Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation of β-CD–Quercetin Complex and its Effects on Ethanol- Damaged BRL-3A Hepatocytes

Author(s): Yingxia Zhang, Xiao Lin, Jinglong Wang, Sun Jing, Deya Wang, Zhongjing Tian, Meiling Kang, Chengshi Ding*, Shishui He* and Jing Ma*

Volume 17, Issue 8, 2020

Page: [720 - 726] Pages: 7

DOI: 10.2174/1567201817666200708114738

Price: $65

Abstract

Objective: To prepare the sustained-release complex, quercetin was incorporated with β- cyclodextrin (β-CD) and the effect of β-CD–quercetin complex on the growth of ethanol-injuried hepatocytes was studied.

Methods: By using scanning electron microscopy, infrared spectroscopy, and release rate analysis, β- CD–quercetin complex was identified. The effect of different concentrations of β-CD–quercetin complex on the growth of ethanol-damaged hepatocytes at different time was observed by using MTT assay, and the cell quantity and morphology were observed by using hematoxylin–eosin staining. By using single-cell gel electrophoresis, the prevention of β-CD–quercetin complex from the DNA damage of ethanol-damaged BRL-3A cells was studied, and Olive tail moment was calculated.

Results: β-CD–quercetin complex as the sustained-release complex was successfully prepared. The ethanol induced damage of BRL-3A cells could be prevented by 20, 40 and 80 mg/L of quercetin complex, and the protection mechanism of hepatocyte was related to the antioxidation of DNA.

Conclusion: Quercetin sustained-release complex could be prepared with β-CD, and it might be used to treat alcoholic liver disease.

Keywords: β-CD–quercetin complex, preparation, ethanol-induced hepatocyte injury, prevention of the DNA damage, antioxidation, spectroscopy.

« Previous
Graphical Abstract

[1]
Nishimura, M.; Muro, T.; Kobori, M.; Nishihira, J. Effect of daily ingestion of quercetin-rich onion powder for 12 weeks on visceral fat: a randomised, double-blind, placebo-controlled, parallel-group study. Nutrients, 2019, 12(1) E91
[http://dx.doi.org//10.3390/nu12010091] [PMID: 31905615]
[2]
Ferenczyova, K.; Kalocayova, B.; Kindernay, L.; Jelemensky, M.; Balis, P.; Berenyiova, A.; Zemancikova, A.; Farkasova, V.; Sykora, M.; Tothova, L.; Jasenovec, T.; Radosinska, J.; Torok, J.; Cacanyiova, S.; Barancik, M.; Bartekova, M. Quercetin exerts age-dependent beneficial effects on blood pressure and vascular function, but is inefficient in preventing myocardial ischemia-reperfusion injury in Zucker diabetic fatty rats. Molecules, 2020, 25(1) E187
[http://dx.doi.org//10.3390/molecules25010187] [PMID: 31906454]
[3]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org//10.3390/ijms20133177] [PMID: 31261749]
[4]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org//10.3390/nu8030167] [PMID: 26999194]
[5]
Meyers, K.J.; Rudolf, J.L.; Mitchell, A.E. Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem., 2008, 56(3), 830-836.
[http://dx.doi.org//10.1021/jf072358l] [PMID: 18198829]
[6]
Xu, D.; Hu, M-J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org//10.3390/molecules24061123] [PMID: 30901869]
[7]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5), 623.
[http://dx.doi.org//10.3390/molecules21050623] [PMID: 27187333]
[8]
Li, C.; Wang, Z.H.; Yu, D.G. Higher quality quercetin sustained release ethyl cellulose nanofibers fabricated using a spinneret with a Teflon nozzle. Colloids Surf. B Biointerfaces, 2014, 114, 404-409.
[http://dx.doi.org//10.1016/j.colsurfb.2013.10.040] [PMID: 24257689]
[9]
Xing, Z.C.; Meng, W.; Yuan, J.; Moon, S.; Jeong, Y.; Kang, I.K. In vitro assessment of antibacterial activity and cytocompatibility of quercetin containing PLGA nanofibrous scaffolds for tissue engineering. J. Nanomater., 2012, 1(8), 1-7.
[http://dx.doi.org//10.1155/2012/202608]
[10]
Aytac, Z.; Kusku, S.I.; Durgun, E.; Uyar, T. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem., 2016, 197(Pt A), 864-871.
[11]
Wang, H.; Zhang, Y.; Tian, Z.; Ma, J.; Kang, M.; Ding, C.; Ming, D. Preparation of β-CD-ellagic acid microspheres and their effects on HepG2 cell proliferation. Molecules, 2017, 22(12) E2175
[http://dx.doi.org//10.3390/molecules22122175] [PMID: 29292740]
[12]
Piešťanský, J.; Maráková, K.; Mikuš, P. Two-dimensional capillary electrophoresis with on-line sample preparation and cyclodextrin separation environment for direct determination of serotonin in human urine. Molecules, 2017, 22(10), 1668.
[http://dx.doi.org//10.3390/molecules22101668] [PMID: 28991152]
[13]
Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym., 2015, 131, 264-272.
[http://dx.doi.org//10.1016/j.carbpol.2015.06.014] [PMID: 26256184]
[14]
Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2013, 51, 86-93.
[http://dx.doi.org//10.1016/j.lwt.2012.11.011]
[15]
Yoon, S.J.; Hyun, H.; Lee, D.W.; Yang, D.H. Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules, 2017, 22(9) E1513
[http://dx.doi.org//10.3390/molecules22091513] [PMID: 28891961]
[16]
Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of Oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): synthesis and characterization of the inclusion complexes. Bioengineering (Basel), 2017, 4(3) E74
[http://dx.doi.org//10.3390/bioengineering4030074] [PMID: 28952553]
[17]
Park, S.Y.; Fernando, I.P.S.; Han, E.J.; Kim, M.J.; Jung, K.; Kang, D.S.; Ahn, C.B.; Ahn, G. In vivo hepatoprotective effects of a peptide fraction from krill protein hydrolysates against alcohol-induced oxidative damage. Mar. Drugs, 2019, 17(12) E690
[http://dx.doi.org//10.3390/md17120690] [PMID: 31817914]
[18]
Das, S.K.; Vasudevan, D.M. Alcohol-induced oxidative stress. Life Sci., 2007, 81(3), 177-187.
[http://dx.doi.org//10.1016/j.lfs.2007.05.005] [PMID: 17570440]
[19]
Luo, M.; Tian, R.; Yang, Z.; Peng, Y.Y.; Lu, N. Quercetin suppressed NADPH oxidase-derived oxidative stress via heme oxygenase-1 induction in macrophages. Arch. Biochem. Biophys., 2019, 671, 69-76.
[http://dx.doi.org//10.1016/j.abb.2019.06.007] [PMID: 31251921]
[20]
Abdelkawy, K.S.; Balyshev, M.E.; Elbarbry, F. A new validated HPLC method for the determination of quercetin: application to study pharmacokinetics in rats. Biomed. Chromatogr., 2017, 31(3)
[http://dx.doi.org/10.1002/bmc.3819] [PMID: 27555122]
[21]
Zengin, A.; Badak, M.U.; Aktas, N. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J. Sep. Sci., 2018, 41(17), 3459-3466.
[http://dx.doi.org//10.1002/jssc.201800437] [PMID: 29989660]
[22]
Hosseini, A.; Bakhtiari, E.; Mousavi, S.H. Protective effect of Hibiscus sabdariffa on doxorubicin-induced cytotoxicity in H9c2 cardiomyoblast cells. Iran. J. Pharm. Res., 2017, 16(2), 708-713.
[PMID: 28979325]
[23]
Jiang, Q.; Yang, M.; Qu, Z.; Zhou, J.; Zhang, Q. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC Complement. Altern. Med., 2017, 17(1), 477.
[http://dx.doi.org//10.1186/s12906-017-1956-0] [PMID: 28978315]
[24]
Klaude, M.; Eriksson, S.; Nygren, J.; Ahnström, G. The comet assay: mechanisms and technical considerations. Mutat. Res., 1996, 363(2), 89-96.
[http://dx.doi.org//10.1016/0921-8777(95)00063-1] [PMID: 8676929]
[25]
Cheng, N.; Wang, Y.; Cao, W. The protective effect of whole honey and phenolic extract on oxidative DNA damage in mice lymphocytes using comet assay. Plant Foods Hum. Nutr., 2017, 72(4), 388-395.
[http://dx.doi.org//10.1007/s11130-017-0634-1] [PMID: 28929426]
[26]
Koontz, J.L.; Moffitt, R.D.; Marcy, J.E.; O’Keefe, S.F.; Duncan, S.E.; Long, T.E. Controlled release of α-tocopherol, quercetin, and their cyclodextrin inclusion complexes from Linear Low-Density Polyethylene (LLDPE) films into a coconut oil model food system. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2010, 27(11), 1598-1607.
[http://dx.doi.org//10.1080/19440049.2010.495729] [PMID: 20672204]
[27]
Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582.
[http://dx.doi.org//10.2174/09298673113209990120] [PMID: 23514412]
[28]
Ansar, S.; Siddiqi, N.J.; Zargar, S.; Ganaie, M.A.; Abudawood, M. Hepatoprotective effect of quercetin supplementation against acrylamide-induced DNA damage in Wister rats. BMC Complement. Altern. Med., 2016, 16(1), 327.
[http://dx.doi.org//10.1186/s12906-016-1322-7] [PMID: 27576905]
[29]
Jomova, K.; Lawson, M.; Drostinova, L.; Lauro, P.; Poprac, P.; Brezova, V.; Michalik, M.; Lukes, V.; Valko, M. Protective role of quercetin against copper(II)-induced oxidative stress: a spectroscopic, theoretical and DNA damage study. Food Chem. Toxicol., 2017, 110, 340-350.
[http://dx.doi.org//10.1016/j.fct.2017.10.042] [PMID: 29107026]
[30]
Zhu, X.; Li, N.; Wang, Y.; Ding, L.; Chen, H.; Yu, Y.; Shi, X. Protective effects of quercetin on UVB irradiation induced cytotoxicity through ROS clearance in keratinocyte cells. Oncol. Rep., 2017, 37(1), 209-218.
[http://dx.doi.org//10.3892/or.2016.5217] [PMID: 27840962]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy