Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Regulation of Breast Cancer Progression by Noncoding RNAs

Author(s): Ravishkumar L. Akshaya, Muthukumar Rohini and Nagarajan Selvamurugan*

Volume 20, Issue 10, 2020

Page: [757 - 767] Pages: 11

DOI: 10.2174/1568009620666200712144103

Price: $65

Abstract

Background: Breast cancer (BC) is the cardinal cause of cancer-related deaths among women across the globe. Our understanding of the molecular mechanisms underlying BC invasion and metastasis remains insufficient. Recent studies provide compelling evidence on the prospective contribution of noncoding RNAs (ncRNAs) and the association of different interactive mechanisms between these ncRNAs with breast carcinogenesis. MicroRNAs (small ncRNAs) and lncRNAs (long ncRNAs) have been explored extensively as classes of ncRNAs in the pathogenesis of several malignancies, including BC.

Objective: In this review, we aim to provide a better understanding of the involvement of miRNAs and lncRNAs and their underlying mechanisms in BC development and progression that may assist the development of monitoring biomarkers and therapeutic strategies to effectively combat BC.

Conclusion: These ncRNAs play critical roles in cell growth, cell cycle regulation, epithelialmesenchymal transition (EMT), invasion, migration, and apoptosis among others, and were observed to be highly dysregulated in several cancers. The miRNAs and lncRNAs were observed to interact with each other through several mechanisms that governed the expression of their respective targets and could act either as tumor suppressors or as oncogenes, playing a crucial part in breast carcinogenesis.

Keywords: Breast cancer, MiRNAs, LncRNAs, dysregulation, metastasis, archetypes.

Graphical Abstract

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551 ] [PMID: 30620402]
[2]
Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. Int J Biol Sci 2017; 13(11): 1387-97.
[http://dx.doi.org/10.7150/ijbs.21635 ] [PMID: 29209143]
[3]
Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast cancer: basic and clinical research 2015; 9: BCBCR-S29420.
[http://dx.doi.org/10.4137/BCBCR.S29420]
[4]
Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17(1): 90.
[http://dx.doi.org/10.1186/s12916-019-1326-5 ] [PMID: 31068190]
[5]
Pillar N, Polsky AL, Weissglas-Volkov D, Shomron N. Comparison of breast cancer metastasis models reveals a possible mechanism of tumor aggressiveness. Cell Death Dis 2018; 9(10): 1040.
[http://dx.doi.org/10.1038/s41419-018-1094-8 ] [PMID: 30305609]
[6]
Rohini M, Haritha Menon A, Selvamurugan N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol 2018; 120(Pt A): 310-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.107] [PMID: 30144543]
[7]
Gokulnath M, Swetha R, Thejaswini G, Shilpa P, Selvamurugan N. Transforming growth factor-β1 regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells. Int J Biol Macromol 2017; 94(Pt A): 370-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.026] [PMID: 27751807]
[8]
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8(5): 1483-507.
[http://dx.doi.org/10.1007/s13346-018-0551-3 ] [PMID: 29978332]
[9]
Ades F, Tryfonidis K, Zardavas D. The past and future of breast cancer treatment from the papyrus to individualised treatment approaches. ecancermedicalscience 2017; 11..
[10]
Wang WT, Han C, Sun YM, Chen TQ, Chen YQ. Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol 2019; 12(1): 55.
[http://dx.doi.org/10.1186/s13045-019-0748-z ] [PMID: 31174564]
[11]
Lu S, Zhang J, Lian X, et al. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res 2019; 47(15): 8111-25.
[http://dx.doi.org/10.1093/nar/gkz646 ] [PMID: 31340039]
[12]
Awasthi R, Madan JR, Malipeddi H, Dua K, Kulkarni GT. Therapeutic strategies for targeting non-coding RNAs with special emphasis on novel delivery systems. Non-coding RNA Investig 2019; 3(11): 1-7.
[http://dx.doi.org/10.21037/ncri.2019.02.02]
[13]
Weick EM, Miska EA. piRNAs: from biogenesis to function. Development 2014; 141(18): 3458-71.
[http://dx.doi.org/10.1242/dev.094037 ] [PMID: 25183868]
[14]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4 ] [PMID: 29263891]
[15]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925-33.
[http://dx.doi.org/10.4161/rna.24604 ] [PMID: 23696037]
[16]
Hansji H, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet 2014; 5: 379.
[http://dx.doi.org/10.3389/fgene.2014.00379 ] [PMID: 25400658]
[17]
Ladomery MR, Maddocks DG, Wilson ID. MicroRNAs: Their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics. Int J Mol Epidemiol Genet 2011; 2(3): 253-60.
[PMID: 21915364]
[18]
Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717(1-2): 1-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009 ] [PMID: 21458467]
[19]
Macfarlane LA, Murphy PRP. MicroRNA: biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[http://dx.doi.org/10.2174/138920210793175895 ] [PMID: 21532838]
[20]
Narayanan A, Srinaath N, Rohini M, Selvamurugan N. Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 2019; •••232116676
[http://dx.doi.org/10.1016/j.lfs.2019.116676 ] [PMID: 31340165]
[21]
Rohini M, Gokulnath M, Miranda PJ, Selvamurugan N. miR-590-3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie 2018; 154: 10-8.
[http://dx.doi.org/10.1016/j.biochi.2018.07.023 ] [PMID: 30076901]
[22]
Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 2018; 18(4): 255-66.
[http://dx.doi.org/10.1093/bfgp/elz002 ] [PMID: 30785618]
[23]
Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol 2013; 15(1): 7-18.
[PMID: 22581832]
[24]
Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012; 3(3): 311-30.
[http://dx.doi.org/10.1002/wrna.121 ] [PMID: 22072587]
[25]
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20(1): 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1 ] [PMID: 30228348]
[26]
Hong BS, Ryu HS, Kim N, et al. Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res 2019; 79(7): 1520-34.
[PMID: 30737233 ]
[27]
Mohammadi-Yeganeh S, Hosseini V, Paryan M. Wnt pathway targeting reduces triple-negative breast cancer aggressiveness through miRNA regulation in vitro and in vivo. J Cell Physiol 2019; 234(10): 18317-28.
[http://dx.doi.org/10.1002/jcp.28465 ] [PMID: 30945294]
[28]
Cantini L, Bertoli G, Cava C, et al. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res 2019; 47(5): 2205-15.
[http://dx.doi.org/10.1093/nar/gkz016 ] [PMID: 30657980]
[29]
He K, Li WX, Guan D, et al. Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. Funct Integr Genomics 2019; 19(4): 645-58.
[http://dx.doi.org/10.1007/s10142-019-00670-7 ] [PMID: 30859354]
[30]
Sathipati SY, Ho SY. Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8(1): 1-11.
[PMID: 29311619]
[31]
Encarnación-Medina J, Ortiz C, Vergne R, Padilla L, Matta J. MicroRNA expression changes in women with breast cancer stratified by DNA repair capacity levels. J Oncol 2019; •••20197820275
[http://dx.doi.org/10.1155/2019/7820275 ] [PMID: 31191653]
[32]
Quan Y, Huang X, Quan X. Expression of miRNA-206 and miRNA-145 in breast cancer and correlation with prognosis. Oncol Lett 2018; 16(5): 6638-42.
[http://dx.doi.org/10.3892/ol.2018.9440 ] [PMID: 30405803]
[33]
Søkilde R, Persson H, Ehinger A, et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics 2019; 20(1): 503.
[http://dx.doi.org/10.1186/s12864-019-5887-7 ] [PMID: 31208318]
[34]
Shu L, Wang Z, Wang Q, Wang Y, Zhang X. Signature miRNAs in peripheral blood monocytes of patients with gastric or breast cancers. Open Biol 2018; 8(10)180051
[http://dx.doi.org/10.1098/rsob.180051 ] [PMID: 30381359]
[35]
Abbasi BA, Iqbal J, Mahmood T, et al. Role of dietary phytochemicals in modulation of miRNA expression: natural swords combating breast cancer. Asian Pac J Trop Med 2018; 11(9): 501.
[http://dx.doi.org/10.4103/1995-7645.242314]
[36]
Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: from research to therapeutic potential. J Cancer 2018; 9(20): 3765-75.
[http://dx.doi.org/10.7150/jca.25576 ] [PMID: 30405848]
[37]
Malhotra P, Read GH, Weidhaas JB. Breast cancer and miR-SNPs: The importance of miR germ-line genetics. Noncoding RNA 2019; 5(1): 27.
[http://dx.doi.org/10.3390/ncrna5010027 ] [PMID: 30897768]
[38]
Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990; 10(1): 28-36.
[http://dx.doi.org/10.1128/MCB.10.1.28 ] [PMID: 1688465]
[39]
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704 ] [PMID: 23463798]
[40]
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 2016; 14(1): 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006 ] [PMID: 26883671]
[41]
Su YJ, Yu J, Huang YQ, Yang J. Circulating long noncoding RNA as a potential target for prostate cancer. Int J Mol Sci 2015; 16(6): 13322-38.
[http://dx.doi.org/10.3390/ijms160613322 ] [PMID: 26110379]
[42]
Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol 2019; 112: 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011 ] [PMID: 31079005]
[43]
Spurlock C F 3rd, Crooke P S 3rd, Aune T M. Biogenesis and transcriptional regulation of long noncoding RNAs in the human immune system. J immunol (Baltimore, Md : 1950) 2016; 197(12): 4509-17.
[http://dx.doi.org/10.4049/jimmunol.1600970]
[44]
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol 2018; 60(1): 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7 ] [PMID: 30386629]
[45]
Arumugam B, Vishal M, Shreya S, et al. Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie 2019; 158: 43-52.
[http://dx.doi.org/10.1016/j.biochi.2018.12.006 ] [PMID: 30562548]
[46]
Youness RA, Gad MZ. Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res 2019; 4(1): 36-44.
[http://dx.doi.org/10.1016/j.ncrna.2019.01.003 ] [PMID: 30891536]
[47]
Lee J, Jung JH, Chae YS, et al. Long noncoding RNA snaR regulates proliferation, migration and invasion of triple-negative breast cancer cells. Anticancer Res 2016; 36(12): 6289-95.
[http://dx.doi.org/10.21873/anticanres.11224 ] [PMID: 27919948]
[48]
Cao Z, Wu P, Su M, et al. Long non-coding RNA UASR1 promotes proliferation and migration of breast cancer cells through the AKT/mTOR pathway. J Cancer 2019; 10(9): 2025-34.
[http://dx.doi.org/10.7150/jca.29457 ] [PMID: 31205563]
[49]
Li Z, Qian J, Li J, Zhu C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2019; 18(1): 435-42.
[http://dx.doi.org/10.3892/etm.2019.7629 ] [PMID: 31281438]
[50]
Sun Z, Zhang C, Wang T, Shi P, Tian X, Guo Y. Correlation between long non-coding RNAs (lncRNAs) H19 expression and trastuzumab resistance in breast cancer. J Cancer Res Ther 2019; 15(4): 933-40.
[http://dx.doi.org/10.4103/jcrt.JCRT_208_19 ] [PMID: 31436255]
[51]
Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. OncoTargets Ther 2018; 11: 8001-12.
[http://dx.doi.org/10.2147/OTT.S172379 ] [PMID: 30519041]
[52]
Zhou K, Ou Q, Wang G, Zhang W, Hao Y, Li W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-β pathway. Cancer Cell Int 2019; 19(1): 63.
[http://dx.doi.org/10.1186/s12935-019-0781-6 ] [PMID: 30930692]
[53]
Deva Magendhra Rao AK, Patel K, Korivi Jyothiraj S, et al. Identification of lncRNAs associated with early-stage breast cancer and their prognostic implications. Mol Oncol 2019; 13(6): 1342-55.
[http://dx.doi.org/10.1002/1878-0261.12489 ] [PMID: 30959550]
[54]
Han YJ, Boatman SM, Zhang J, et al. LncRNA BLAT1 is upregulated in basal-like breast cancer through epigenetic modifications. Sci Rep 2018; 8(1): 15572.
[http://dx.doi.org/10.1038/s41598-018-33629-y ] [PMID: 30349062]
[55]
Hu G, Niu F, Humburg BA, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018; 9(26): 18648-63.
[http://dx.doi.org/10.18632/oncotarget.24307 ] [PMID: 29719633]
[56]
Shore AN, Rosen JM. Regulation of mammary epithelial cell homeostasis by lncRNAs. Int J Biochem Cell Biol 2014; 54: 318-30.
[http://dx.doi.org/10.1016/j.biocel.2014.03.012 ] [PMID: 24680897]
[57]
Reis EM, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Front Genet 2012; 3: 32.
[http://dx.doi.org/10.3389/fgene.2012.00032 ] [PMID: 22408643]
[58]
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330(6004): 612-6.
[http://dx.doi.org/10.1126/science.1191078 ] [PMID: 21030644]
[59]
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904-14.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018 ] [PMID: 21925379]
[60]
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311-23.
[http://dx.doi.org/10.1016/j.cell.2007.05.022 ] [PMID: 17604720]
[61]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975 ] [PMID: 20393566]
[62]
Yoon JH, Abdelmohsen K, Kim J, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 2013; 4(1): 2939.
[http://dx.doi.org/10.1038/ncomms3939 ] [PMID: 24326307]
[63]
Zhou X, Chen J, Tang W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim Biophys Sin (Shanghai) 2014; 46(12): 1011-5.
[http://dx.doi.org/10.1093/abbs/gmu104 ] [PMID: 25385164]
[64]
Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 2015; 12(1): 1-9.
[PMID: 25859406]
[65]
Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 2002; 36(1): 233-78.
[http://dx.doi.org/10.1146/annurev.genet.36.042902.092433 ] [PMID: 12429693]
[66]
Lee JT. The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol 2010; 2(9)a003749
[http://dx.doi.org/10.1101/cshperspect.a003749 ] [PMID: 20739414]
[67]
Nagano T, Mitchell JA, Sanz LA, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322(5908): 1717-20.
[http://dx.doi.org/10.1126/science.1163802 ] [PMID: 18988810]
[68]
Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011; 331(6013): 76-9.
[http://dx.doi.org/10.1126/science.1197349 ] [PMID: 21127216]
[69]
Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 2010; 24(20): 2264-9.
[http://dx.doi.org/10.1101/gad.590910 ] [PMID: 20952535]
[70]
Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 2008; 454(7200): 126-30.
[http://dx.doi.org/10.1038/nature06992 ] [PMID: 18509338]
[71]
Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472(7341): 120-4.
[http://dx.doi.org/10.1038/nature09819 ] [PMID: 21423168]
[72]
Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142(3): 409-19.
[http://dx.doi.org/10.1016/j.cell.2010.06.040 ] [PMID: 20673990]
[73]
Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 2010; 143(3): 390-403.
[http://dx.doi.org/10.1016/j.cell.2010.09.049 ] [PMID: 21029862]
[74]
Mohammad F, Mondal T, Kanduri C. Epigenetics of imprinted long non-coding RNAs. Epigenetics 2009; 4(5): 277-86.
[http://dx.doi.org/10.4161/epi.4.5.9242 ] [PMID: 28001120]
[75]
Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet 2011; 130(2): 223-36.
[http://dx.doi.org/10.1007/s00439-011-1008-7 ] [PMID: 21626138]
[76]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672 ] [PMID: 19182780]
[77]
Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010; 42(12): 1113-7.
[http://dx.doi.org/10.1038/ng.710 ] [PMID: 21057500]
[78]
Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 2009; 462(7274): 799-802.
[http://dx.doi.org/10.1038/nature08618 ] [PMID: 20010688]
[79]
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 2010; 327(5961): 94-7.
[http://dx.doi.org/10.1126/science.1180278 ] [PMID: 19965720]
[80]
Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011; 6(5): 539-43.
[http://dx.doi.org/10.4161/epi.6.5.15221 ] [PMID: 21393997]
[81]
Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 2006; 26(7): 2560-9.
[http://dx.doi.org/10.1128/MCB.26.7.2560-2569.2006 ] [PMID: 16537902]
[82]
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322(5902): 750-6.
[http://dx.doi.org/10.1126/science.1163045 ] [PMID: 18974356]
[83]
Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev 2008; 129(1-2): 91-8.
[http://dx.doi.org/10.1016/j.mad.2007.10.008 ] [PMID: 18054989]
[84]
Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329(5992): 689-93.
[http://dx.doi.org/10.1126/science.1192002 ] [PMID: 20616235]
[85]
Pandey RR, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32(2): 232-46.
[http://dx.doi.org/10.1016/j.molcel.2008.08.022 ] [PMID: 18951091]
[86]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902 ] [PMID: 22663078]
[87]
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res 2018; 3(3): 108-17.
[http://dx.doi.org/10.1016/j.ncrna.2018.03.001 ] [PMID: 30175284]
[88]
Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci 2016; 41(9): 761-72.
[http://dx.doi.org/10.1016/j.tibs.2016.07.003 ] [PMID: 27499234]
[89]
Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43(7): 621-9.
[http://dx.doi.org/10.1038/ng.848 ] [PMID: 21642992]
[90]
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798-801.
[http://dx.doi.org/10.1126/science.1147182 ] [PMID: 17916692]
[91]
Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 2010; 38(17): 5797-806.
[http://dx.doi.org/10.1093/nar/gkq296 ] [PMID: 20460456]
[92]
Porro A, Feuerhahn S, Reichenbach P, Lingner J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 2010; 30(20): 4808-17.
[http://dx.doi.org/10.1128/MCB.00460-10 ] [PMID: 20713443]
[93]
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3(107): ra8-8.
[http://dx.doi.org/10.1126/scisignal.2000568 ] [PMID: 20124551]
[94]
Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39(6): 925-38.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011 ] [PMID: 20797886]
[95]
Lee S, Kopp F, Chang TC, et al. NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 2016; 164(1-2): 69-80.
[http://dx.doi.org/10.1016/j.cell.2015.12.017 ] [PMID: 26724866]
[96]
Zhou J, Yang L, Zhong T, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 2015; 6(1): 10221.
[http://dx.doi.org/10.1038/ncomms10221 ] [PMID: 26687445]
[97]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014 ] [PMID: 21802130]
[98]
Ahadi A, Sablok G, Hutvagner G. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data. Nucleic Acids Res 2017; 45(6): e42-2.
[http://dx.doi.org/10.1093/nar/gkw1185 ] [PMID: 27903911]
[99]
Zhang XQ, Yang JH. Discovering circRNA-microRNA interactions from CLIP-Seq data. In: Circular RNAs. New York, NY: Humana Press 2018; pp. 193-207.
[100]
Hu X, Ding D, Zhang J, Cui J. Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218. Biosci Rep 2019; 39(4)BSR20181038
[http://dx.doi.org/10.1042/BSR20181038 ] [PMID: 30429228]
[101]
Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med 2018; 7(3): 842-55.
[http://dx.doi.org/10.1002/cam4.1353 ] [PMID: 29473328]
[102]
Gao B, Li S, Li G. Long noncoding RNA (lncRNA) small nucleolar RNA host gene 5 (SNHG5) regulates proliferation, differentiation, and apoptosis of K562 cells in chronic myeliod leukemia. Med Sci Monit 2019; 25: 6812-9.
[http://dx.doi.org/10.12659/MSM.916661 ] [PMID: 31506418]
[103]
Zheng L, Zhang Y, Fu Y, et al. Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339-5p and promotes poor prognosis in breast cancer. Biosci Rep 2019; 39(2), BSR20181284.
[http://dx.doi.org/10.1042/BSR20181284 ] [PMID: 30683807]
[104]
Li T, Li Y, Sun H. MicroRNA-876 is sponged by long noncoding RNA LINC00707 and directly targets metadherin to inhibit breast cancer malignancy. Cancer Manag Res 2019; 11: 5255-69.
[http://dx.doi.org/10.2147/CMAR.S210845 ] [PMID: 31239777]
[105]
Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun 2018; 495(2): 1594-600.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.013 ] [PMID: 29217194]
[106]
Feng W, Wang C, Liang C, et al. The dysregulated expression of KCNQ1OT1 and its interaction with downstream factors miR-145/CCNE2 in breast cancer cells. Cell Physiol Biochem 2018; 49(2): 432-46.
[http://dx.doi.org/10.1159/000492978 ] [PMID: 30157476]
[107]
Kong X, Duan Y, Sang Y, et al. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol 2019; 234(6): 9105-17.
[http://dx.doi.org/10.1002/jcp.27587 ] [PMID: 30362551]
[108]
Lu PW, Li L, Wang F, Gu YT. Effects of long non-coding RNA HOST2 on cell migration and invasion by regulating MicroRNA let-7b in breast cancer. J Cell Biochem 2018; 119(6): 4570-80.
[http://dx.doi.org/10.1002/jcb.26606 ] [PMID: 29236319]
[109]
Zheng R, Lin S, Guan L, et al. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem Biophys Res Commun 2018; 498(4): 1002-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.104 ] [PMID: 29550489]
[110]
Li Z, Li Y, Li Y, et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol 2017; 31(9), e21933.
[http://dx.doi.org/10.1002/jbt.21933 ] [PMID: 28544374]
[111]
Zou Q, Zhou E, Xu F, Zhang D, Yi W, Yao J A. TP73-AS1/miR-200a/ZEB1 regulating loop promotes breast cancer cell invasion and migration. J Cell Biochem 2018; 119(2): 2189-99.
[http://dx.doi.org/10.1002/jcb.26380 ] [PMID: 28857253]
[112]
Jiang X, Zhou Y, Sun AJ, Xue JL. NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol 2018; 233(11): 8558-66.
[http://dx.doi.org/10.1002/jcp.26470 ] [PMID: 29323713]
[113]
Gao Z, Wang H, Li H, et al. Long non-coding RNA CASC2 inhibits breast cancer cell growth and metastasis through the regulation of the miR-96-5p/SYVN1 pathway. Int J Oncol 2018; 53(5): 2081-90.
[http://dx.doi.org/10.3892/ijo.2018.4522 ] [PMID: 30106139]
[114]
Li X, Wang S, Li Z, et al. The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/HMGA2 axis in breast cancer. Int J Biol Macromol 2017; 105(Pt 1): 346-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.053 ] [PMID: 28720546]
[115]
Zhao D, Zhang Y, Wang N, Yu N. NEAT1 negatively regulates miR-218 expression and promotes breast cancer progression. Cancer Biomark 2017; 20(3): 247-54.
[http://dx.doi.org/10.3233/CBM-170027 ] [PMID: 28946559]
[116]
Li S, Yang J, Xia Y, Fan Q, Yang KP. Long noncoding RNA NEAT1 promotes proliferation and invasion via targeting miR-181a-5p in non-small cell lung cancer. Oncol Res 2018; 26(2): 289-96.
[http://dx.doi.org/10.3727/096504017X15009404458675 ] [PMID: 28762332]
[117]
Liu J, Song Z, Feng C, et al. The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR-320a. Am J Transl Res 2017; 9(12): 5594-602.
[PMID: 29312511]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy