iron(III)-catalyzed cascade reaction between anilines, aldehydes and nitroalkanes. Org. Biomol. Chem., 2019, 17(34), 7907-7917.
[http://dx.doi.org/10.1039/C9OB01294J] [PMID: 31414692]
[67]
Shao, M.; Wu, Y.; Feng, Z.; Gu, X.; Wang, S. Synthesis of polysubstituted 1,2-dihydroquinolines and indoles via cascade reactions of arylamines and propargylic alcohols catalyzed by FeCl3•6H2O. Org. Biomol. Chem., 2016, 14(8), 2515-2521.
[http://dx.doi.org/10.1039/C5OB02658J] [PMID: 26820189]
[68]
Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Iron(III)-promoted synthesis of 3-(organoselanyl)-1,2-dihydroquinolines from diorganyl diselenides and N-arylpropargylamines by sequential carbon-carbon and carbon-selenium bond formation. Adv. Synth. Catal., 2019, 361, 96-104.
[http://dx.doi.org/10.1002/adsc.201801097]
[69]
Lin, W.; Cheng, J.; Ma, S. Iron(III) chloride-catalyzed tandem Aza-Prins/Friedel–Crafts cycliza-tion of 2-arylethyl-2,3-butadienyl tosylamides and aldehydes-an efficient synthesis of benzo[f]isoquinolines. Adv. Synth. Catal., 2016, 358, 1989-1999.
[http://dx.doi.org/10.1002/adsc.201600107]
[70]
Marcyk, P.T.; Cook, S.P. Synthesis of tetrahydroisoquinolines through an iron-catalyzed cascade: tandem alcohol substitution and hydroamination. Org. Lett., 2019, 21(17), 6741-6744.
[http://dx.doi.org/10.1021/acs.orglett.9b02353] [PMID: 31418575]
[71]
Chu, X.Q.; Cao, W.B.; Xu, X.P.; Ji, S.J. Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. J. Org. Chem., 2017, 82(2), 1145-1154.
[http://dx.doi.org/10.1021/acs.joc.6b02767] [PMID: 28032761]
[72]
Mondal, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. Iron catalyzed synthesis of pyrimidi-nes under air. Adv. Synth. Catal., 2020, 362, 594-600.
[http://dx.doi.org/10.1002/adsc.201901172]
[73]
Dam, B.; Pal, A.K.; Gupta, A. Nano-Fe3O4@silica sulfuric acid as a reusable and magnetically separable potent solid acid catalyst in Biginelli-type reaction for the one-pot multicomponent syn-thesis of fused dihydropyrimidine derivatives: a greener NOSE and SFRC approach. Synth. Commun., 2016, 46, 275-286.
[http://dx.doi.org/10.1080/00397911.2015.1135955]
[74]
Chen, X.; Chen, T.; Ji, F.; Zhou, Y.; Yin, S-F. Iron-catalyzed aerobic oxidative functionalization of sp3 C–H bonds: a versatile strategy for the construction of N-heterocycles. Catal. Sci. Technol., 2015, 5, 2197-2202.
[http://dx.doi.org/10.1039/C4CY01618A]
[75]
Gopalaiah, K.; Saini, A.; Devi, A. Iron-catalyzed cascade reaction of 2-aminobenzyl alcohols with benzylamines: synthesis of quinazolines by trapping of ammonia. Org. Biomol. Chem., 2017, 15(27), 5781-5789.
[http://dx.doi.org/10.1039/C7OB01159H] [PMID: 28660261]
[76]
Chen, C.Y.; He, F.; Tang, G.; Yuan, H.; Li, N.; Wang, J.; Faessler, R. Synthesis of quinazolines via an ironcatalyzed oxidative amination of N-H ketimines. J. Org. Chem., 2018, 83(4), 2395-2401.
[http://dx.doi.org/10.1021/acs.joc.7b02943] [PMID: 29341614]
[77]
Kumar, M.; Sharma, R.; Bhatt, V.; Kumar, N. Iron(III) chloride-catalyzed decarboxylative–deaminative functionalization of phenylglycine: a tandem synthesis of quinazolinones and ben-zimidazoles. Adv. Synth. Catal., 2015, 357, 2862-2868.
[http://dx.doi.org/10.1002/adsc.201500335]
[78]
Shen, G.; Zhou, H.; Sui, Y.; Liu, Q.; Zou, K. FeCl3-catalyzed tandem condensation/intramolecular nucleophilic addition/C–C bond cleavage: a concise synthesis of 2-substitued quinazolinones from 2-aminobenzamides and 1,3-diketones in aqueous media. Tetrahedron Lett., 2016, 57, 587-590.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.094]
[79]
An, Z.; Zhao, L.; Wu, M.; Ni, J.; Qi, Z.; Yu, G.; Yan, R. FeCl3-Catalyzed synthesis of pyrrolo[1,2-a]quinoxaline derivatives from 1-(2-aminophenyl)pyrroles through annulation and cleavage of cy-clic ethers. Chem. Commun. (Camb.), 2017, 53(84), 11572-11575.
[http://dx.doi.org/10.1039/C7CC07089F] [PMID: 28990598]
[80]
Lade, J.J.; Patil, B.N.; Sathe, P.A.; Vadagaonkar, K.S.; Chetti, P.; Chaskar, A.C. Iron catalyzed cascade protocol for the synthesis of pyrrolo[1,2-a]quinoxalines: a powerful tool to access solid state emissive organic luminophores. ChemistrySelect, 2017, 2, 6811-6817.
[http://dx.doi.org/10.1002/slct.201701383]
[81]
(a) Brown, R.C.D. Developments in furan syntheses. Angew. Chem. Int. Ed. Engl., 2005, 44(6), 850-852.
[http://dx.doi.org/10.1002/anie.200461668] [PMID: 15619251]
(b) Kirsch, S.F. Syntheses of polysubstituted furans: recent developments. Org. Biomol. Chem., 2006, 4(11), 2076-2080.
[http://dx.doi.org/10.1039/b602596j] [PMID: 16729118]
(c) Graening, T.; Thrun, F. Furans and their benzoderivatives: Synthesis, in: Comprehensive Heterocyclic Chemistry III; Katritzky, A.R., Ed.; Elsevier: New York, 2008, 3, pp. 497-569.
[82]
Golonka, A.N.; Schindler, C.S. Iron(III) chloride-catalyzed synthesis of 3-carboxy-2,5-disubstituted furans from γ-alkynyl aryl- and alkylketones. Tetrahedron, 2017, 73, 4109-4114.
[http://dx.doi.org/10.1016/j.tet.2017.04.030]
[83]
Wang, T.; Jiang, Y.; Wang, Y.; Yan, R. Fe-Catalyzed tandem cyclization for the synthesis of 3-nitrofurans from homopropargylic alcohols and Al(NO3)3•9H2O. Org. Biomol. Chem., 2018, 16(29), 5232-5235.
[http://dx.doi.org/10.1039/C8OB01184B] [PMID: 29989633]
[84]
Casola, K.K.; Back, D.F.; Zeni, G. Iron-catalyzed cyclization of alkynols with diorganyl dise-lenides: synthesis of 2,5-dihydrofuran, 3,6-dihydro-2H-pyran and 2,5-dihydro-1H-pyrrole or-ganoselanyl derivatives. J. Org. Chem., 2015, 80(15), 7702-7712.
[http://dx.doi.org/10.1021/acs.joc.5b01448] [PMID: 26158240]
[85]
Xia, X.F.; He, W.; Zhang, G.W.; Wang, D. Iron-catalyzed reductive cyclization reaction of 1,6-enynes for the synthesis of 3-acylbenzofurans and thiophenes. Org. Chem. Front., 2019, 6, 342-346.
[http://dx.doi.org/10.1039/C8QO01190G]
[86]
(a) Valenti, P.; Bisi, A.; Rampa, A.; Belluti, F.; Gobbi, S.; Zampiron, A.; Carrara, M. Synthesis and biological activity of some rigid analogues of flavone-8-acetic acid. Bioorg. Med. Chem. , 2000, 8(1), 239-246.
[http://dx.doi.org/10.1016/S0968-0896(99)00282-5] [PMID: 10968283]
(b) Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. A convenient extension of the Wessely-Moser rear-rangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. Bioorg. Med. Chem. Lett., 2000, 10(8), 835-838.
[http://dx.doi.org/10.1016/S0960-894X(00)00110-4] [PMID: 10782697]
(c) Prakash, O.; Kumar, R.; Parkash, V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur. J. Med. Chem., 2008, 43(2), 435-440.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.004] [PMID: 17555846]
[87]
Bosset, C.; Angibaud, P.; Stanfield, I.; Meerpoel, L.; Berthelot, D.; Guérinot, A.; Cossy, J. Iron-catalyzed synthesis of C2 aryl and N-heteroaryl substituted tetrahydropyrans. J. Org. Chem., 2015, 80(24), 12509-12525.
[http://dx.doi.org/10.1021/acs.joc.5b02371] [PMID: 26554431]
[88]
Pe’rez, S.J.; Miranda, P.O.; Cruz, D.A.; Ferna’ndez, I.; Martı’n, V.S.; Padro’n, J.I. Iron(III)-catalyzed Prins cyclization towards the synthesis of trans-fused bicyclic tetrahydropyrans. Synthesis, 2015, 47, 1791-1798.
[http://dx.doi.org/10.1055/s-0034-1380013]
[89]
Calmus, L.; Corbu, A.; Cossy, J. 2H-Chromenes generated by an iron(III) complex-catalyzed al-lylic cyclization. Adv. Synth. Catal., 2015, 357, 1381.
[http://dx.doi.org/10.1002/adsc.201500058]
[90]
Ma, C.; Zhao, Y. FeCl3-catalyzed dimerization/elimination of 1,1-diarylalkenes: efficient synthesis of functionalized 4H-chromenes. Org. Biomol. Chem., 2018, 16(5), 703-706.
[http://dx.doi.org/10.1039/C7OB02941A] [PMID: 29327026]
[91]
Bosset, C.; Lefebvre, G.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Berthelot, D.; Guérinot, A.; Cossy, J. Iron-catalyzed synthesis of sulfur-containing heterocycles. J. Org. Chem., 2017, 82(8), 4020-4036.
[http://dx.doi.org/10.1021/acs.joc.6b01827] [PMID: 27736056]
[92]
Neto, J.S.S.; Iglesias, B.A.; Back, D.F.; Zeni, G. Iron-promoted tandem cyclization of 1,3-diynyl chalcogen derivatives with diorganyl dichalcogenides for the synthesis of benzo[b]furan-fused se-lenophenes. Adv. Synth. Catal., 2016, 358, 3572-3585.
[http://dx.doi.org/10.1002/adsc.201600759]
[93]
Lutz, G.; Back, D.F.; Zeni, G. Iron-mediated cyclization of 1,3-diynyl propargyl aryl ethers with dibutyl diselenide: synthesis of selenophene-fused chromenes. Adv. Synth. Catal., 2020, 362, 1096-1105.
[http://dx.doi.org/10.1002/adsc.201901410]
[94]
Gao, S.; Gao, L.; Meng, H.; Luo, M.; Zeng, X. Iron-catalyzed synthesis of benzoxazoles by oxida-tive coupling/cyclization of phenol derivatives with benzoyl aldehyde oximes. Chem. Commun. (Camb.), 2017, 53(71), 9886-9889.
[http://dx.doi.org/10.1039/C7CC04965J] [PMID: 28825080]
[95]
Yang, B.; Hu, W.; Zhang, S. Synthesis of benzoxazoles via an iron-catalyzed domino C–N/C–O cross-coupling reaction. RSC Advances, 2018, 8, 2267-2270.
[http://dx.doi.org/10.1039/C7RA13080E]
[96]
Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Iron-catalyzed synthesis of substituted thiazoles from enamines and elemental sulfur through C–S bond formation. Adv. Synth. Catal., 2018, 360, 4236-4240.
[http://dx.doi.org/10.1002/adsc.201800693]
[97]
Gao, M.; Lou, C.; Zhu, N.; Qin, W.; Suo, Q.; Han, L.; Hong, H. An efficient, iron-catalyzed syn-thesis of 2-mercaptobenzothiazole through S-arylation/heterocyclization of 2-haloaniline with po-tassium xanthate. Synth. Commun., 2015, 45, 2378-2385.
[http://dx.doi.org/10.1080/00397911.2015.1085573]
[98]
Gopalaiah, K.; Tiwari, A.; Choudhary, R.; Mahiya, K. Straightforward access to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and quinazolines via iron-catalyzed aerobic oxidative conden-sation of amines. ChemistrySelect, 2019, 4, 5200-5205.
[http://dx.doi.org/10.1002/slct.201900850]
[99]
Aoki, Y.; Imayoshi, R.; Hatakeyama, T.; Takaya, H.; Nakamura, M. Synthesis of 2,7-disubstituted 5,10-diaryl-5,10-dihydrophenazines via iron-catalyzed intramolecular ring-closing C–H amination. Heterocycles, 2015, 90, 893-900.
[http://dx.doi.org/10.3987/COM-14-S(K)102]
[100]
Alt, I.T.; Plietker, B. Iron-catalyzed intramolecular C(sp2)-H amination. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1519-1522.
[http://dx.doi.org/10.1002/anie.201510045] [PMID: 26663257]
[101]
Aoki, Y.; Ó’Brien, H.M.; Kawasaki, H.; Takaya, H.; Nakamura, M. Ligand-free iron-catalyzed C−F amination of diarylamines: a one-pot regioselective synthesis of diaryl dihydrophenazines. Org. Lett., 2019, 21(2), 461-464.
[http://dx.doi.org/10.1021/acs.orglett.8b03702] [PMID: 30628796]
[102]
Sarkar, T.; Talukdar, K.; Roy, S.; Punniyamurthy, T. Expedient iron-catalyzed stereospecific syn-thesis of triazines via cycloaddition of aziridines with diaziridines. Chem. Commun. (Camb.), 2020, 56(23), 3381-3384.
[http://dx.doi.org/10.1039/C9CC10089J] [PMID: 32091035]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy