Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Green Synthesis of Thiazole Derivatives using Multi-component Reaction of Aldehydes, Isothiocyanate and Alkyl Bromides: Investigation of Antioxidant and Antimicrobial Activity

Author(s): Naghmeh Faal Hamedani*, Leila Azad, Shahin Shafiee and Annataj Noushin

Volume 24, Issue 1, 2021

Published on: 09 July, 2020

Page: [88 - 97] Pages: 10

DOI: 10.2174/1386207323666200709165325

Price: $65

Abstract

Aims & Objective: In this work, the multicomponent reaction of aldehydes, benzoylisothiocyanate and alkyl bromides in the presence of ammonium acetate, sodium cyanide and a catalytic amount of KF/Clinoptilolite nanoparticles (KF/CP NPs) in the water at 100oC was investigated.

Materials and Methods: In these reactions, thiazole derivatives were produced in good to excellent yields and short time. Also, the antioxidant activity was studied for some newly synthesized compounds using the DPPH radical trapping and reducing of ferric ion experiments and comparing results with the synthetic antioxidants (TBHQ and BHT).

Results: As a result, the compounds 4b showed excellent DPPH radical trapping and reducing the strength of ferric ion. These compounds have biological potential because of the thiazole core. For this reason, the antimicrobial activity of some synthesized compounds was studied by employing the disk diffusion test on Gram-positive bacteria and Gram-negative bacteria.

Conclusion: The results of the disk diffusion test showed that these compounds prevented bacterial growth.

Keywords: Alkyl bromides, aldehyde, multicomponent reactions, ammonium acetate, sodium cyanide, KF/Clinoptilolite nanoparticles.

« Previous
[1]
Li, C.J.; Chan, T.H. Comprehensive Organic Reactions in Aqueous Media; John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9780470131442]
[2]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q ]
[3]
Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24, 159.
[http://dx.doi.org/10.1021/ar00006a001]
[4]
Dömling, A. Isocyanide based multi component reactions in combinatorial chemistry. Comb. Chem. High Throughput Screen., 1998, 1(1), 1-22.
[PMID: 10499126]
[5]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U]
[6]
Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[7]
Zhu, J.; Bienayme, H. Multicomponent reactions. Eds.WileyVCH, Weinheim , 2005.
[8]
Wipf, P.; Kendall, C. Novel Applications of Alkenyl Zirconocenes. Chemistry, 2002, 8, 1779.
[http://dx.doi.org/10.1002/1521-3765(20020415)8:8<1778:AID-CHEM1778>3.0.CO;2-H]
[9]
Balme, G.; Bossharth, E.; Monteiro, N. Pd‐Assisted multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 4101.
[http://dx.doi.org/10.1002/ejoc.200300378]
[10]
Jacobi von Wangelin, A.; Neumann, H.; Gordes, D.; Klaus, S.; Strubing, D.; Beller, M. Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide–aldehyde mixtures. Chemistry, 2003, 9, 4286.
[http://dx.doi.org/10.1002/chem.200305048] [PMID: 14502613]
[11]
(a)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AIDANIE3168>3.0.CO;2-U]
(b)Ugi, I.; Dömling, A. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
(c)Heck, S.; Dömling, A. A versatile multi-component one-pot thiazole synthesis. Synlett, 2000, 424.
[12]
(a)Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
(b)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U]
[13]
(a)Shaabani, A.; Maleki, A.; Rezayan, A.H.; Sarvary, A. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol. Divers. , 2011, 15(1), 41-68.
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
(b)Altug, C.; Burnett, A.K.; Caner, E. D€ur€ust, Y.; Elliott, M. C.; Glanville, R. P. J.; Guy, C.; Westwell, A. D. An efficient one-pot multicomponent approach to 5-amino-7-aryl-8-nitrothiazolo[3,2-a]pyridines. Tetrahedron, 2011, 67, 9522-9528.
[http://dx.doi.org/10.1016/j.tet.2011.10.005]
[14]
Rostami-Charati, F.; Hajinasiri, R.; Sayyed Alangi, S.Z.; Afshari Sharif Abad, S. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water. Chem. Pap., 2016, 70, 907-912.
[http://dx.doi.org/10.1515/chempap-2016-0030]
[15]
Sajjadi-Ghotbabadi, H.; Javanshir, Sh.; Rostami-Charati, F. Nano KF/clinoptilolite: an effective heterogeneous base nanocatalyst for synthesis of substituted quinolines in water. Catal. Lett., 2016, 146, 338-344.
[http://dx.doi.org/10.1007/s10562-015-1652-y]
[16]
Soleimani, A.; Asadi, J.; Rostami-Charati, F.; Gharaei, R. High cytotoxicity and apoptotic effects of natural bioactive benzofuran derivative on the MCF-7 breast cancer cell line. Comb. Chem. High Throughput Screen., 2015, 18(5), 505-513.
[http://dx.doi.org/10.2174/1386207318666150430114815] [PMID: 25924658]
[17]
Rostami-Charati, F.; Hossaini, Z.S.; Sheikholeslami-Farahani, F.; Azizi, Z. Siadati. S. A. synthesis of 9H-furo [2,3-f]chromene derivatives by promoting ZnO nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18, 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109]
[18]
(a)Elinson, M.N.; Ilovaisky, A.I.; Merkulova, V.M.; Belyakov, P.A.; Chizhov, A.O. Solvent-free cascade reaction: direct multicomponent assembling of 2-amino-4H-chromene scaffold from salicylaldehyde, malononitrile or cyanoacetate and nitroalkanes. Tetrahedron, 2010, 66, 4043-4048.
[http://dx.doi.org/10.1016/j.tet.2010.04.024]
(b)Dekamin, M.G.; Mokhtari, Z. Highly efficient and convenient Strecker reaction of carbonyl compounds and amines with TMSCN catalyzed by MCM-41 anchored sulfonic acid as a recoverable catalyst. Tetrahedron, 2012, 68, 922-930.
[http://dx.doi.org/10.1016/j.tet.2011.10.087]
(c)Dekamin, M.G.; Mokhtari, Z. Karimi, Z. Nano-ordered B-MCM-41: An efficient and recoverable solid acid catalyst for three-component Strecker reaction of carbonyl compounds, amines and TMSCN. Sci. Iran. Trans. C: Chem. Chem. Eng., 2011, 18, 1356-1364.
[19]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[20]
Chanda, A.; Fokin, V.V. Organic Synthesis “On Water. Chem. Rev., 2009, 109, 725-748.
[21]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[22]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[23]
Zhu, M.; Xu, Y.; Sang, L.; Zhao, Z.; Wang, L.; Wu, X.; Fan, F.; Wang, Y.; Li, H. An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples. Environ. Pollut., 2020, 256113427
[http://dx.doi.org/10.1016/j.envpol.2019.113427] [PMID: 31672354]
[24]
Zhu, M. A novel and effective benzo[d]thiazole-based fluorescent probe with dual recognition factors for highly sensitive and selective imaging of cysteine in vitro and in vivo. New J. Chem., 2019, 43, 13463-13470.
[http://dx.doi.org/10.1039/C9NJ03202A]
[25]
Zhu, M.; Wang, L.; Wu, X.; Na, R.; Wang, Y.; Li, Q.X.; Hammock, B.D. A novel and simple imidazo[1,2-a]pyridin fluorescent probe for the sensitive and selective imaging of cysteine in living cells and zebrafish. Anal. Chim. Acta, 2019, 1058, 155-165.
[http://dx.doi.org/10.1016/j.aca.2019.01.023] [PMID: 30851849]
[26]
Zhu, M. A ratiometric fluorescence probe with large stokes based on excited-stated intramolecular proton transfer (ESIPT) for rapid detection and imaging of biothiols in human liver cancer HepG2 cells and zebrafish. J. Mol. Liq., 2019, 287111016
[http://dx.doi.org/10.1016/j.molliq.2019.111016]
[27]
Zhu, M. An ICT-based ratiometric fluorescent probe for cysteine and its application in biological issues. J. Mol. Liq., 2019, 296111832
[http://dx.doi.org/10.1016/j.molliq.2019.111832]
[28]
Georgiadis, M-O.; Kourbeli, V.; Papanastasiou, I.P.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M. Synthesis and evaluation of novel 2,4-disubstituted arylthiazoles against T. brucei. RSC. Med. Chem., 2020.
[http://dx.doi.org/10.1039/c9md00478e]
[29]
Adole, V.A.; More, R.A.; Jagdale, B.S.; Pawar, T.B.; Chobe, S.S. Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2‐(2‐Hydrazineyl)thiazole derivatives. ChemistrySelect, 2020, 5(9), 2778-2786.
[http://dx.doi.org/10.1002/slct.201904609]
[30]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1)e03185
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[31]
Lewis, J.R. Muscarine, imidazole, oxazole, thiazole and peptide alkaloids, and other miscellaneous alkaloids. Nat. Prod. Rep., 1996, 13(5), 435.
[http://dx.doi.org/10.1039/np9961300435]
[32]
Chavez, D.E.; Schulze, M.C.; Parrish, D.A. Synthesis and characterization of N 3-(2,2,2-trinitroethyl)-1,2,4-oxadiazole-3,5-diamine. Chem. Heterocycl. Compd., 2017, 53(6/7), 737-739.
[http://dx.doi.org/10.1007/s10593-017-2119-4]
[33]
Korol, N.I.; Slivka, M.V. Recent progress in the synthesis of thiazolo[3,2-b][1,2,4]triazoles (microreview). Chem. Heterocycl. Compd., 2017, 53(8), 852-854.
[http://dx.doi.org/10.1007/s10593-017-2136-3]
[34]
Mykhaylychenko, S.S.; Siryi, S.A.; Pikun, N.V.; Shermolovich, Y.G. Synthesis of 5-(polyfluoroalkyl)-1,3-thiazolidines from polyfluoroalkanethiocarboxylic acid derivatives. Chem. Heterocycl. Compd., 2015, 51(9), 861-864.
[http://dx.doi.org/10.1007/s10593-015-1787-1]
[35]
Metzger, J.V. The Chemistry of Heterocyclic Compounds, Thiazole and Its Derivatives; John Wiley & Sons, 2009, Vol. 34, .
[36]
Kiryanov, A.A.; Sampson, P.; Seed, A.J. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis. J. Org. Chem., 2001, 66(23), 7925-7929.
[http://dx.doi.org/10.1021/jo016063x] [PMID: 11701063]
[37]
Bach, T.; Heuser, S. Synthesis of 2-(o-hydroxyaryl)-4-arylthiazoles by regioselective Pd(0)-catalyzed cross-coupling. Tetrahedron Lett., 2000, 41(11), 1707.
[http://dx.doi.org/10.1016/S0040-4039(00)00018-6]
[38]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374–375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[39]
Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res., 1999, 1, 439-458.
[http://dx.doi.org/10.1023/A:1010044830871]
[40]
(a) Khalilzadeh, M.A.; Hosseini, A.; Pilevar, A. Potassium fluoride supported on natural nanoporous zeolite: a new solid base for the synthesis of diaryl ethers. Eur. J. Org. Chem., 2011, 8, 1587.
[http://dx.doi.org/10.1002/ejoc.201001447]
(b) Khalilzadeh, M.A.; Keipour, H.; Hosseini, A.; Zareyee, D. KF/Clinoptilolite, an effective solid base in Ullmann ether synthesis catalyzed by CuO nanoparticles. New J. Chem., 2014, 38, 42.
[http://dx.doi.org/10.1039/C3NJ00834G]
[41]
Xie, W.L.; Huang, X.M. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Lett., 2006, 107, 53.
[http://dx.doi.org/10.1007/s10562-005-9731-0]
[42]
Gao, L.J.; Teng, G.Y.; Lv, J.H.; Xiao, G.M. Biodiesel synthesis catalyzed by the KF/Ca−Mg−Al hydrotalcite base catalyst. Energy Fuels, 2010, 24, 646.
[http://dx.doi.org/10.1021/ef900800d]
[43]
Hu, S.; Guan, Y.; Wang, Y.; Han, H. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl. Energy, 2011, 88, 2685.
[http://dx.doi.org/10.1016/j.apenergy.2011.02.012]
[44]
Ando, T. Yamawaki. Potassium fluoride on celite. A versatile reagent for C-, N-, O-, and S-alkylations. Chem. Lett., 1979, 1, 45.
[http://dx.doi.org/10.1246/cl.1979.45]
[45]
Zhu, J.H.; Chun, Y.; Qin, Y.; Xu, Q.H. An investigation of KF modification to generate strong basic sites on NaY zeolite. Microporous Mesoporous Mater., 1998, 24, 19.
[http://dx.doi.org/10.1016/S1387-1811(98)00139-5]
[46]
Asseid, F.M.; Duke, C.V.A.; Miller, J.M.A.A. 19F magic angle spinning nuclear magnetic resonance and infrared analysis of the adsorption of alkali metal fluorides onto montmorillonite clay. Can. J. Chem., 1990, 68, 1420.
[http://dx.doi.org/10.1139/v90-217]
[47]
Zahouily, M.; Bahlaouane, B.; Aadil, M.; Rayadh, A.; Sebti, S. Natural phosphate doped with potassium fluoride: efficient catalyst for the construction of a carbon−carbon bond. Org. Process Res. Dev., 2004, 8, 278.
[http://dx.doi.org/10.1021/op034161+]
[48]
Gao, L.; Teng, G.; Xiao, G.; Wei, R. Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass Bioenergy, 2010, 34, 1283.
[http://dx.doi.org/10.1016/j.biombioe.2010.03.023]
[49]
Smith, J.V. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev., 1998, 88, 149.
[http://dx.doi.org/10.1021/cr00083a008]
[50]
Ames, L.L. The cation sieve properties of clinoptilite. Am. Mineral., 1960, 45, 689.
[51]
(a)Halliwell, B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
(b)Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[52]
Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Brikman, I.V.; Bours, J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D., 2004, 5(3), 125-139.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[53]
Liu, L.; Meydani, M. Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr. Rev., 2002, 60(11), 368-371.
[http://dx.doi.org/10.1301/00296640260385810] [PMID: 12462519]
[54]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[55]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Chemical Monthly, 2008, 139, 625-628.
[http://dx.doi.org/10.1007/s00706-007-0810-3]
[56]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Proline-Promoted Efficient Synthesis of 4-Aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in Aqueous Media. Synlett, 2008, 1153-1154.
[http://dx.doi.org/10.1055/s-2008-1072656]
[57]
Yavari, I.; Hossaini, Z.S.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient synthesis of functionalized spiro-2,5-dihydro-1,2-λ5-oxaphospholes. Tetrahedron, 2007, 63, 9423-9428.
[http://dx.doi.org/10.1016/j.tet.2007.06.102]
[58]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S.; Ghazanfarpour-Darjani, M. Surprising formation of chlorinated butenolides from dialkyl acetylenedicarboxylates and hexachloro¬acetone in the presence of triphenyl phosphite. Helv. Chim. Acta, 2008, 91, 1144-1147.
[http://dx.doi.org/10.1002/hlca.200890123]
[59]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles via catalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[60]
Rostami‐Charati, F.; Hossaini, Z.S.; Khalilzadeh, M.A.; Jafaryan, H. Solvent‐free synthesis of pyrrole derivatives. J. Heterocycl. Chem., 2012, 49, 217-220.
[http://dx.doi.org/10.1002/jhet.785]
[61]
Hajinasiri, R.; Hossaini, Z.S.; Rostami‐Charati, F. Efficient synthesis of α‐aminophosphonates via one‐pot reactions of aldehydes, amines, and phosphates in ionic liquid. Heteroatom Chem., 2011, 22, 625-629.
[http://dx.doi.org/10.1002/hc.20724]
[62]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus, Sulfur, and Silicon and the Related Elements A., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[63]
Shimada, K.; Fujikawa, K.; Yahara, N.T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945.
[http://dx.doi.org/10.1021/jf00018a005]
[64]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629.
[http://dx.doi.org/10.1021/jf00039a005]
[65]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[66]
Yavari, I.; Souri, S.; Sirouspour, M. Efficient one-pot synthesis of unsymmetrical 2-thioparabanic acids from oxalyl chloride, benzoyl isothiocyanate, and primary amines. Synlett, 2008, 11, 1633-1634.
[http://dx.doi.org/10.1055/s-2008-1077872]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy