Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Chemistry and Antioxidant Potential of Phytoconstituents from Aegle Marmelos Fruit-Shell

Author(s): Ankita Chaubey and Ashok K. Dubey*

Volume 21, Issue 7, 2020

Page: [525 - 533] Pages: 9

DOI: 10.2174/1389200221666200711161056

Price: $65

Abstract

Background: Oxidative stress is among the main causes of metabolic disorders. Hence, there is a need to discover potent antioxidants for therapeutic applications.

Objective: The objective of this study has been to investigate the phytoconstituents of the methanolic extract of the hard shell of Aegle marmelos fruit and their antioxidant potential.

Methods: Methanolic extract was fractionated using different solvents by liquid-liquid extraction. Characterization of the phytoconstituents was done by using phytochemical tests and GC-MS analysis. The free radical scavenging activity, total reducing power, lipid peroxidation inhibition and cell protection assays against oxidative stress were performed with methanolic extract and its fractions.

Results: Therapeutically significant class of compounds, for example, polyphenols, glycosides and sterols were revealed in the hard-shell extract. Differential separation of compounds was achieved by liquid-liquid extraction using different solvents. Six compounds: 4-Hydroxybenzeneacetic acid; 5-Oxo-pyrrolidine-2-carboxylic acid methyl ester; 1-[3-Methyl-3-Butenyl] Pyrrolidine; Trans-sinapyl alcohol; 5-[Hydroxymethyl]-2-furaldehyde and 2,4- Dihydroxy-2,5-dimethyl-3[2H]-furan-3-one, identified in the fruit-shell extract, are being reported for the first time from this plant. Strong antioxidant potential of the extract was evident from efficient scavenging of free radicals. The extract also conferred protection to yeast cells against oxidative damage.

Conclusion: Results showed that the hard shell of the Aegle marmelos fruit was a potent source for antioxidant compounds, which can be developed for therapeutic applications in the control and management of metabolic diseases.

Keywords: Oxidative stress, metabolic disorder, antioxidant, free radicals, Aegle marmelos, phytoconstituents.

Graphical Abstract

[1]
Halliwell, B.; Gutterridge, J.M.C. Reactive species and Disease: fact, fiction or filibuster. Free radicals in Biology and Medicine, 4th ed; Oxford University Press: Oxford, 2007.
[2]
Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci., 2016, 148, 183-193.
[http://dx.doi.org/10.1016/j.lfs.2016.02.002 ] [PMID: 26851532]
[3]
Indo, H.P.; Yen, H.C.; Nakanishi, I.; Matsumoto, K.; Tamura, M.; Nagano, Y.; Matsui, H.; Gusev, O.; Cornette, R.; Okuda, T.; Minamiyama, Y.; Ichikawa, H.; Suenaga, S.; Oki, M.; Sato, T.; Ozawa, T.; Clair, D.K.St.; Majima, H.J. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr., 2015, 56(1), 1-7.
[http://dx.doi.org/10.3164/jcbn.14-42 ] [PMID: 25834301]
[4]
Poljsak, B.; Suput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative. Med. Cell. Longev., 2013, 2013, 1-11.
[5]
Smith, M.A.; Perry, G.; Richey, P.L.; Sayre, L.M.; Anderson, V.E.; Beal, M.F.; Kowall, N. Oxidative damage in Alzheimer’s. Nature, 1996, 382(6587), 120-121.
[http://dx.doi.org/10.1038/382120b0 ] [PMID: 8700201]
[6]
Sen, S.; Chakraborty, R.; Sridhar, C.; Reddy, Y.S.R.; De, B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int. J. Pharm. Sci. Rev. Res., 2010, 3(1), 91-100.
[7]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001 ] [PMID: 16978905]
[8]
Sanchez, C.M. Methods used to evaluate the free radical scavenging activity in foods and biological system. J Food Sci Tech Int., 2002, 8(3), 121-137.
[http://dx.doi.org/10.1177/1082013202008003770]
[9]
Dhalwal, K.; Shinde, V.M.; Namdeo, A.G.; Mahadik, K.R. Antioxidant profile and HPTLC-densitometric analysis of umbelliferone and psoralen in Aegle marmelos. Pharm. Biol., 2008, 46(4), 266-272.
[http://dx.doi.org/10.1080/13880200701741088]
[10]
Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod., 1997, 60(1), 52-60.
[http://dx.doi.org/10.1021/np9604893 ] [PMID: 9014353]
[11]
Higgs, R.E.; Zahn, J.A.; Gygi, J.D.; Hilton, M.D. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol., 2001, 67(1), 371-376.
[http://dx.doi.org/10.1128/AEM.67.1.371-376.2001 ] [PMID: 11133468]
[12]
Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables the millenium’s health. Int. J. Food Sci. Technol., 2000, 36(7), 703-725.
[13]
Miliauskas, G.; Venskutonics, P.R.; Beck, V. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 2004, 85(2), 231-237.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.007]
[14]
Ramchoun, M.; Harnafi, H.; Alem, C.; Benlys, M.; Elrhaffari, L.; Amrani, S. Study on antioxidant and hypolipidemic effects of polyphenol rich extract from Thymus vulgaris and Lavendula multifida. Pharmacogn. Rev., 2009, 1(3), 106-112.
[15]
Pineda-Ramírez, N.; Calzada, F.; Alquisiras-Burgos, I.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ortiz-Plata, A.; Pinzón Estrada, E.; Torres, I.; Aguilera, P. Antioxidant properties and protective effects of some species of the annonaceae, lamiaceae, and geraniaceae families against neuronal damage induced by excitotoxicity and cerebral ischemia. Antioxidants, 2020, 9(3), 253, 1-19.,
[16]
Dash, D.K.; Yeligar, V.C.; Nayak, S.S.; Ghosh, T.; Rajalingam, D.; Sengupta, P.; Maiti, B.C.; Maity, T.K. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R.Br. on paracetamol-induced hepatotoxicity in rats. Trop. J. Pharm. Res., 2007, 6, 755-765.
[http://dx.doi.org/10.4314/tjpr.v6i3.14656]
[17]
Yildirim, A.; Oktay, M.; Bulaloulu, V. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci., 2001, 31, 23-27.
[18]
Nagulendran, K.; Velavan, S.; Mahesh, R.; Begum, V.H. In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. E-J. Chem., 2007, 4, 440-449.
[http://dx.doi.org/10.1155/2007/903496]
[19]
Patel, P.K.; Sahu, S.; Sahu, L.; Prajapati, N.K.; Dubey, B.K. Aegle marmelos: A review on its medicinal properties. Int. J. Pharm. Phytopharmacol Res., 2012, 1(5), 332-341.
[20]
Behera, P.; Raj, V.J.; Prasad, A.B.; Basavaraju, R. A review on phytochemical and pharmacological values of fruit pulp of Aegle marmelos. Global J Res. Med. Plants & Indigen. Med., 2014, 3(9), 339-348.
[21]
Maity, P.; Hansda, D.; Bandyopadhyay, U.; Mishra, D.K. Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.). Corr. Indian J. Exp. Biol., 2009, 47(11), 849-861.
[PMID: 20099458]
[22]
Rajadurai, M.; Prince, P.S. Comparative effects of Aegle marmelos extract and alpha-tocopherol on serum lipids, lipid peroxides and cardiac enzyme levels in rats with isoproterenol-induced myocardial infarction. Singapore Med. J., 2005, 46(2), 78-81.
[PMID: 15678289]
[23]
Trease, G.E.; Evans, M.C. Text book of Pharmacognosy, 12th ed; Baillière Tindall: London, 1983.
[24]
Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle-East J Sci., 2011, 8(3), 579-584.
[25]
Meda, A.; Lamien, E.C.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem., 2005, 91(3), 571-577.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.006]
[26]
Srivastava, V.; Singla, R.K.; Dubey, A.K. Inhibition of biofilm and virulence factors of Candida albicans by partially purified secondary metabolites of Streptomyces chrestomyceticus strain ADP4. Curr. Top. Med. Chem., 2018, 18(11), 925-945.
[http://dx.doi.org/10.2174/1568026618666180711154110 ] [PMID: 29992882]
[27]
Mathew, S.; Abraham, T.E. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol., 2006, 44(2), 198-206.
[http://dx.doi.org/10.1016/j.fct.2005.06.013 ] [PMID: 16087283]
[28]
Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem., 2004, 85(4), 611-616.
[http://dx.doi.org/10.1016/j.foodchem.2003.07.003]
[29]
Kumar, R.S.; Rajkapoor, B.; Perumal, P. Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac. J. Trop. Biomed., 2012, 2(4), 256-261.
[http://dx.doi.org/10.1016/S2221-1691(12)60019-7 ] [PMID: 23569910]
[30]
Sudha, G.; Janardhanan, A.; Moorthy, A.; Chinnasamy, M.; Gunasekaran, S.; Thimmaraju, A.; Gopalan, J. Comparative study on the antioxidant activity of methanolic and aqueous extracts from the fruiting bodies of an edible mushroom Pleurotus djamor. Food Sci. Biotechnol., 2016, 25(2), 371-377.
[http://dx.doi.org/10.1007/s10068-016-0052-4 ] [PMID: 30263280]
[31]
Kwolek-Mirek, M.; Zadrag-Tecza, R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res., 2014, 14(7), 1068-1079.
[http://dx.doi.org/10.1111/1567-1364.12202 ] [PMID: 25154541]
[32]
Mukherjee, P.K. Extraction and Other Downstream Procedures for Evaluation of Herbal Drugs. In: Mukherjee, P.K., Ed. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine; Elsevier: New Delhi, 2019, pp. 195-227.
[http://dx.doi.org/10.1016/B978-0-12-813374-3.00006-5]
[33]
Higuchi, R.; Kitamura, Y.; Komori, T. Thermal degradation of glycosides, I. Degradation of typical triterpenoid and steroid glycosides. Liebigs Ann. Chem., 1986, 4, 638-646.
[http://dx.doi.org/10.1002/jlac.198619860405]
[34]
Lou, S.N.; Lin, Y.S.; Hsu, Y.S.; Chiu, E.M.; Ho, C.T. Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chem., 2014, 161, 246-253.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.009 ] [PMID: 24837947]
[35]
Murcia, M.A.; Martínez-Tomé, M. Antioxidant activity of resveratrol compared with common food additives. J. Food Prot., 2001, 64(3), 379-384.
[http://dx.doi.org/10.4315/0362-028X-64.3.379 ] [PMID: 11252483]
[36]
Tokitomo, Y.; Shimono, Y.; Kobayashi, A.; Yamanishi, T. Aroma Components of Baelfruit. Agric. Biol. Chem., 1982, 46(7), 1873-1877.
[37]
Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res. Int., 2014. 2014497606
[http://dx.doi.org/10.1155/2014/497606 ] [PMID: 24900969]
[38]
Yun, B.R.; Yang, H.J.; Weon, J.B.; Lee, J.; Eom, M.R.; Ma, C.J. Neuroprotective properties of compounds extracted from Dianthus superbus L. against glutamate-induced cell death in HT22 Cells. Pharmacogn. Mag., 2016, 12(46), 109-113.
[http://dx.doi.org/10.4103/0973-1296.177905 ] [PMID: 27076746]
[39]
Meshram, A.; Bhagyawant, S.S.; Srivastava, N. Characterization of pyrrolidine alkaloids of Epipremnum aureum for their antitermite activity against subterranean termites with SEM Studies. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2017, 89(1), 53-62.
[http://dx.doi.org/10.1007/s40011-017-0893-5]
[40]
Ghosh, G.; Panda, P.; Rath, M.; Pal, A.; Sharma, T.; Das, D. GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharmacognosy Res., 2015, 7(1), 110-113.
[http://dx.doi.org/10.4103/0974-8490.147223 ] [PMID: 25598644]
[41]
Burdurlu, H.S.; Koca, N.; Karadeniz, F. Degradation of vitamin C in citrus juice concentrates during storage. J. Food Eng., 2006, 74(2), 211-216.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.03.026]
[42]
Nemkul, C.M.; Bajracharya, G.; Shrestha, I. Phytochemical, antibacterial and DPPH free radical scavenging evaluations of the barks of Aegle marmelos [L.] Correa. J Pharmacogn Phytochem., 2018, 7(4), 1637-1641.
[43]
Shah, M.D.; Yong, Y.S.; Iqbal, M. Phytochemical investigation and free radical scavenging activities of Essential oil, methanol extract and methanol fractions of Nephrolepis biserrata. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 269-277.
[44]
Chen, P.X.; Tang, Y.; Zhang, B.; Liu, R.; Marcone, M.F.; Li, X.; Tsao, R. 5-hydroxymethyl-2-furfural and derivatives formed during acid hydrolysis of conjugated and bound phenolics in plant foods and the effects on phenolic content and antioxidant capacity. J. Agric. Food Chem., 2014, 62(20), 4754-4761.
[http://dx.doi.org/10.1021/jf500518r ] [PMID: 24796380]
[45]
Yu, X.; Zhao, M.; Liu, F.; Zeng, S.; Hu, J. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Res. Int., 2013, 51(1), 397-403.
[http://dx.doi.org/10.1016/j.foodres.2012.12.044]
[46]
Ban, J.O.; Hwang, I.G.; Kim, T.M.; Hwang, B.Y.; Lee, U.S.; Jeong, H.S.; Yoon, Y.W.; Kimz, D.J.; Hong, J.T. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-kappaB in human colon cancer cells. Arch. Pharm. Res., 2007, 30(11), 1455-1463.
[http://dx.doi.org/10.1007/BF02977371 ] [PMID: 18087815]
[47]
Chukwu, C.J.; Omaka, O.N.; Aja, P.M. Characterization of 2, 5-dimethyl-2,4-dihydroxy-3[2H] furanone, a flavourant principle from Sysepalum dulcificum. Nat. Prod. Chem. Res., 2017, 5(8), 296-304.
[48]
Yao, Z.Y.; Qi, J.H. Comparison of antioxidant activities of melanin fractions from chestnut shell. Molecules, 2016, 21(4)(487), 1-11.,
[http://dx.doi.org/10.3390/molecules21040487]
[49]
Pin-Der-Duh, X. Antioxidant activity of burdock [Arctium lappa Linne]: its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc., 1998, 75(4), 455-461.
[http://dx.doi.org/10.1007/s11746-998-0248-8]
[50]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902 ] [PMID: 22228951]
[51]
Mujeeb, F.; Khan, A.F.; Bajpai, P.; Pathak, N. Phytochemical study of Aegle marmelos: chromatographic elucidation of polyphenolics and assessment of antioxidant and cytotoxic potential. Pharmacogn. Mag., 2018, 13(4)(Suppl. 4), S791-S800.
[PMID: 29491635]
[52]
Lee, J.; Koo, N.; Min, D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf., 2004, 3(1), 21-33.
[http://dx.doi.org/10.1111/j.1541-4337.2004.tb00058.x]
[53]
Reddy, C.S.; Rao, C.V.; Ramanaa, G. In vitro and in vivo anti-oxidant activity of Ficus racemosa Linn. fruit extract and Aegle marmelos root and leaf extracts. J. Pharm. Res., 2011, 4(7), 2078-2081.
[54]
Baliga, M.S.; Bhat, H.P.; Joseph, N.; Fazal, F. Phytochemistry and medicinal uses of the bael fruit [Aegle marmelos Correa]: a concise review. Food Res. Int., 2011, 44(7), 1768-1775.
[http://dx.doi.org/10.1016/j.foodres.2011.02.008]
[55]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014. 2014360438
[http://dx.doi.org/10.1155/2014/360438 ] [PMID: 24999379]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy