Review Article

亨廷顿病的转录失调:在发病机制和药理学靶向效力中的作用

卷 28, 期 14, 2021

发表于: 05 July, 2020

页: [2783 - 2806] 页: 24

弟呕挨: 10.2174/0929867327666200705225821

open access plus

摘要

亨廷顿病 (HD) 是一种遗传性神经退行性疾病,由编码关键细胞调节蛋白亨廷顿蛋白 (Htt) 的基因突变引起。胞嘧啶-腺嘌呤-鸟嘌呤 (CAG) 三核苷酸重复序列的扩增会导致功能蛋白的不当折叠,并且是大脑病理变化的初始触发因素。最近的研究表明,许多转录因子的功能失调是伴随 HD 的神经退行性过程的基础。这些干扰不仅是由野生型 Htt (WT Htt) 功能的丧失引起的,而且是由突变型 Htt (mHtt) 的作用引起的异常的发生引起的。在这篇综述中,我们旨在描述目前被认为与 HD 发病机制密切相关的转录因子的作用,即 RE1 沉默转录因子,也称为神经元限制性沉默因子 (REST/NRSF)、叉头盒蛋白(FOXPs)、过氧化物酶体增殖物激活受体 γ 共激活因子-1a (PGC1α)、热休克转录因子 1 (HSF1) 和活化 B 细胞的核因子κ轻链增强子 (NF-κB)。我们还考虑了这些因素在 HD 表型中的作用以及针对分析蛋白质的潜在药理学干预。此外,我们考虑了导致转录因子功能变化的分子操作是否可能具有治疗 HD 的临床效力。

关键词: 亨廷顿病、转录因子、转录失调、REST/NRSF、FOXPs、PGC1α、HSF1、NF-κB。

[1]
MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; MacFarlane, H.; Jenkins, B.; Anderson, M.A.; Wexler, N.S.; Gusella, J.S. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[2]
Rubinsztein, D.C. The molecular pathology of Huntington’s Disease (HD). Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(4), 329-334.
[http://dx.doi.org/10.2174/1568013033483320 ]
[3]
Roos, R.A. Huntington’s disease: a clinical review. Orphanet J. Rare Dis., 2010, 5(40), 40.
[http://dx.doi.org/10.1186/1750-1172-5-40] [PMID: 21171977]
[4]
Graveland, G.A.; Williams, R.S.; DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science, 1985, 227(4688), 770-773.
[http://dx.doi.org/10.1126/science.3155875] [PMID: 3155875]
[5]
Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384.
[http://dx.doi.org/10.1097/00005072-199805000-00001] [PMID: 9596408]
[6]
Panegyres, P.K.; Goh, J.G.S. The neurology and natural history of patients with indeterminate CAG repeat length mutations of the Huntington disease gene. J. Neurol. Sci., 2011, 301(1-2), 14-20.
[http://dx.doi.org/10.1016/j.jns.2010.11.015] [PMID: 21147489]
[7]
Luthi-Carter, R.; Cha, J.H. Mechanisms of transcriptional dysregulation in Huntington’s disease. Clin. Neurosci. Res., 2003, 3, 165-177.
[http://dx.doi.org/10.1016/S1566-2772(03)00059-8]
[8]
Langfelder, P.; Cantle, J.P.; Chatzopoulou, D.; Wang, N.; Gao, F.; Al-Ramahi, I.; Lu, X.H.; Ramos, E.M.; El-Zein, K.; Zhao, Y.; Deverasetty, S.; Tebbe, A.; Schaab, C.; Lavery, D.J.; Howland, D.; Kwak, S.; Botas, J.; Aaronson, J.S.; Rosinski, J.; Coppola, G.; Horvath, S.; Yang, X.W. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat. Neurosci., 2016, 19(4), 623-633.
[http://dx.doi.org/10.1038/nn.4256] [PMID: 26900923]
[9]
Ament, S.A.; Pearl, J.R.; Grindeland, A.; St Claire, J.; Earls, J.C.; Kovalenko, M.; Gillis, T.; Mysore, J.; Gusella, J.F.; Lee, J.M.; Kwak, S.; Howland, D.; Lee, M.Y.; Baxter, D.; Scherler, K.; Wang, K.; Geman, D.; Carroll, J.B.; MacDonald, M.E.; Carlson, G.; Wheeler, V.C.; Price, N.D.; Hood, L.E. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington’s disease CAG knock-in mice across multiple genetic backgrounds. Hum. Mol. Genet., 2017, 26(5), 913-922.
[http://dx.doi.org/10.1093/hmg/ddx006] [PMID: 28334820]
[10]
Tellone, E.; Galtieri, A.; Ficarra, S. Reviewing the biochemical implications of normal and mutated huntingtin in Huntington’s disease. Curr. Med. Chem., 2020, 27(31), 5137-5158.
[http://dx.doi.org/10.2174/0929867326666190621101909] [PMID: 31223078]
[11]
Hickey, M.A.; Chesselet, M.F. Apoptosis in Huntington’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(2), 255-265.
[http://dx.doi.org/10.1016/S0278-5846(03)00021-6] [PMID: 12657365]
[12]
Saudou, F.; Humbert, S. The Biology of huntingtin. Neuron, 2016, 89(5), 910-926.
[http://dx.doi.org/10.1016/j.neuron.2016.02.003] [PMID: 26938440]
[13]
McClelland, S.; Brennan, G.P.; Dubé, C.; Rajpara, S.; Iyer, S.; Richichi, C.; Bernard, C.; Baram, T.Z. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. eLife, 2014, 3, e01267.
[http://dx.doi.org/10.7554/eLife.01267] [PMID: 25117540]
[14]
Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; Rigamonti, D.; Cattaneo, E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet., 2003, 35(1), 76-83.
[http://dx.doi.org/10.1038/ng1219] [PMID: 12881722]
[15]
Dickey, A.S.; Pineda, V.V.; Tsunemi, T.; Liu, P.P.; Miranda, H.C.; Gilmore-Hall, S.K.; Lomas, N.; Sampat, K.R.; Buttgereit, A.; Torres, M.J.M.; Flores, A.L.; Arreola, M.; Arbez, N.; Akimov, S.S.; Gaasterland, T.; Lazarowski, E.R.; Ross, C.A.; Yeo, G.W.; Sopher, B.L.; Magnuson, G.K.; Pinkerton, A.B.; Masliah, E.; La Spada, A.R. PPAR-δ is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat. Med., 2016, 22(1), 37-45.
[http://dx.doi.org/10.1038/nm.4003] [PMID: 26642438]
[16]
Tang, B.; Becanovic, K.; Desplats, P.A.; Spencer, B.; Hill, A.M.; Connolly, C.; Masliah, E.; Leavitt, B.R.; Thomas, E.A. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum. Mol. Genet., 2012, 21(14), 3097-3111.
[http://dx.doi.org/10.1093/hmg/dds132] [PMID: 22492998]
[17]
Carter, M.E.; Brunet, A. FOXO transcription factors. Curr. Biol., 2007, 17(4), R113-R114.
[http://dx.doi.org/10.1016/j.cub.2007.01.008] [PMID: 17307039]
[18]
Hachigian, L.J.; Carmona, V.; Fenster, R.J.; Kulicke, R.; Heilbut, A.; Sittler, A.; Pereira de Almeida, L.; Mesirov, J.P.; Gao, F.; Kolaczyk, E.D.; Heiman, M. Control of Huntington’s disease-associated phenotypes by the striatum-enriched transcription factor Foxp2. Cell Rep., 2017, 21(10), 2688-2695.
[http://dx.doi.org/10.1016/j.celrep.2017.11.018] [PMID: 29212017]
[19]
Louis Sam Titus, A.S.C.; Yusuff, T.; Cassar, M.; Thomas, E.; Kretzschmar, D.; D’Mello, S.R. Reduced expression of Foxp1 as a contributing factor in Huntington’s Disease. J. Neurosci., 2017, 37(27), 6575-6587.
[http://dx.doi.org/10.1523/JNEUROSCI.3612-16.2017] [PMID: 28550168]
[20]
Li, J.Y.; Popovic, N.; Brundin, P. The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies. NeuroRx, 2005, 2(3), 447-464.
[http://dx.doi.org/10.1602/neurorx.2.3.447] [PMID: 16389308]
[21]
Becker, E.B.; Bonni, A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog. Neurobiol., 2004, 72(1), 1-25.
[http://dx.doi.org/10.1016/j.pneurobio.2003.12.005] [PMID: 15019174]
[22]
Greene, L.A.; Liu, D.X.; Troy, C.M.; Biswas, S.C. Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim. Biophys. Acta, 2007, 1772(4), 392-401.
[http://dx.doi.org/10.1016/j.bbadis.2006.12.003] [PMID: 17229557]
[23]
Takahashi, K.; Liu, F.C.; Hirokawa, K.; Takahashi, H. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum. J. Neurosci. Res., 2003, 73(1), 61-72.
[http://dx.doi.org/10.1002/jnr.10638] [PMID: 12815709]
[24]
Lee, C.Y.; Cantle, J.P.; Yang, X.W. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington’s disease pathogenesis. FEBS J., 2013, 280(18), 4382-4394.
[http://dx.doi.org/10.1111/febs.12418] [PMID: 23829302]
[25]
Merrill, M.A.; Malik, Z.; Akyol, Z.; Bartos, J.A.; Leonard, A.S.; Hudmon, A.; Shea, M.A.; Hell, J.W. Displacement of alpha-actinin from the NMDA receptor NR1 C0 domain By Ca2+/calmodulin promotes CaMKII binding. Biochemistry, 2007, 46(29), 8485-8497.
[http://dx.doi.org/10.1021/bi0623025] [PMID: 17602661]
[26]
Zhang, L.; Zhao, Y. The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road. J. Cell. Physiol., 2007, 211(3), 590-597.
[http://dx.doi.org/10.1002/jcp.21001] [PMID: 17311282]
[27]
Takenaka, M.; Seki, N.; Toh, U.; Hattori, S.; Kawahara, A.; Yamaguchi, T.; Koura, K.; Takahashi, R.; Otsuka, H.; Takahashi, H.; Iwakuma, N.; Nakagawa, S.; Fujii, T.; Sasada, T.; Yamaguchi, R.; Yano, H.; Shirouzu, K.; Kage, M. FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol. Clin. Oncol., 2013, 1(4), 625-632.
[http://dx.doi.org/10.3892/mco.2013.107] [PMID: 24649219]
[28]
Bennett, C.L.; Christie, J.; Ramsdell, F.; Brunkow, M.E.; Ferguson, P.J.; Whitesell, L.; Kelly, T.E.; Saulsbury, F.T.; Chance, P.F.; Ochs, H.D. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet., 2001, 27(1), 20-21.
[http://dx.doi.org/10.1038/83713] [PMID: 11137993]
[29]
Takahashi, K.; Liu, F.C.; Hirokawa, K.; Takahashi, H. Expression of Foxp4 in the developing and adult rat forebrain. J. Neurosci. Res., 2008, 86(14), 3106-3116.
[http://dx.doi.org/10.1002/jnr.21770] [PMID: 18561326]
[30]
Tam, W.Y.; Leung, C.K.; Tong, K.K.; Kwan, K.M. Foxp4 is essential in maintenance of Purkinje cell dendritic arborization in the mouse cerebellum. Neuroscience, 2011, 172(172), 562-571.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.023] [PMID: 20951773]
[31]
Beal, M.F.; Hyman, B.T.; Koroshetz, W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci., 1993, 16(4), 125-131.
[http://dx.doi.org/10.1016/0166-2236(93)90117-5] [PMID: 7682343]
[32]
Aziz, N.A.; van der Burg, J.M.M.; Landwehrmeyer, G.B.; Brundin, P.; Stijnen, T.; Roos, R.A. EHDI Study Group. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology, 2008, 71(19), 1506-1513.
[http://dx.doi.org/10.1212/01.wnl.0000334276.09729.0e] [PMID: 18981372]
[33]
Lowell, B.B.; Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Nature, 2000, 404(6778), 652-660.
[http://dx.doi.org/10.1038/35007527] [PMID: 10766252]
[34]
Seong, I.S.; Ivanova, E.; Lee, J.M.; Choo, Y.S.; Fossale, E.; Anderson, M.; Gusella, J.F.; Laramie, J.M.; Myers, R.H.; Lesort, M.; MacDonald, M.E.H.D.H.D. CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet., 2005, 14(19), 2871-2880.
[http://dx.doi.org/10.1093/hmg/ddi319] [PMID: 16115812]
[35]
Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6), 829-839.
[http://dx.doi.org/10.1016/S0092-8674(00)81410-5] [PMID: 9529258]
[36]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[37]
Leone, T.C.; Lehman, J.J.; Finck, B.N.; Schaeffer, P.J.; Wende, A.R.; Boudina, S.; Courtois, M.; Wozniak, D.F.; Sambandam, N.; Bernal-Mizrachi, C.; Chen, Z.; Holloszy, J.O.; Medeiros, D.M.; Schmidt, R.E.; Saffitz, J.E.; Abel, E.D.; Semenkovich, C.F.; Kelly, D.P. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol., 2005, 3(4), e101.
[http://dx.doi.org/10.1371/journal.pbio.0030101] [PMID: 15760270]
[38]
Weydt, P.; Pineda, V.V.; Torrence, A.E.; Libby, R.T.; Satterfield, T.F.; Lazarowski, E.R.; Gilbert, M.L.; Morton, G.J.; Bammler, T.K.; Strand, A.D.; Cui, L.; Beyer, R.P.; Easley, C.N.; Smith, A.C.; Krainc, D.; Luquet, S.; Sweet, I.R.; Schwartz, M.W.; La Spada, A.R. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab., 2006, 4(5), 349-362.
[http://dx.doi.org/10.1016/j.cmet.2006.10.004] [PMID: 17055784]
[39]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[40]
Lin, J.; Wu, P.H.; Tarr, P.T.; Lindenberg, K.S.; St-Pierre, J.; Zhang, C.Y.; Mootha, V.K.; Jäger, S.; Vianna, C.R.; Reznick, R.M.; Cui, L.; Manieri, M.; Donovan, M.X.; Wu, Z.; Cooper, M.P.; Fan, M.C.; Rohas, L.M.; Zavacki, A.M.; Cinti, S.; Shulman, G.I.; Lowell, B.B.; Krainc, D.; Spiegelman, B.M. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 2004, 119(1), 121-135.
[http://dx.doi.org/10.1016/j.cell.2004.09.013] [PMID: 15454086]
[41]
Wiggs, M.P. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front. Physiol., 2015, 6(6), 63.
[http://dx.doi.org/10.3389/fphys.2015.00063] [PMID: 25814955]
[42]
Jesse, S.; Bayer, H.; Alupei, M.C.; Zügel, M.; Mulaw, M.; Tuorto, F.; Malmsheimer, S.; Singh, K.; Steinacker, J.; Schumann, U.; Ludolph, A.C.; Scharffetter-Kochanek, K.; Witting, A.; Weydt, P.; Iben, S. Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington’s disease. Sci. Rep., 2017, 7(1), 8513.
[http://dx.doi.org/10.1038/s41598-017-09148-7] [PMID: 28819135]
[43]
Tsunemi, T.; Ashe, T.D.; Morrison, B.E.; Soriano, K.R.; Au, J.; Roque, R.A.; Lazarowski, E.R.; Damian, V.A.; Masliah, E.; La Spada, A.R. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med., 2012, 4(142), 142ra97.
[http://dx.doi.org/10.1126/scitranslmed.3003799] [PMID: 22786682]
[44]
Neueder, A.; Achilli, F.; Moussaoui, S.; Bates, G.P. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. J. Biol. Chem., 2014, 289(29), 19894-19906.
[http://dx.doi.org/10.1074/jbc.M114.570739] [PMID: 24855652]
[45]
Neef, D.W.; Jaeger, A.M.; Thiele, D.J. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov., 2011, 10(12), 930-944.
[http://dx.doi.org/10.1038/nrd3453] [PMID: 22129991]
[46]
Watanabe, Y.; Tsujimura, A.; Taguchi, K.; Tanaka, M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy, 2017, 13(1), 133-148.
[http://dx.doi.org/10.1080/15548627.2016.1248018] [PMID: 27846364]
[47]
Riva, L.; Koeva, M.; Yildirim, F.; Pirhaji, L.; Dinesh, D.; Mazor, T.; Duennwald, M.L.; Fraenkel, E. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntingtons Dis., 2012, 1(1), 33-45.
[http://dx.doi.org/10.3233/JHD-2012-120020] [PMID: 23293686]
[48]
Gomez-Pastor, R.; Burchfiel, E.T.; Neef, D.W.; Jaeger, A.M.; Cabiscol, E.; McKinstry, S.U.; Doss, A.; Aballay, A.; Lo, D.C.; Akimov, S.S.; Ross, C.A.; Eroglu, C.; Thiele, D.J. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat. Commun., 2017, 8(8), 14405.
[http://dx.doi.org/10.1038/ncomms14405] [PMID: 28194040]
[49]
DiProspero, N.A.; Chen, E.Y.; Charles, V.; Plomann, M.; Kordower, J.H.; Tagle, D.A. Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J. Neurocytol., 2004, 33(5), 517-533.
[http://dx.doi.org/10.1007/s11068-004-0514-8] [PMID: 15906159]
[50]
Kaltenbach, L.S.; Romero, E.; Becklin, R.R.; Chettier, R.; Bell, R.; Phansalkar, A.; Strand, A.; Torcassi, C.; Savage, J.; Hurlburt, A.; Cha, G.H.; Ukani, L.; Chepanoske, C.L.; Zhen, Y.; Sahasrabudhe, S.; Olson, J.; Kurschner, C.; Ellerby, L.M.; Peltier, J.M.; Botas, J.; Hughes, R.E. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet., 2007, 3(5), e82.
[http://dx.doi.org/10.1371/journal.pgen.0030082] [PMID: 17500595]
[51]
Gauthier, L.R.; Charrin, B.C.; Borrell-Pagès, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Lessmann, V.; Humbert, S.; Saudou, F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 2004, 118(1), 127-138.
[http://dx.doi.org/10.1016/j.cell.2004.06.018] [PMID: 15242649]
[52]
Caviston, J.P.; Ross, J.L.; Antony, S.M.; Tokito, M.; Holzbaur, E.L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10045-10050.
[http://dx.doi.org/10.1073/pnas.0610628104] [PMID: 17548833]
[53]
Munsie, L.; Caron, N.; Atwal, R.S.; Marsden, I.; Wild, E.J.; Bamburg, J.R.; Tabrizi, S.J.; Truant, R. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet., 2011, 20(10), 1937-1951.
[http://dx.doi.org/10.1093/hmg/ddr075] [PMID: 21355047]
[54]
Fuchs, M.; Poirier, D.J.; Seguin, S.J.; Lambert, H.; Carra, S.; Charette, S.J.; Landry, J. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem. J., 2009, 425(1), 245-255.
[http://dx.doi.org/10.1042/BJ20090907] [PMID: 19845507]
[55]
Gomez-Pastor, R.; Burchfiel, E.T.; Neef, D.W.; Jaeger, A.M.; Cabiscol, E.; McKinstry, S.U.; Doss, A.; Aballay, A.; Lo, D.C.; Akimov, S.S.; Ross, C.A.; Eroglu, C.; Thiele, D.J. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat. Commun., 2017, 13(8), 14405.
[http://dx.doi.org/10.1038/ncomms14405 ] [PMID: 28194040]
[56]
Intihar, T.A.; Martinez, E.A.; Gomez-Pastor, R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Front. Cell. Neurosci., 2019, 13, 103.
[http://dx.doi.org/10.3389/fncel.2019.00103] [PMID: 30941017]
[57]
Zeron, M.M.; Hansson, O.; Chen, N.; Wellington, C.L.; Leavitt, B.R.; Brundin, P.; Hayden, M.R.; Raymond, L.A. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 2002, 33(6), 849-860.
[http://dx.doi.org/10.1016/S0896-6273(02)00615-3] [PMID: 11906693]
[58]
Kolodziejczyk, K.; Raymond, L.A. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Neurobiol. Dis., 2016, 86, 62-74.
[http://dx.doi.org/10.1016/j.nbd.2015.11.020] [PMID: 26621114]
[59]
Schoenherr, C.J.; Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science, 1995, 267(5202), 1360-1363.
[http://dx.doi.org/10.1126/science.7871435] [PMID: 7871435]
[60]
Bruce, A.W.; Donaldson, I.J.; Wood, I.C.; Yerbury, S.A.; Sadowski, M.I.; Chapman, M.; Göttgens, B.; Buckley, N.J. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc. Natl. Acad. Sci. USA, 2004, 101(28), 10458-10463.
[http://dx.doi.org/10.1073/pnas.0401827101] [PMID: 15240883]
[61]
Roopra, A.; Sharling, L.; Wood, I.C.; Briggs, T.; Bachfischer, U.; Paquette, A.J.; Buckley, N.J. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol. Cell. Biol., 2000, 20(6), 2147-2157.
[http://dx.doi.org/10.1128/MCB.20.6.2147-2157.2000] [PMID: 10688661]
[62]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[63]
Andrés, M.E.; Burger, C.; Peral-Rubio, M.J.; Battaglioli, E.; Anderson, M.E.; Grimes, J.; Dallman, J.; Ballas, N.; Mandel, G. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. USA, 1999, 96(17), 9873-9878.
[http://dx.doi.org/10.1073/pnas.96.17.9873] [PMID: 10449787]
[64]
Roopra, A.; Qazi, R.; Schoenike, B.; Daley, T.J.; Morrison, J.F. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell, 2004, 14(6), 727-738.
[http://dx.doi.org/10.1016/j.molcel.2004.05.026] [PMID: 15200951]
[65]
Baquet, Z.C.; Gorski, J.A.; Jones, K.R.; Jones, K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci., 2004, 24(17), 4250-4258.
[http://dx.doi.org/10.1523/JNEUROSCI.3920-03.2004] [PMID: 15115821]
[66]
Rodenas-Ruano, A.; Chávez, A.E.; Cossio, M.J.; Castillo, P.E.; Zukin, R.S. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat. Neurosci., 2012, 15(10), 1382-1390.
[http://dx.doi.org/10.1038/nn.3214] [PMID: 22960932]
[67]
Chmielewska, N.; Wawer, A.; Maciejak, P.; Turzyńska, D.; Sobolewska, A.; Skórzewska, A.; Osuch, B.; Płaźnik, A.; Szyndler, J. The role of REST/NRSF, TrkB and BDNF in neurobiological mechanisms of different susceptibility to seizure in a PTZ model of epilepsy. Brain Res. Bull., 2020, 158, 108-115.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.007] [PMID: 32151715]
[68]
Formisano, L.; Noh, K.M.; Miyawaki, T.; Mashiko, T.; Bennett, M.V.; Zukin, R.S. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 4170-4175.
[http://dx.doi.org/10.1073/pnas.0611704104] [PMID: 17360495]
[69]
Chmielewska, N.; Szyndler, J.; Maciejak, P.; Płaźnik, A. Epigenetic mechanisms of stress and depression. Psychiatr. Pol., 2019, 53(6), 1413-1428.
[http://dx.doi.org/10.12740/PP/94375] [PMID: 32017826]
[70]
Buckley, N.J.; Johnson, R.; Zuccato, C.; Bithell, A.; Cattaneo, E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol. Dis., 2010, 39(1), 28-39.
[http://dx.doi.org/10.1016/j.nbd.2010.02.003] [PMID: 20170730]
[71]
Zuccato, C.; Belyaev, N.; Conforti, P.; Ooi, L.; Tartari, M.; Papadimou, E.; MacDonald, M.; Fossale, E.; Zeitlin, S.; Buckley, N.; Cattaneo, E. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J. Neurosci., 2007, 27(26), 6972-6983.
[http://dx.doi.org/10.1523/JNEUROSCI.4278-06.2007] [PMID: 17596446]
[72]
Soldati, C.; Bithell, A.; Conforti, P.; Cattaneo, E.; Buckley, N.J. Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington’s disease. J. Neurochem., 2011, 116(3), 415-425.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07122.x] [PMID: 21105876]
[73]
Wong, P.T.; McGeer, P.L.; Rossor, M.; McGeer, E.G. Ornithine aminotransferase in Huntington’s disease. Brain Res., 1982, 231(2), 466-471.
[http://dx.doi.org/10.1016/0006-8993(82)90385-7] [PMID: 6459816]
[74]
Guiretti, D.; Sempere, A.; Lopez-Atalaya, J.P.; Ferrer-Montiel, A.; Barco, A.; Valor, L.M. Specific promoter deacetylation of histone H3 is conserved across mouse models of Huntington’s disease in the absence of bulk changes. Neurobiol. Dis., 2016, 89, 190-201.
[http://dx.doi.org/10.1016/j.nbd.2016.02.004] [PMID: 26851501]
[75]
Ferrante, R.J.; Ryu, H.; Kubilus, J.K.; D’Mello, S.; Sugars, K.L.; Lee, J.; Lu, P.; Smith, K.; Browne, S.; Beal, M.F.; Kristal, B.S.; Stavrovskaya, I.G.; Hewett, S.; Rubinsztein, D.C.; Langley, B.; Ratan, R.R. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J. Neurosci., 2004, 24(46), 10335-10342.
[http://dx.doi.org/10.1523/JNEUROSCI.2599-04.2004] [PMID: 15548647]
[76]
Gardian, G.; Browne, S.E.; Choi, D.K.; Klivenyi, P.; Gregorio, J.; Kubilus, J.K.; Ryu, H.; Langley, B.; Ratan, R.R.; Ferrante, R.J.; Beal, M.F. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem., 2005, 280(1), 556-563.
[http://dx.doi.org/10.1074/jbc.M410210200] [PMID: 15494404]
[77]
Tahiliani, M.; Mei, P.; Fang, R.; Leonor, T.; Rutenberg, M.; Shimizu, F.; Li, J.; Rao, A.; Shi, Y. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature, 2007, 447(7144), 601-605.
[http://dx.doi.org/10.1038/nature05823] [PMID: 17468742]
[78]
Perkins, N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol., 2007, 8(1), 49-62.
[http://dx.doi.org/10.1038/nrm2083] [PMID: 17183360]
[79]
O’Neill, L.A.; Kaltschmidt, C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci., 1997, 20(6), 252-258.
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1] [PMID: 9185306]
[80]
Meffert, M.K.; Chang, J.M.; Wiltgen, B.J.; Fanselow, M.S.; Baltimore, D. NF-kappa B functions in synaptic signaling and behavior. Nat. Neurosci., 2003, 6(10), 1072-1078.
[http://dx.doi.org/10.1038/nn1110] [PMID: 12947408]
[81]
Fridmacher, V.; Kaltschmidt, B.; Goudeau, B.; Ndiaye, D.; Rossi, F.M.; Pfeiffer, J.; Kaltschmidt, C.; Israël, A.; Mémet, S. Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. J. Neurosci., 2003, 23(28), 9403-9408.
[http://dx.doi.org/10.1523/JNEUROSCI.23-28-09403.2003] [PMID: 14561868]
[82]
Wellmann, H.; Kaltschmidt, B.; Kaltschmidt, C. Retrograde transport of transcription factor NF-kappa B in living neurons. J. Biol. Chem., 2001, 276(15), 11821-11829.
[http://dx.doi.org/10.1074/jbc.M009253200] [PMID: 11096106]
[83]
Jordan, B.A.; Kreutz, M.R. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci., 2009, 32(7), 392-401.
[http://dx.doi.org/10.1016/j.tins.2009.04.001] [PMID: 19524307]
[84]
Maggirwar, S.B.; Sarmiere, P.D.; Dewhurst, S.; Freeman, R.S. Nerve growth factor-dependent activation of NF-kappaB contributes to survival of sympathetic neurons. J. Neurosci., 1998, 18(24), 10356-10365.
[http://dx.doi.org/10.1523/JNEUROSCI.18-24-10356.1998] [PMID: 9852573]
[85]
Albensi, B.C.; Mattson, M.P. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse, 2000, 35(2), 151-159.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<151:AID-SYN8>3.0.CO;2-P] [PMID: 10611641]
[86]
Mikenberg, I.; Widera, D.; Kaus, A.; Kaltschmidt, B.; Kaltschmidt, C. Transcription factor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons. PLoS One, 2007, 2(7), e589.
[http://dx.doi.org/10.1371/journal.pone.0000589] [PMID: 17622342]
[87]
Marcora, E.; Kennedy, M.B. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum. Mol. Genet., 2010, 19(22), 4373-4384.
[http://dx.doi.org/10.1093/hmg/ddq358] [PMID: 20739295]
[88]
Colin, E.; Zala, D.; Liot, G.; Rangone, H.; Borrell-Pagès, M.; Li, X.J.; Saudou, F.; Humbert, S. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J., 2008, 27(15), 2124-2134.
[http://dx.doi.org/10.1038/emboj.2008.133] [PMID: 18615096]
[89]
Trushina, E.; Dyer, R.B.; Badger, J.D., II; Ure, D.; Eide, L.; Tran, D.D.; Vrieze, B.T.; Legendre-Guillemin, V.; McPherson, P.S.; Mandavilli, B.S.; Van Houten, B.; Zeitlin, S.; McNiven, M.; Aebersold, R.; Hayden, M.; Parisi, J.E.; Seeberg, E.; Dragatsis, I.; Doyle, K.; Bender, A.; Chacko, C.; McMurray, C.T. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol., 2004, 24(18), 8195-8209.
[http://dx.doi.org/10.1128/MCB.24.18.8195-8209.2004] [PMID: 15340079]
[90]
Mattson, M.P.; Meffert, M.K. Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ., 2006, 13(5), 852-860.
[http://dx.doi.org/10.1038/sj.cdd.4401837] [PMID: 16397579]
[91]
Träger, U.; Andre, R.; Lahiri, N.; Magnusson-Lind, A.; Andreas, A.; Grueninger, S.; McKinnon, Ch.; Sirinathsinghji, E.; Kahlon, S.; Pfister, E.L.; Moser, R.; Hummerich, H.; Antoniou, M.; Bates, G.P.; Luthi-Carter, R.; Lowdell, M.W.; Björkqvist, M.; Ostroff, G.R.; Aronin, N.; Tabrizi, S.J. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkB pathway dysregulation. Brain, 2014, 137(3), 819-833.
[http://dx.doi.org/10.1093/brain/awt355] [PMID: 24459107]
[92]
Politis, M.; Pavese, N.; Tai, Y.F.; Kiferle, L.; Mason, S.L.; Brooks, D.J.; Tabrizi, S.J.; Barker, R.A.; Piccini, P. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum. Brain Mapp., 2011, 32(2), 258-270.
[http://dx.doi.org/10.1002/hbm.21008] [PMID: 21229614]
[93]
Beaumont, V.; Zhong, S.; Lin, H.; Xu, W.; Bradaia, A.; Steidl, E.; Gleyzes, M.; Wadel, K.; Buisson, B.; Padovan-Neto, F.E.; Chakroborty, S.; Ward, K.M.; Harms, J.F.; Beltran, J.; Kwan, M.; Ghavami, A.; Häggkvist, J.; Tóth, M.; Halldin, C.; Varrone, A.; Schaab, C.; Dybowski, J.N.; Elschenbroich, S.; Lehtimäki, K.; Heikkinen, T.; Park, L.; Rosinski, J.; Mrzljak, L.; Lavery, D.; West, A.R.; Schmidt, C.J.; Zaleska, M.M.; Munoz-Sanjuan, I. Phosphodiesterase 10A inhibition improves cortico-basal ganglia function in Huntington’s disease models. Neuron, 2016, 92(6), 1220-1237.
[http://dx.doi.org/10.1016/j.neuron.2016.10.064] [PMID: 27916455]
[94]
Rigamonti, D.; Mutti, C.; Zuccato, C.; Cattaneo, E.; Contini, A. Turning REST/NRSF dysfunction in Huntington’s disease into a pharmaceutical target. Curr. Pharm. Des., 2009, 15(34), 3958-3967.
[http://dx.doi.org/10.2174/138161209789649303] [PMID: 19751206]
[95]
Fuller, G.N.; Su, X.; Price, R.E.; Cohen, Z.R.; Lang, F.F.; Sawaya, R.; Majumder, S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol. Cancer Ther., 2005, 4(3), 343-349.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0228 ] [PMID: 15767543]
[96]
Saw, P.E.; Song, E.W. siRNA therapeutics: a clinical reality. Sci. China Life Sci., 2020, 63(4), 485-500.
[http://dx.doi.org/10.1007/s11427-018-9438-y] [PMID: 31054052]
[97]
Park, I.K.; Lasiene, J.; Chou, S.H.; Horner, P.J.; Pun, S.H. Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J. Gene Med., 2007, 9(8), 691-702.
[http://dx.doi.org/10.1002/jgm.1062] [PMID: 17582226]
[98]
Vagner, T.; Young, D.; Mouravlev, A. Nucleic acid-based therapy approaches for Huntington’s disease. Neurol. Res. Int., 2012, 2012, 358370.
[http://dx.doi.org/10.1155/2012/358370] [PMID: 22288011]
[99]
Soldati, C.; Bithell, A.; Johnston, C.; Wong, K.Y.; Stanton, L.W.; Buckley, N.J. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J. Neurochem., 2013, 124(3), 418-430.
[http://dx.doi.org/10.1111/jnc.12090] [PMID: 23145961]
[100]
Shimojo, M.; Hersh, L.B. REST/NRSF-interacting LIM domain protein, a putative nuclear translocation receptor. Mol. Cell. Biol., 2003, 23(24), 9025-9031.
[http://dx.doi.org/10.1128/MCB.23.24.9025-9031.2003] [PMID: 14645515]
[101]
Shimojo, M. Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J. Biol. Chem., 2008, 283(50), 34880-34886.
[http://dx.doi.org/10.1074/jbc.M804183200] [PMID: 18922795]
[102]
Todd, D.; Gowers, I.; Dowler, S.J.; Wall, M.D.; McAllister, G.; Fischer, D.F.; Dijkstra, S.; Fratantoni, S.A.; van de Bospoort, R.; Veenman-Koepke, J.; Flynn, G.; Arjomand, J.; Dominguez, C.; Munoz-Sanjuan, I.; Wityak, J.; Bard, J.A. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington’s disease. PLoS One, 2014, 9(2), e87923.
[http://dx.doi.org/10.1371/journal.pone.0087923] [PMID: 24503862]
[103]
Simmons, D.A.; Belichenko, N.P.; Yang, T.; Condon, C.; Monbureau, M.; Shamloo, M.; Jing, D.; Massa, S.M.; Longo, F.M. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J. Neurosci., 2013, 33(48), 18712-18727.
[http://dx.doi.org/10.1523/JNEUROSCI.1310-13.2013] [PMID: 24285878]
[104]
Jiang, M.; Peng, Q.; Liu, X.; Jin, J.; Hou, Z.; Zhang, J.; Mori, S.; Ross, C.A.; Ye, K.; Duan, W. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2013, 22(12), 2462-2470.
[http://dx.doi.org/10.1093/hmg/ddt098] [PMID: 23446639]
[105]
Conforti, P.; Zuccato, C.; Gaudenzi, G.; Ieraci, A.; Camnasio, S.; Buckley, N.J.; Mutti, C.; Cotelli, F.; Contini, A.; Cattaneo, E. Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J. Neurochem., 2013, 127(1), 22-35.
[http://dx.doi.org/10.1111/jnc.12348] [PMID: 23800350]
[106]
Charbord, J.; Poydenot, P.; Bonnefond, C.; Feyeux, M.; Casagrande, F.; Brinon, B.; Francelle, L.; Aurégan, G.; Guillermier, M.; Cailleret, M.; Viegas, P.; Nicoleau, C.; Martinat, C.; Brouillet, E.; Cattaneo, E.; Peschanski, M.; Lechuga, M.; Perrier, A.L. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells, 2013, 31(9), 1816-1828.
[http://dx.doi.org/10.1002/stem.1430] [PMID: 23712629]
[107]
Mielcarek, M.; Landles, C.; Weiss, A.; Bradaia, A.; Seredenina, T.; Inuabasi, L.; Osborne, G.F.; Wadel, K.; Touller, C.; Butler, R.; Robertson, J.; Franklin, S.A.; Smith, D.L.; Park, L.; Marks, P.A.; Wanker, E.E.; Olson, E.N.; Luthi-Carter, R.; van der Putten, H.; Beaumont, V.; Bates, G.P. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol., 2013, 11(11), e1001717.
[http://dx.doi.org/10.1371/journal.pbio.1001717] [PMID: 24302884]
[108]
Thomas, E.A.; Coppola, G.; Desplats, P.A.; Tang, B.; Soragni, E.; Burnett, R.; Gao, F.; Fitzgerald, K.M.; Borok, J.F.; Herman, D.; Geschwind, D.H.; Gottesfeld, J.M. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15564-15569.
[http://dx.doi.org/10.1073/pnas.0804249105] [PMID: 18829438]
[109]
Jia, H.; Pallos, J.; Jacques, V.; Lau, A.; Tang, B.; Cooper, A.; Syed, A.; Purcell, J.; Chen, Y.; Sharma, S.; Sangrey, G.R.; Darnell, S.B.; Plasterer, H.; Sadri-Vakili, G.; Gottesfeld, J.M.; Thompson, L.M.; Rusche, J.R.; Marsh, J.L.; Thomas, E.A. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis., 2012, 46(2), 351-361.
[http://dx.doi.org/10.1016/j.nbd.2012.01.016] [PMID: 22590724]
[110]
Jia, H.; Morris, C.D.; Williams, R.M.; Loring, J.F.; Thomas, E.A. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc. Natl. Acad. Sci. USA, 2015, 12(1), 56-64.
[http://dx.doi.org/10.1073/pnas.1415195112] [PMID: 25535382]
[111]
Puigserver, P.; Rhee, J.; Donovan, J.; Walkey, C.J.; Yoon, J.C.; Oriente, F.; Kitamura, Y.; Altomonte, J.; Dong, H.; Accili, D.; Spiegelman, B.M. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature, 2003, 423(6939), 550-555.
[http://dx.doi.org/10.1038/nature01667] [PMID: 12754525]
[112]
Chiang, M.C.; Chen, C.M.; Lee, M.R.; Chen, H.W.; Chen, H.M.; Wu, Y.S.; Hung, C.H.; Kang, J.J.; Chang, C.P.; Chang, C.; Wu, Y.R.; Tsai, Y.S.; Chern, Y. Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma. Hum. Mol. Genet., 2010, 19(20), 4043-4058.
[http://dx.doi.org/10.1093/hmg/ddq322] [PMID: 20668093]
[113]
Quintanilla, R.A.; Jin, Y.N.; Fuenzalida, K.; Bronfman, M.; Johnson, G.V. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J. Biol. Chem., 2008, 283(37), 25628-25637.
[http://dx.doi.org/10.1074/jbc.M804291200] [PMID: 18640979]
[114]
Johri, A.; Calingasan, N.Y.; Hennessey, T.M.; Sharma, A.; Yang, L.; Wille, E.; Chandra, A.; Beal, M.F. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum. Mol. Genet., 2012, 21(5), 1124-1137.
[http://dx.doi.org/10.1093/hmg/ddr541] [PMID: 22095692]
[115]
Yatsuga, S.; Suomalainen, A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum. Mol. Genet., 2012, 21(3), 526-535.
[http://dx.doi.org/10.1093/hmg/ddr482] [PMID: 22012983]
[116]
Naia, L.; Rosenstock, T.R.; Oliveira, A.M.; Oliveira-Sousa, S.I.; Caldeira, G.L.; Carmo, C.; Laço, M.N.; Hayden, M.R.; Oliveira, C.R.; Rego, A.C. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol. Neurobiol., 2017, 54(7), 5385-5399.
[http://dx.doi.org/10.1007/s12035-016-0048-3] [PMID: 27590140]
[117]
McGarry, A.; McDermott, M.; Kieburtz, K.; de Blieck, E.A.; Beal, F.; Marder, K.; Ross, C.; Shoulson, I.; Gilbert, P.; Mallonee, W.M.; Guttman, M.; Wojcieszek, J.; Kumar, R.; LeDoux, M.S.; Jenkins, M.; Rosas, H.D.; Nance, M.; Biglan, K.; Como, P.; Dubinsky, R.M.; Shannon, K.M.; O’Suilleabhain, P.; Chou, K.; Walker, F.; Martin, W.; Wheelock, V.L.; McCusker, E.; Jankovic, J.; Singer, C.; Sanchez-Ramos, J.; Scott, B.; Suchowersky, O.; Factor, S.A.; Higgins, D.S., Jr; Molho, E.; Revilla, F.; Caviness, J.N.; Friedman, J.H.; Perlmutter, J.S.; Feigin, A.; Anderson, K.; Rodriguez, R.; McFarland, N.R.; Margolis, R.L.; Farbman, E.S.; Raymond, L.A.; Suski, V.; Kostyk, S.; Colcher, A.; Seeberger, L.; Epping, E.; Esmail, S.; Diaz, N.; Fung, W.L.; Diamond, A.; Frank, S.; Hanna, P.; Hermanowicz, N.; Dure, L.S.; Cudkowicz, M. Huntington Study Group 2CARE Investigators and Coordinators. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology, 2017, 88(2), 152-159.
[http://dx.doi.org/10.1212/WNL.0000000000003478] [PMID: 27913695]
[118]
Jiang, J.; Kurnikov, I.; Belikova, N.A.; Xiao, J.; Zhao, Q.; Amoscato, A.A.; Braslau, R.; Studer, A.; Fink, M.P.; Greenberger, J.S.; Wipf, P.; Kagan, V.E. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides. J. Pharmacol. Exp. Ther., 2007, 320(3), 1050-1060.
[http://dx.doi.org/10.1124/jpet.106.114769] [PMID: 17179468]
[119]
Xun, Z.; Rivera-Sánchez, S.; Ayala-Peña, S.; Lim, J.; Budworth, H.; Skoda, E.M.; Robbins, P.D.; Niedernhofer, L.J.; Wipf, P.; McMurray, C.T. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep., 2012, 2(5), 1137-1142.
[http://dx.doi.org/10.1016/j.celrep.2012.10.001] [PMID: 23122961]
[120]
Polyzos, A.A.; Wood, N.I.; Williams, P.; Wipf, P.; Morton, A.J.; McMurray, C.T. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS One, 2018, 13(4), e0194580.
[http://dx.doi.org/10.1371/journal.pone.0194580] [PMID: 29630611]
[121]
Reis, S.D.; Pinho, B.R.; Oliveira, J.M.A. Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol. Neurobiol., 2017, 54(8), 5829-5854.
[http://dx.doi.org/10.1007/s12035-016-0120-z] [PMID: 27660272]
[122]
Baldo, B.; Weiss, A.; Parker, C.N.; Bibel, M.; Paganetti, P.; Kaupmann, K. A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J. Biol. Chem., 2012, 287(2), 1406-1414.
[http://dx.doi.org/10.1074/jbc.M111.294801] [PMID: 22123826]
[123]
Labbadia, J.; Cunliffe, H.; Weiss, A.; Katsyuba, E.; Sathasivam, K.; Seredenina, T.; Woodman, B.; Moussaoui, S.; Frentzel, S.; Luthi-Carter, R.; Paganetti, P.; Bates, G.P. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest., 2011, 121(8), 3306-3319.
[http://dx.doi.org/10.1172/JCI57413] [PMID: 21785217]
[124]
Orozco-Díaz, R.; Sánchez-Álvarez, A.; Hernández-Hernández, J.M.; Tapia-Ramírez, J. The interaction between RE1-silencing transcription factor (REST) and heat shock protein 90 as new therapeutic target against Huntington’s disease. PLoS One, 2019, 14(7), e0220393.
[http://dx.doi.org/10.1371/journal.pone.0220393] [PMID: 31361762]
[125]
Dobson, L.; Träger, U.; Farmer, R.; Hayardeny, L.; Loupe, P.; Hayden, M.R.; Tabrizi, S.J. Laquinimod dampens hyperactive cytokine production in Huntington’s disease patient myeloid cells. J. Neurochem., 2016, 137(5), 782-794.
[http://dx.doi.org/10.1111/jnc.13553] [PMID: 26823290]
[126]
Gupta, S.; Sharma, B. Pharmacological benefit of I(1)-imidazoline receptors activation and nuclear factor kappa-B (NF-κB) modulation in experimental Huntington’s disease. Brain Res. Bull., 2014, 102, 57-68.
[http://dx.doi.org/10.1016/j.brainresbull.2014.02.007] [PMID: 24582883]
[127]
Brouillet, E.; Jenkins, B.G.; Hyman, B.T.; Ferrante, R.J.; Kowall, N.W.; Srivastava, R.; Roy, D.S.; Rosen, B.R.; Beal, M.F. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem., 1993, 60(1), 356-359.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb05859.x] [PMID: 8417157]
[128]
Bouchard, J.; Truong, J.; Bouchard, K.; Dunkelberger, D.; Desrayaud, S.; Moussaoui, S.; Tabrizi, S.J.; Stella, N.; Muchowski, P.J. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci., 2012, 32(50), 18259-18268.
[http://dx.doi.org/10.1523/JNEUROSCI.4008-12.2012] [PMID: 23238740]
[129]
Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet., 2013, 22(9), 1826-1842.
[http://dx.doi.org/10.1093/hmg/ddt036] [PMID: 23372043]
[130]
Bowles, K.R.; Stone, T.; Holmans, P.; Allen, N.D.; Dunnett, S.B.; Jones, L. SMAD transcription factors are altered in cell models of HD and regulate HTT expression. Cell. Signal., 2017, 31, 1-14.
[http://dx.doi.org/10.1016/j.cellsig.2016.12.005] [PMID: 27988204]
[131]
Ament, S.A.; Pearl, J.R.; Cantle, J.P.; Bragg, R.M.; Skene, P.J.; Coffey, S.R.; Bergey, D.E.; Wheeler, V.C.; MacDonald, M.E.; Baliga, N.S.; Rosinski, J.; Hood, L.E.; Carroll, J.B.; Price, N.D. Transcriptional regulatory networks underlying gene expression changes in Huntington’s disease. Mol. Syst. Biol., 2018, 14(3), e7435.
[http://dx.doi.org/10.15252/msb.20167435] [PMID: 29581148]
[132]
Seredenina, T.; Luthi-Carter, R. What have we learned from gene expression profiles in Huntington’s disease? Neurobiol. Dis., 2012, 45(1), 83-98.
[http://dx.doi.org/10.1016/j.nbd.2011.07.001] [PMID: 21820514]
[133]
Niewiadomska-Cimicka, A.; Krzyżosiak, A.; Ye, T.; Podleśny-Drabiniok, A.; Dembélé, D.; Dollé, P.; Krężel, W. Genome-wide analysis of RARb transcriptional targets in mouse striatum links retinoic acid signaling with Huntington’s disease and other neurodegenerative disorders. Mol. Neurobiol., 2017, 54(5), 3859-3878.
[http://dx.doi.org/10.1007/s12035-016-0010-4] [PMID: 27405468]
[134]
Neueder, A.; Bates, G.P. A common gene expression signature in Huntington’s disease patient brain regions. BMC Med. Genomics, 2014, 7, 60.
[http://dx.doi.org/10.1186/s12920-014-0060-2] [PMID: 25358814]
[135]
Mielcarek, M.; Bondulich, M.K.; Inuabasi, L.; Franklin, S.A.; Muller, T.; Bates, G.P. The Huntington’s disease-related cardiomyopathy prevents a hypertrophic response in the R6/2 mouse model. PLoS One, 2014, 9(9), e108961.
[http://dx.doi.org/10.1371/journal.pone.0108961] [PMID: 25268775]
[136]
Ravache, M.; Weber, C.; Mérienne, K.; Trottier, Y. Transcriptional activation of REST by Sp1 in Huntington’s disease models. PLoS One, 2010, 5(12), e14311.
[http://dx.doi.org/10.1371/journal.pone.0014311] [PMID: 21179468]
[137]
Vodicka, P.; Chase, K.; Iuliano, M.; Tousley, A.; Valentine, D.T.; Sapp, E.; Kegel-Gleason, K.B.; Sena-Esteves, M.; Aronin, N.; DiFiglia, M. Autophagy activation by transcription factor EB (TFEB) in striatum of HDQ175/Q7Mice. J. Huntingtons Dis., 2016, 5(3), 249-260.
[http://dx.doi.org/10.3233/JHD-160211] [PMID: 27689619]
[138]
Moily, N.S.; Ormsby, A.R.; Stojilovic, A.; Ramdzan, Y.M.; Diesch, J.; Hannan, R.D.; Zajac, M.S.; Hannan, A.J.; Oshlack, A.; Hatters, D.M. Transcriptional profiles for distinct aggregation states of mutant Huntingtin exon 1 protein unmask new Huntington’s disease pathways. Mol. Cell. Neurosci., 2017, 83, 103-112.
[http://dx.doi.org/10.1016/j.mcn.2017.07.004] [PMID: 28743452]
[139]
Hayashida, N.; Fujimoto, M.; Tan, K.; Prakasam, R.; Shinkawa, T.; Li, L.; Ichikawa, H.; Takii, R.; Nakai, A. Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J., 2010, 29(20), 3459-3469.
[http://dx.doi.org/10.1038/emboj.2010.225] [PMID: 20834230]
[140]
Vidal, R.L.; Figueroa, A.; Court, F.A.; Thielen, P.; Molina, C.; Wirth, C.; Caballero, B.; Kiffin, R.; Segura-Aguilar, J.; Cuervo, A.M.; Glimcher, L.H.; Hetz, C. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet., 2012, 21(10), 2245-2262.
[http://dx.doi.org/10.1093/hmg/dds040] [PMID: 22337954]
[141]
Anglada-Huguet, M.; Giralt, A.; Perez-Navarro, E.; Alberch, J.; Xifró, X. Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington’s disease. J. Neurochem., 2012, 121(4), 639-648.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07711.x] [PMID: 22372926]
[142]
Kang, I.; Chu, C.T.; Kaufman, B.A. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett., 2018, 592(5), 793-811.
[http://dx.doi.org/10.1002/1873-3468.12989] [PMID: 29364506]
[143]
Dinkova-Kostova, A.T.; Kostov, R.V.; Kazantsev, A.G. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J., 2018, 285(19), 3576-3590.
[http://dx.doi.org/10.1111/febs.14379] [PMID: 29323772]
[144]
Quinti, L.; Dayalan Naidu, S.; Träger, U.; Chen, X.; Kegel-Gleason, K.; Llères, D.; Connolly, C.; Chopra, V.; Low, C.; Moniot, S.; Sapp, E.; Tousley, A.R.; Vodicka, P.; Van Kanegan, M.J.; Kaltenbach, L.S.; Crawford, L.A.; Fuszard, M.; Higgins, M.; Miller, J.R.C.; Farmer, R.E.; Potluri, V.; Samajdar, S.; Meisel, L.; Zhang, N.; Snyder, A.; Stein, R.; Hersch, S.M.; Ellerby, L.M.; Weerapana, E.; Schwarzschild, M.A.; Steegborn, C.; Leavitt, B.R.; Degterev, A.; Tabrizi, S.J.; Lo, D.C.; DiFiglia, M.; Thompson, L.M.; Dinkova-Kostova, A.T.; Kazantsev, A.G. KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients. Proc. Natl. Acad. Sci. USA, 2017, 114(23), E4676-E4685.
[http://dx.doi.org/10.1073/pnas.1614943114] [PMID: 28533375]
[145]
Hernández, I.H.; Torres-Peraza, J.; Santos-Galindo, M.; Ramos-Morón, E.; Fernández-Fernández, M.R.; Pérez-Álvarez, M.J.; Miranda-Vizuete, A.; Lucas, J.J. The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington’s disease. Acta Neuropathol., 2017, 134(6), 839-850.
[http://dx.doi.org/10.1007/s00401-017-1770-2] [PMID: 28861715]
[146]
Naranjo, J.R.; Zhang, H.; Villar, D.; González, P.; Dopazo, X.M.; Morón-Oset, J.; Higueras, E.; Oliveros, J.C.; Arrabal, M.D.; Prieto, A.; Cercós, P.; González, T.; De la Cruz, A.; Casado-Vela, J.; Rábano, A.; Valenzuela, C.; Gutierrez-Rodriguez, M.; Li, J-Y.; Mellström, B. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J. Clin. Invest., 2016, 126(2), 627-638.
[http://dx.doi.org/10.1172/JCI82670] [PMID: 26752648]

© 2024 Bentham Science Publishers | Privacy Policy