Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer

Author(s): Mohammad Karim Shahrzad, Reyhaneh Gharehgozlou, Sara Fadaei, Parastoo Hajian and Hamid Reza Mirzaei*

Volume 21, Issue 3, 2021

Published on: 12 July, 2020

Page: [194 - 210] Pages: 17

DOI: 10.2174/1566524020666200712182137

Price: $65

Abstract

Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.

Keywords: Breast cancer, vitamin D, long non-coding RNAs, microRNAs, non-coding RNAs, malignancy.

[1]
Estebanez N, Gomez-Acebo I. Vitamin D exposure and Risk of Breast Cancer: a meta-analysis 2018; 8(1): 9039.
[http://dx.doi.org/10.1038/s41598-018-27297-1]
[2]
Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers 2018; 233(7): 5200-13.
[3]
Fitzmaurice C, Abate D, Abbasi N, et al. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019.
[PMID: 31560378]
[4]
Mirzaei HR, Sahebkar A, Salehi R, et al. Boron neutron capture therapy: Moving toward targeted cancer therapy. J Cancer Res Ther 2016; 12(2): 520-5.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[5]
Vakili-Ghartavol R, Mombeiny R, Salmaninejad A, et al. Tumor-associated macrophages and epithelial-mesenchymal transition in cancer: Nanotechnology comes into view 2018; 233(12): 9223-36.
[6]
Mirzaei H, Salehi H, Oskuee RK, et al. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett 2018; 419: 30-9.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[7]
Goradel NH, Hour FG, Negahdari B, et al. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases 2018; 119(1): 95-104.
[http://dx.doi.org/10.1002/jcb.26169]
[8]
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol 2018; 233(4): 2815-23.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[9]
Saadatpour Z, Rezaei A, Ebrahimnejad H, et al. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2017; 24(1): 1-5.
[http://dx.doi.org/10.1038/cgt.2016.61] [PMID: 27834357]
[10]
Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther 2016; 23(9): 285-6.
[http://dx.doi.org/10.1038/cgt.2016.35] [PMID: 27650780]
[11]
Mirzaei H, Sahebkar A, Avan A, et al. Application of Mesenchymal Stem Cells in Melanoma: A Potential Therapeutic Strategy for Delivery of Targeted Agents. Curr Med Chem 2016; 23(5): 455-63.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[12]
Mirzaei H, Sahebkar A, Jaafari MR, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther 2016; 23(2-3): 45-7.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[13]
Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad Halimi SM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; S1044-579X(19): 30400-6.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[14]
Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis 2018; 233(4): 2902-10.
[http://dx.doi.org/10.1002/jcp.26029]
[15]
Mirzaei HR, Pourghadamyari H, Rahmati M, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423: 95-104.
[http://dx.doi.org/10.1016/j.canlet.2018.03.010] [PMID: 29544719]
[16]
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380(2): 413-23.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[17]
Saadatpour Z, Bjorklund G, Chirumbolo S, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[18]
Peart O. Breast intervention and breast cancer treatment options. Radiol Technol 2015; 86(5): 535M-58M.
[PMID: 25995413]
[19]
Fisusi FA, Akala EO. Drug Combinations in Breast Cancer Therapy. Pharm Nanotechnol 2019; 7(1): 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[20]
Lowe L, Hansen CM, Senaratne S, Colston KW. Mechanisms implicated in the growth regulatory effects of vitamin D compounds in breast cancer cells. Recent Results Cancer Res 2003; 164: 99-110.
[http://dx.doi.org/10.1007/978-3-642-55580-0_6] [PMID: 12908448]
[21]
Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H. Anti-Atherosclerotic Effects of Vitamins D and E in Suppression of Atherogenesis 2017; 232(11): 2968-76.
[http://dx.doi.org/10.1002/jcp.25738]
[22]
Ostadmohammadi V, Milajerdi A, Ghayour-Mobarhan M, et al. The Effects of Vitamin D Supplementation on Glycemic Control, Lipid Profiles and C-Reactive Protein Among Patients with Cardiovascular Disease: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Pharm Des 2019; 25(2): 201-10.
[http://dx.doi.org/10.2174/1381612825666190308152943] [PMID: 30854952]
[23]
Jamilian H, Amirani E, Milajerdi A, et al. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog Neuropsychopharmacol Biol Psychiatry 2019.: 94109651.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109651] [PMID: 31095994]
[24]
Hosseini ES, Kashani HH, Nikzad H, et al. Diabetic Hemodialysis: Vitamin D Supplementation and its Related Signaling Pathways Involved in Insulin and Lipid Metabolism. Curr Mol Med 2019; 19(8): 570-8.
[http://dx.doi.org/10.2174/1566524019666190618144712] [PMID: 31210105]
[25]
Amiri A, Pourhanifeh MH, Mirzaei HR, et al. Exosomes and Lung cancer: Roles in pathophysiology, diagnosis and therapeutic applications. Curr Med Chem 2021; 28(2): 308-28.
[http://dx.doi.org/10.2174/0929867327666200204141952]] [PMID: 32013817]
[26]
Shabaninejad Z, Vafadar A, Movahedpour A, et al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 2019; 12(1): 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[27]
Vafadar A, Shabaninejad Z, Movahedpour A, et al. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2019; 25(33): 3563-77.
[http://dx.doi.org/10.2174/1381612825666190830161528] [PMID: 31470781]
[28]
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, et al. Molecular aspects of pancreatic β-cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 2019; 234(6): 8411-25.
[http://dx.doi.org/10.1002/jcp.27755] [PMID: 30565679]
[29]
Naeli P, Pourhanifeh MH, Karimzadeh MR, et al. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020.: 145102854.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102854] [PMID: 31877535]
[30]
Mohammadi S, Yousefi F, Shabaninejad Z, et al. Exosomes and cancer: From oncogenic roles to therapeutic applications 2020; 72(4): 724-48.
[31]
Khani P, Nasri F, Khani Chamani F, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis 2019; 148(2): 188-203.
[http://dx.doi.org/10.1111/jnc.14616]
[32]
Shao T, Klein P, Grossbard ML. Vitamin D and breast cancer. Oncologist 2012; 17(1): 36-45.
[http://dx.doi.org/10.1634/theoncologist.2011-0278] [PMID: 22234628]
[33]
Haddad JG. Vitamin D--solar rays, the Milky Way, or both? N Engl J Med 1992; 326(18): 1213-5.
[http://dx.doi.org/10.1056/NEJM199204303261808] [PMID: 1557095]
[34]
Acevedo F, Pérez V, Pérez-Sepúlveda A, et al. High prevalence of vitamin D deficiency in women with breast cancer: The first Chilean study. Breast 2016; 29: 39-43.
[http://dx.doi.org/10.1016/j.breast.2016.06.022] [PMID: 27400446]
[35]
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14(5): 342-57.
[http://dx.doi.org/10.1038/nrc3691] [PMID: 24705652]
[36]
Wulaningsih W, Sagoo HK, Hamza M, et al. Serum Calcium and the Risk of Breast Cancer: Findings from the Swedish AMORIS Study and a Meta-Analysis of Prospective Studies. Int J Mol Sci 2016; 17(9): E1487.
[http://dx.doi.org/10.3390/ijms17091487] [PMID: 27608013]
[37]
Wang D, Vélez de-la-Paz OI, Zhai JX, Liu DW. Serum 25-hydroxyvitamin D and breast cancer risk: a meta-analysis of prospective studies. Tumour Biol 2013; 34(6): 3509-17.
[http://dx.doi.org/10.1007/s13277-013-0929-2] [PMID: 23807676]
[38]
Welsh J. Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Endocrinol 2011; 347(1-2): 55-60.
[http://dx.doi.org/10.1016/j.mce.2011.05.020] [PMID: 21669251]
[39]
Shirazi L, Almquist M, Borgquist S, Malm J, Manjer J. Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: A nested case-control study. Breast 2016; 28: 184-90.
[http://dx.doi.org/10.1016/j.breast.2016.06.002] [PMID: 27326980]
[40]
Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis 2017; 38(5): 485-91.
[http://dx.doi.org/10.1093/carcin/bgx026] [PMID: 28449079]
[41]
Sadri Nahand J, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, et al. MicroRNAs and exosomes: key players in HIV pathogenesis 2020; 21(4): 246-78.
[http://dx.doi.org/10.1111/hiv.12822]
[42]
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, et al. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10(1): 340.
[http://dx.doi.org/10.1186/s13287-019-1445-0] [PMID: 31753036]
[43]
Savardashtaki A, Shabaninejad Z, Movahedpour A, Sahebnasagh R, Mirzaei H, Hamblin MR. miRNAs derived from cancer-associated fibroblasts in colorectal cancer 2019; 11(14): 1627-45.
[44]
Sadri Nahand J, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146(2): 305-20.
[http://dx.doi.org/10.1002/ijc.32688] [PMID: 31566705]
[45]
Iranifar E, Seresht BM, Momeni F, Fadaei E, Mehr MH, Ebrahimi Z, et al. Exosomes and microRNAs: New potential therapeutic candidates in Alzheimer disease therapy 2019; 234(3): 2296-305.
[46]
Keshavarz M, Dianat-Moghadam H, Sofiani VH, et al. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10(6): 829-44.
[http://dx.doi.org/10.2217/epi-2017-0170] [PMID: 29888954]
[47]
Tavakolizadeh J, Roshanaei K, Salmaninejad A, et al. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers 2018; 119(5): 3783-97.
[48]
Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoner-Franch P, Alonso-Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome 2018; 119(2): 1257-72.
[49]
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes 2018; 119(1): 185-96.
[50]
Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale? J Cell Physiol 2017; 232(12): 3251-60.
[http://dx.doi.org/10.1002/jcp.25739] [PMID: 27966794]
[51]
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23(12): 415-8.
[http://dx.doi.org/10.1038/cgt.2016.48] [PMID: 27834360]
[52]
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157(1): 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[53]
Meldolesi J. Exosomes and Ectosomes in Intercellular Communication. Curr Biol 2018; 28(8): R435-44.
[http://dx.doi.org/10.1016/j.cub.2018.01.059] [PMID: 29689228]
[54]
Sun Z, Yang S, Zhou Q, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 2018; 17(1): 82.
[http://dx.doi.org/10.1186/s12943-018-0831-z] [PMID: 29678180]
[55]
Nahand JS, Mahjoubin-Tehran M, Moghoofei M, et al. Exosomal miRNAs: novel players in viral infection 2020; 12(4): 353-70.
[http://dx.doi.org/10.2217/epi-2019-0192]
[56]
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis 2020; 72(3): 314-33.
[57]
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet 2015; 6(2): 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[58]
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4(4): E40.
[http://dx.doi.org/10.3390/ncrna4040040] [PMID: 30545127]
[59]
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies. Curr Cancer Drug Targets 2016; 16(9): 773-88.
[http://dx.doi.org/10.2174/1568009616666151207110143] [PMID: 26638884]
[60]
Mohammadi M, Goodarzi M, Jaafari MR, Mirzaei HR, Mirzaei H. Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma. Cancer Gene Ther 2016; 23(11): 371-2.
[http://dx.doi.org/10.1038/cgt.2016.45] [PMID: 27740613]
[61]
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as Potential Diagnostic Biomarkers and Therapeutic Targets in Gastric Cancer: Current Status and Future Perspectives. Curr Med Chem 2016; 23(36): 4135-50.
[http://dx.doi.org/10.2174/0929867323666160818093854] [PMID: 27538692]
[62]
Gholamin S, Mirzaei H. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma 2018; 233(2): 866-79.
[63]
Keshavarzi M, Sorayayi S, Jafar Rezaei M, et al. MicroRNAs-Based Imaging Techniques in Cancer Diagnosis and Therapy 2017; 118(12): 4121-8.
[64]
Golabchi K, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers 2018; 233(4): 3016-23.
[65]
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis 2018; 119(2): 1285-90.
[66]
Simonian M, Mosallayi M, Mirzaei H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic biomarker. J Cancer Res Ther 2018; 14(2): 475.
[PMID: 29516946]
[67]
Mirzaei H, Yazdi F, Salehi R, Mirzaei HR. SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 2016; 12(2): 498-508.
[http://dx.doi.org/10.4103/0973-1482.153661] [PMID: 27461600]
[68]
Shabaninejad Z, Yousefi F, Movahedpour A, et al. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019.: 581113349.
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[69]
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2020; 20(2): 90-101.
[http://dx.doi.org/10.2174/1566524019666191001113511] [PMID: 31573883]
[70]
Moridikia A, Mirzaei H. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer 2018; 233(2): 901-13.
[71]
Mirzaei H, Fathullahzadeh S, Khanmohammadi R, et al. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol 2018; 233(2): 888-900.
[http://dx.doi.org/10.1002/jcp.25799] [PMID: 28084621]
[72]
Mirzaei HR, Sahebkar A, Mohammadi M, et al. Circulating microRNAs in Hepatocellular Carcinoma: Potential Diagnostic and Prognostic Biomarkers. Curr Pharm Des 2016; 22(34): 5257-69.
[http://dx.doi.org/10.2174/1381612822666160303110838] [PMID: 26935703]
[73]
Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jaafari MR, Mirzaei HR, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. European journal of cancer (Oxford, England : 1990) 2016; 53: 25-32.
[http://dx.doi.org/10.1016/j.ejca.2015.10.009]
[74]
Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis 2018; 233(3): 2116-32.
[75]
Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenesis effects. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2017; 89: 949-56.
[http://dx.doi.org/10.1016/j.biopha.2017.01.161]
[76]
Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2018; 233(4): 3004-15.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[77]
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis 2018; 233(4): 2949-65.
[http://dx.doi.org/10.1002/jcp.26049]
[78]
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, et al. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy 2020.
[79]
Taghavipour M, Sadoughi F, Mirzaei H, et al. Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci 2020; 10: 12.
[http://dx.doi.org/10.1186/s13578-020-0381-0] [PMID: 32082539]
[80]
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell & bioscience 2019; 10: 12.
[81]
Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR-146a in viral infection 2020; 72(3): 343-60.
[http://dx.doi.org/10.1002/iub.2222]
[82]
Amiri A, Tehran MM, Asemi Z, et al. Role of resveratrol in modulating microRNAs in human diseases: From cancer to inflammatory disorder. Curr Med Chem 2021; 28(2): 360-76.
[http://dx.doi.org/10.2174/0929867326666191212102407] [PMID: 31830882]
[83]
Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as Diagnostic, Prognostic, and Therapeutic Biomarkers in Prostate Cancer. Crit Rev Eukaryot Gene Expr 2019; 29(2): 127-39.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025273] [PMID: 31679268]
[84]
Pakshir K, Badali H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners 2020; 63(1): 4-20.
[85]
Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers 2018; 233(11): 8538-50.
[http://dx.doi.org/10.1002/jcp.26850]
[86]
Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in Coronary Artery Disease. Adv Clin Chem 2017; 82: 47-70.
[http://dx.doi.org/10.1016/bs.acc.2017.06.004] [PMID: 28939213]
[87]
Mirzaei H, Momeni F, Saadatpour L, et al. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 2018; 233(2): 856-65.
[http://dx.doi.org/10.1002/jcp.25787] [PMID: 28067403]
[88]
Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther 2016; 23(10): 327-32.
[http://dx.doi.org/10.1038/cgt.2016.34] [PMID: 27659777]
[89]
Gholamin S, Pasdar A, Khorrami MS, et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment. Curr Pharm Des 2016; 22(3): 397-403.
[http://dx.doi.org/10.2174/1381612822666151112151924] [PMID: 26561061]
[90]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1-2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[91]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[92]
Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27(55): 6920-9.
[http://dx.doi.org/10.1038/onc.2008.343] [PMID: 19029934]
[93]
Tian X, Liu Z, Niu B, et al. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 2011: 567305.
[http://dx.doi.org/10.1155/2011/567305] [PMID: 22007144]
[94]
Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215(10): 152556.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[95]
Liu CY, Lin HH, Tang MJ, Wang YK. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 2015; 6(18): 15966-83.
[http://dx.doi.org/10.18632/oncotarget.3862] [PMID: 25965826]
[96]
Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci 2008; 121(Pt 6): 727-35.
[http://dx.doi.org/10.1242/jcs.000455] [PMID: 18322269]
[97]
Jin T, Suk Kim H, Ki Choi S, et al. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget 2017; 8(20): 32769-82.
[http://dx.doi.org/10.18632/oncotarget.15680] [PMID: 28427146]
[98]
Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting Cancer Stemness in the Clinic: From Hype to Hope. Cell Stem Cell 2019; 24(1): 25-40.
[http://dx.doi.org/10.1016/j.stem.2018.11.017] [PMID: 30595497]
[99]
Razi E, Radak M, Mahjoubin-Tehran M, et al. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2020; 34(2): 202-12.
[PMID: 31709581]
[100]
Makena MR, Ranjan A, Thirumala V, Reddy AP. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2018; 165339.
[101]
Shuang Z-Y, Wu W-C, Xu J, et al. Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett 2014; 354(2): 320-8.
[http://dx.doi.org/10.1016/j.canlet.2014.08.030] [PMID: 25194504]
[102]
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144(8): 1401-11.
[http://dx.doi.org/10.1007/s00432-018-2689-2] [PMID: 29923083]
[103]
Cheng CW, Yu JC, Hsieh YH, et al. Increased Cellular Levels of MicroRNA-9 and MicroRNA-221 Correlate with Cancer Stemness and Predict Poor Outcome in Human Breast Cancer. Cell Physiol Biochem 2018; 48(5): 2205-18.
[http://dx.doi.org/10.1159/000492561] [PMID: 30110679]
[104]
Gwak JM, Kim HJ, Kim EJ, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014; 147(1): 39-49.
[http://dx.doi.org/10.1007/s10549-014-3069-5] [PMID: 25086633]
[105]
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449(7163): 682-8.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[106]
Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283(2): 1026-33.
[http://dx.doi.org/10.1074/jbc.M707224200] [PMID: 17991735]
[107]
Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 2007; 67(22): 11001-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2416] [PMID: 18006846]
[108]
Viré E, Curtis C, Davalos V, et al. The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell 2014; 53(5): 806-18.
[http://dx.doi.org/10.1016/j.molcel.2014.01.029] [PMID: 24582497]
[109]
Feng T, Xu D, Tu C, et al. MiR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4. Tumour Biol 2015; 36(8): 5987-97.
[http://dx.doi.org/10.1007/s13277-015-3275-8] [PMID: 25731732]
[110]
Yang Q, Wang Y, Lu X, et al. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget 2015; 6(5): 3268-79.
[http://dx.doi.org/10.18632/oncotarget.3065] [PMID: 25605244]
[111]
Wang C-Z, Yuan P, Li Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int J Clin Exp Pathol 2015; 8(6): 6547-53.
[PMID: 26261534]
[112]
Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 2011; 17(22): 7105-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0071] [PMID: 21953503]
[113]
Huang J, Zhao M, Hu H, Wang J, Ang L, Zheng L. MicroRNA-130a reduces drug resistance in breast cancer. Int J Clin Exp Pathol 2019; 12(7): 2699-705.
[PMID: 31934100]
[114]
Wang S, Bian C, Yang Z, et al. miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 2009; 34(5): 1461-6.
[PMID: 19360360]
[115]
Zhang L, Xing M, Wang X, Cao W, Wang H. MiR-148a suppresses invasion and induces apoptosis of breast cancer cells by regulating USP4 and BIM expression. Int J Clin Exp Pathol 2017; 10(8): 8361-8.
[PMID: 31966687]
[116]
Liu C, Li W, Zhang L, Song C, Yu H. Tumor-suppressor microRNA-151-5p regulates the growth, migration and invasion of human breast cancer cells by inhibiting SCOS5. Am J Transl Res 2019; 11(12): 7376-84.
[PMID: 31934285]
[117]
Gasparini P, Lovat F, Fassan M, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci USA 2014; 111(12): 4536-41.
[http://dx.doi.org/10.1073/pnas.1402604111] [PMID: 24616504]
[118]
Wang Y, Zhang X, Zou C, et al. miR-195 inhibits tumor growth and angiogenesis through modulating IRS1 in breast cancer. Biomed Pharmacother 2016; 80: 95-101.
[http://dx.doi.org/10.1016/j.biopha.2016.03.007] [PMID: 27133044]
[119]
Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One 2012; 7(11): e50469.
[http://dx.doi.org/10.1371/journal.pone.0050469] [PMID: 23209748]
[120]
Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res 2009; 69(6): 2195-200.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2920] [PMID: 19276373]
[121]
Zhou J, Tian Y, Li J, et al. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem Biophys Res Commun 2013; 433(2): 207-12.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.084] [PMID: 23466356]
[122]
Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 2010; 79(6): 817-24.
[http://dx.doi.org/10.1016/j.bcp.2009.10.017] [PMID: 19883630]
[123]
Gao Y, Zeng F, Wu J-Y, et al. MiR-335 inhibits migration of breast cancer cells through targeting oncoprotein c-Met. Tumour Biol 2015; 36(4): 2875-83.
[http://dx.doi.org/10.1007/s13277-014-2917-6] [PMID: 25492484]
[124]
Kim S-J, Shin J-Y, Lee K-D, et al. MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of C-C chemokine receptor type 7. Breast Cancer Res 2012; 14(1): R14.
[http://dx.doi.org/10.1186/bcr3098] [PMID: 22251626]
[125]
Liu K, Zhang C, Li T, et al. Let-7a inhibits growth and migration of breast cancer cells by targeting HMGA1. Int J Oncol 2015; 46(6): 2526-34.
[http://dx.doi.org/10.3892/ijo.2015.2949] [PMID: 25846193]
[126]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[127]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[128]
Krishna BM, Jana S, Singhal J, et al. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett 2019; 461: 123-31.
[http://dx.doi.org/10.1016/j.canlet.2019.07.012] [PMID: 31326555]
[129]
Alexander CM. The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors. Prog Mol Biol Transl Sci 2018; 153: 271-98.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.020] [PMID: 29389520]
[130]
Almozyan S, Colak D, Mansour F, et al. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation 2017; 141(7): 1402-12.
[131]
Yen WC, Fischer MM, Axelrod F, et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical cancer research: an official journal of the American Association for Cancer Research 2015; 21(9): 2084-95.
[132]
Tu Z, Schmollerl J, Cuiffo BG, Karnoub AE. Microenvironmental Regulation of Long Noncoding RNA LINC01133 Promotes Cancer Stem Cell-Like Phenotypic Traits in Triple-Negative Breast Cancers 2019; 37(10): 1281-92.
[http://dx.doi.org/10.1002/stem.3055]
[133]
Shin VY, Chen J, Cheuk IW, et al. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis 2019; 10(4): 270.
[http://dx.doi.org/10.1038/s41419-019-1513-5] [PMID: 30894512]
[134]
Liu YR, Jiang YZ, Xu XE, Yu KD, Shao ZM. Comprehensive Transcriptome Profiling Reveals Multigene Signatures in Triple-Negative Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2016; 22(7): 1653-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1555]
[135]
Shen X, Xie B, Ma Z, et al. Identification of novel long non-coding RNAs in triple-negative breast cancer. Oncotarget 2015; 6(25): 21730-9.
[http://dx.doi.org/10.18632/oncotarget.4419] [PMID: 26078338]
[136]
Jin X, Xu XE. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation 2019; 5(3): eaat9820.
[http://dx.doi.org/10.1126/sciadv.aat9820]
[137]
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. J Cancer Metastasis Treat 2019; 5: 5.
[PMID: 31435529]
[138]
Yu F, Wang L, Zhang B. Long non-coding RNA DRHC inhibits the proliferation of cancer cells in triple negative breast cancer by downregulating long non-coding RNA HOTAIR. Oncol Lett 2019; 18(4): 3817-22.
[http://dx.doi.org/10.3892/ol.2019.10683] [PMID: 31516593]
[139]
Luo L, Tang H, Ling L, et al. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer. Oncogene 2018; 37(47): 6166-79.
[http://dx.doi.org/10.1038/s41388-018-0396-8] [PMID: 30002443]
[140]
Shima H, Kida K, Adachi S, Yamada A. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness 2018; 170(3): 507-16.
[http://dx.doi.org/10.1007/s10549-018-4793-z]
[141]
Tang J, Li Y, Sang Y, Yu B, Lv D, Zhang W, et al. LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling 2018; 37(34): 4723-34.
[142]
Xu Z, Liu C, Zhao Q, et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol Res 2020; 152: 104628.
[http://dx.doi.org/10.1016/j.phrs.2020.104628] [PMID: 31904506]
[143]
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14(12): 1705-14.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[144]
Huang SK, Luo Q, Peng H, et al. A Panel of Serum Noncoding RNAs for the Diagnosis and Monitoring of Response to Therapy in Patients with Breast Cancer. Med Sci Monit 2018; 24: 2476-88.
[http://dx.doi.org/10.12659/MSM.909453] [PMID: 29683112]
[145]
Tian T, Wang M, Lin S, et al. The Impact of lncRNA Dysregulation on Clinicopathology and Survival of Breast Cancer: A Systematic Review and Meta-analysis. Mol Ther Nucleic Acids 2018; 12: 359-69.
[http://dx.doi.org/10.1016/j.omtn.2018.05.018] [PMID: 30195774]
[146]
Tripathi MK, Zacheaus C, Doxtater K, et al. Z Probe, An Efficient Tool for Characterizing Long Non-Coding RNA in FFPE Tissues. Noncoding RNA 2018; 4(3): E20.
[http://dx.doi.org/10.3390/ncrna4030020] [PMID: 30189670]
[147]
Ong MS, Cai W, Yuan Y, et al. ‘Lnc’-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174(24): 4684-700.
[http://dx.doi.org/10.1111/bph.13958] [PMID: 28736855]
[148]
Arun G, Diermeier S, Akerman M, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016; 30(1): 34-51.
[http://dx.doi.org/10.1101/gad.270959.115] [PMID: 26701265]
[149]
Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016; 534(7605): 47-54.
[http://dx.doi.org/10.1038/nature17676] [PMID: 27135926]
[150]
Chen R, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res 2017; 45(17): 9947-59.
[http://dx.doi.org/10.1093/nar/gkx600] [PMID: 28973437]
[151]
Jadaliha M, Zong X, Malakar P, et al. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget 2016; 7(26): 40418-36.
[http://dx.doi.org/10.18632/oncotarget.9622] [PMID: 27250026]
[152]
Kim J, Piao H-L, Kim B-J, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 2018; 50(12): 1705-15.
[http://dx.doi.org/10.1038/s41588-018-0252-3] [PMID: 30349115]
[153]
Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol 2015; 43: 11-21.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.003] [PMID: 26277543]
[154]
Wang O, Yang F, Liu Y, et al. C-MYC-induced upregulation of lncRNA SNHG12 regulates cell proliferation, apoptosis and migration in triple-negative breast cancer. Am J Transl Res 2017; 9(2): 533-45.
[PMID: 28337281]
[155]
Shi S-J, Wang L-J, Yu B, Li Y-H, Jin Y, Bai X-Z. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 2015; 6(13): 11652-63.
[http://dx.doi.org/10.18632/oncotarget.3457] [PMID: 25871474]
[156]
Xue X, Yang YA, Zhang A, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 2016; 35(21): 2746-55.
[http://dx.doi.org/10.1038/onc.2015.340] [PMID: 26364613]
[157]
Xiao C, Wu CH, Hu HZ. LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 2016; 20(13): 2819-24.
[PMID: 27424981]
[158]
Zhou W, Ye XL, Xu J, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal 2017; 10(483): eaak9557.
[http://dx.doi.org/10.1126/scisignal.aak9557] [PMID: 28611183]
[159]
Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X. Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1. J Exp Clin Cancer Res 2020; 39(1): 18.
[http://dx.doi.org/10.1186/s13046-020-1520-5] [PMID: 31952549]
[160]
Dong HT, Liu Q, Zhao T, et al. Long Non-coding RNA LOXL1-AS1 Drives Breast Cancer Invasion and Metastasis by Antagonizing miR-708-5p Expression and Activity. Mol Ther Nucleic Acids 2020; 19: 696-705.
[http://dx.doi.org/10.1016/j.omtn.2019.12.016] [PMID: 31945728]
[161]
Giro-Perafita A, Luo L, Khodadadi-Jamayran A, et al. LncRNA RP11-19E11 is an E2F1 target required for proliferation and survival of basal breast cancer. NPJ Breast Cancer 2020; 6(1): 1-14.
[http://dx.doi.org/10.1038/s41523-019-0144-4] [PMID: 31934613]
[162]
Wang X, Gao S, Chen H, Li L, He C, Fang L. Long noncoding RNA PDIA3P promotes breast cancer development by regulating miR-183/ITGB1/FAK/PI3K/AKT/β-catenin signals. Int J Clin Exp Pathol 2019; 12(4): 1284-94.
[PMID: 31933942]
[163]
Shi Y, Li J, Liu Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol Cancer 2015; 14(1): 51.
[http://dx.doi.org/10.1186/s12943-015-0318-0] [PMID: 25742952]
[164]
Wang Z, Wang P, Cao L, et al. Long Intergenic Non-Coding RNA 01121 Promotes Breast Cancer Cell Proliferation, Migration, and Invasion via the miR-150-5p/HMGA2 Axis. Cancer Manag Res 2019; 11: 10859-70.
[http://dx.doi.org/10.2147/CMAR.S230367] [PMID: 31920395]
[165]
Xue J, Zhang Z, Li X, Ren Q, Wang Q. Long non-coding RNA TTN-AS1 promotes breast cancer cell migration and invasion via sponging miR-140-5p. Oncol Lett 2020; 19(2): 1255-60.
[PMID: 31966055]
[166]
Lu P, Gu Y, Li L, Wang F, Yang X, Yang Y. Long Noncoding RNA CAMTA1 Promotes Proliferation and Mobility of the Human Breast Cancer Cell Line MDA-MB-231 via Targeting miR-20b. Oncol Res 2018; 26(4): 625-35.
[http://dx.doi.org/10.3727/096504017X14953948675395] [PMID: 28550685]
[167]
DeVaux RS, Ropri AS, Grimm SL, et al. Long noncoding RNA BHLHE40-AS1 promotes early breast cancer progression through modulating IL-6/STAT3 signaling. J Cell Biochem 2020; 121(7): 3465-78.
[http://dx.doi.org/10.1002/jcb.29621] [PMID: 31907974]
[168]
Liu Y, Wei G, Ma Q, Han Y. Knockdown of long noncoding RNA TP73-AS1 suppresses the malignant progression of breast cancer cells in vitro through targeting miRNA-125a-3p/metadherin axis. Thorac Cancer 2020; 11(2): 394-407.
[http://dx.doi.org/10.1111/1759-7714.13283] [PMID: 31901156]
[169]
Zhang L, Yan X, Yu S, et al. LINC00365-SCGB2A1 axis inhibits the viability of breast cancer through targeting NF-κB signaling. Oncol Lett 2020; 19(1): 753-62.
[PMID: 31897191]
[170]
Tang L, Chen Y, Tang X, Wei D, Xu X, Yan F. Long Noncoding RNA DCST1-AS1 Promotes Cell Proliferation and Metastasis in Triple-negative Breast Cancer by Forming a Positive Regulatory Loop with miR-873-5p and MYC. J Cancer 2020; 11(2): 311-23.
[http://dx.doi.org/10.7150/jca.33982] [PMID: 31897227]
[171]
Zhu Q, Li Y, Dong X, Yang Y, Wang H, Guo S. Linc-OIP5 loss regulates migration and invasion in MDA-MB-231 breast cancer cells by inhibiting YAP1/JAG1 signaling. Oncol Lett 2020; 19(1): 103-12.
[PMID: 31897120]
[172]
Luo LH, Rao L, Luo LF, Chen K, Ran RZ, Liu XL. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc Res 2020.: 129103968.
[http://dx.doi.org/10.1016/j.mvr.2019.103968] [PMID: 31862380]
[173]
Liu Y, Li M, Yu H, Piao H. lncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR 125a 5p. Int J Mol Med 2020; 45(2): 497-509.
[PMID: 31894257]
[174]
Li W, Zhai L, Wang H, et al. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 2016; 7(19): 27778-86.
[http://dx.doi.org/10.18632/oncotarget.8413] [PMID: 27034004]
[175]
Chiosea S, Jelezcova E, Chandran U, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 2006; 169(5): 1812-20.
[http://dx.doi.org/10.2353/ajpath.2006.060480] [PMID: 17071602]
[176]
Giangreco AA, Nonn L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol 2013; 136: 86-93.
[http://dx.doi.org/10.1016/j.jsbmb.2013.01.001] [PMID: 23333596]
[177]
Giangreco AA, Vaishnav A, Wagner D, et al. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev Res (Phila) 2013; 6(5): 483-94.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0253] [PMID: 23503652]
[178]
Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates human vitamin D receptor. Int J Cancer 2009; 125(6): 1328-33.
[http://dx.doi.org/10.1002/ijc.24459] [PMID: 19437538]
[179]
Zhuo X, Niu XH, Chen YC, Xin DQ, Guo YL, Mao ZB. Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 2010; 285(41): 31491-501.
[http://dx.doi.org/10.1074/jbc.M109.068387] [PMID: 20656682]
[180]
Iosue I, Quaranta R, Masciarelli S, et al. Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2013; 4e926.
[http://dx.doi.org/10.1038/cddis.2013.452] [PMID: 24263100]
[181]
Yang X, Bemis L, Su LJ, Gao D, Flaig TW. miR-125b Regulation of Androgen Receptor Signaling Via Modulation of the Receptor Complex Co-Repressor NCOR2. Biores Open Access 2012; 1(2): 55-62.
[http://dx.doi.org/10.1089/biores.2012.9903] [PMID: 23514806]
[182]
Sonkoly E, Lovén J, Xu N, et al. MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis 2012; 1e3.
[http://dx.doi.org/10.1038/oncsis.2012.3] [PMID: 23552555]
[183]
Zhang J, Yang Y, Yang T, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 2010; 103(8): 1215-20.
[http://dx.doi.org/10.1038/sj.bjc.6605895] [PMID: 20842113]
[184]
Lee JY, Jeong W, Lim W, et al. Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen. PLoS One 2013; 8(4): e61658.
[http://dx.doi.org/10.1371/journal.pone.0061658] [PMID: 23613894]
[185]
Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, et al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet 2012; 21(10): 2157-65.
[http://dx.doi.org/10.1093/hmg/dds031] [PMID: 22328083]
[186]
Salvatori B, Iosue I, Djodji Damas N, et al. Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2. Genes Cancer 2011; 2(5): 585-92.
[http://dx.doi.org/10.1177/1947601911416357] [PMID: 21901171]
[187]
Salvatori B, Iosue I, Mangiavacchi A, et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2012.; 3e413
[http://dx.doi.org/10.1038/cddis.2012.151] [PMID: 23096114]
[188]
Gonzalez-Duarte RJ, Cazares-Ordonez V, Romero-Cordoba S, et al. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochemistry and cell biology = Biochimie et biologie cellulaire 2015; 93(4): 376-84.
[http://dx.doi.org/10.1139/bcb-2015-0010]
[189]
Kasiappan R, Shen Z, Tse AK, et al. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem 2012; 287(49): 41297-309.
[http://dx.doi.org/10.1074/jbc.M112.407189] [PMID: 23055531]
[190]
Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006; 25(46): 6188-96.
[http://dx.doi.org/10.1038/sj.onc.1209913] [PMID: 17028598]
[191]
Alimirah F, Peng X, Gupta A, et al. Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res 2016; 349(1): 15-22.
[http://dx.doi.org/10.1016/j.yexcr.2016.08.012] [PMID: 27693451]
[192]
Davis CD, Ross SA. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev 2008; 66(8): 477-82.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00080.x] [PMID: 18667010]
[193]
Peng X, Vaishnav A, Murillo G, Alimirah F, Torres KE, Mehta RG. Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J Cell Biochem 2010; 110(6): 1324-33.
[http://dx.doi.org/10.1002/jcb.22646] [PMID: 20564226]
[194]
Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. The Journal of steroid biochemistry and molecular biology 2014; 144(Pt A): 87-90.
[http://dx.doi.org/10.1016/j.jsbmb.2013.11.018]
[195]
Mangiavacchi A, Sorci M, Masciarelli S, et al. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget 2016; 7(37): 60155-68.
[http://dx.doi.org/10.18632/oncotarget.11165] [PMID: 27517498]
[196]
Collette J, Le Bourhis X, Adriaenssens E. Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. Int J Mol Sci 2017; 18(11): E2319.
[http://dx.doi.org/10.3390/ijms18112319] [PMID: 29099749]
[197]
Chen S, Bu D, Ma Y, et al. H19 overexpression induces resistance to 1,25(OH)2D3 by targeting VDR through miR-675-5p in colon cancer cells. Neoplasia 2017; 19(3): 226-36.
[http://dx.doi.org/10.1016/j.neo.2016.10.007] [PMID: 28189050]
[198]
Shamsi R, Seifi-Alan M, Behmanesh A, Omrani MD, Mirfakhraie R, Ghafouri-Fard S. A bioinformatics approach for identification of miR-100 targets implicated in breast cancer. Cellular and molecular biology (Noisy-le-Grand, France) 2017; 63(10): 99-105.
[http://dx.doi.org/10.14715/cmb/2017.63.10.16]
[199]
Kholghi Oskooei V, Ghafouri-Fard S, Omrani Mir D. A combined bioinformatics and literature based approach for identification of long non-coding RNAs that modulate vitamin D receptor signaling in breast cancer. Klinicka onkologie: casopis Ceske a Slovenske onkologicke spolecnosti 31(4): 264-9.
[200]
Kholghi Oskooei V, Geranpayeh L, Omrani MD, Ghafouri-Fard S. Assessment of functional variants and expression of long noncoding RNAs in vitamin D receptor signaling in breast cancer. Cancer Manag Res 2018; 10: 3451-62.
[http://dx.doi.org/10.2147/CMAR.S174244] [PMID: 30254488]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy