Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Resveratrol and other Stilbenes: Effects on Dysregulated Gene Expression in Cancers and Novel Delivery Systems

Author(s): Palmiro Poltronieri*, Baojun Xu and Giovanna Giovinazzo

Volume 21, Issue 5, 2021

Published on: 05 July, 2020

Page: [567 - 574] Pages: 8

DOI: 10.2174/1871520620666200705220722

Price: $65

Abstract

Trans-resveratrol (RESV), pterostilbene, trans-piceid and trans-viniferins are bioactive stilbenes present in grapes and other plants. Several groups applied biotechnology to introduce their synthesis in plant crops. Biochemical interaction with enzymes, regulation of non-coding RNAs, and activation of signaling pathways and transcription factors are among the main effects described in literature. However, solubility in ethanol, short half-life, metabolism by gut bacteria, make the concentration responsible for the effects observed in cultured cells difficult to achieve. Derivatives obtained by synthesis, trans-resveratrol analogs and methoxylated stilbenes show to be more stable and allow the synthesis of bioactive compounds with higher bioavailability. However, changes in chemical structure may require testing for toxicity. Thus, the delivery of RESV and its natural analogs incorporated into liposomes or nanoparticles, is the best choice to ensure stability during administration and appropriate absorption. The application of RESV and its derivatives with anti-inflammatory and anticancer activity is presented with description of novel clinical trials.

Keywords: Resveratrol, stilbenes, biological activity, dysregulated gene expression, liposomes, nanoparticles.

Graphical Abstract

[1]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[2]
Espinoza, J.L.; Inaoka, P.T. Gnetin-C and other resveratrol oligomers with cancer chemopreventive potential. Ann. N. Y. Acad. Sci., 2017, 1403(1), 5-14.
[http://dx.doi.org/10.1111/nyas.13450] [PMID: 28856688]
[3]
Chaplin, A.; Carpéné, C.; Mercader, J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients [MDPI, 2018, 10(11), 1651.
[http://dx.doi.org/10.3390/nu10111651] [PMID: 30400297]
[4]
Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors, 2018, 44(1), 16-25.
[http://dx.doi.org/10.1002/biof.1410] [PMID: 29315886]
[5]
Sun, Y.; Wu, X.; Cai, X.; Song, M.; Zheng, J.; Pan, C.; Qiu, P.; Zhang, L.; Zhou, S.; Tang, Z.; Xiao, H. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol. Nutr. Food Res., 2016, 60(9), 1924-1932.
[http://dx.doi.org/10.1002/mnfr.201500989] [PMID: 26990242]
[6]
Pasinetti, G.M.; Singh, R.; Westfall, S.; Herman, F.; Faith, J.; Ho, L. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J. Alzheimers Dis., 2018, 63(2), 409-421.
[http://dx.doi.org/10.3233/JAD-171151] [PMID: 29660942]
[7]
Youn, J.; Lee, J.S.; Na, H.K.; Kundu, J.K.; Surh, Y.J. Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr. Cancer, 2009, 61(6), 847-854.
[http://dx.doi.org/10.1080/01635580903285072] [PMID: 20155626]
[8]
Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release, 2012, 158(2), 182-193.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[9]
Abdelgawad, I.Y.; Grant, M.K.O.; Zordoky, B.N. Leveraging the cardio-protective and anticancer properties of resveratrol in cardio-oncology. Nutrients, 2019, 11(3), 627.
[http://dx.doi.org/10.3390/nu11030627] [PMID: 30875799]
[10]
Calabriso, N.; Scoditti, E.; Massaro, M.; Pellegrino, M.; Storelli, C.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M.A. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur. J. Nutr., 2016, 55(2), 477-489.
[http://dx.doi.org/10.1007/s00394-015-0865-6] [PMID: 25724173]
[11]
Scarano, A.; Butelli, E.; De Santis, S.; Cavalcanti, E.; Hill, L.; De Angelis, M.; Giovinazzo, G.; Chieppa, M.; Martin, C.; Santino, A. Combined dietary anthocyanins, flavonols, and stilbenoids alleviate Inflammatory Bowel Disease symptoms in mice. Front. Nutr., 2018, 4, 75.
[http://dx.doi.org/10.3389/fnut.2017.00075] [PMID: 29473042]
[12]
Rühmann, S.; Treutter, D.; Fritsche, S.; Briviba, K.; Szankowski, I. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J. Agric. Food Chem., 2006, 54(13), 4633-4640.
[http://dx.doi.org/10.1021/jf060249l] [PMID: 16787008]
[13]
Giovinazzo, G.; D’Amico, L.; Paradiso, A.; Bollini, R.; Sparvoli, F.; DeGara, L. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol. J., 2005, 3(1), 57-69.
[http://dx.doi.org/10.1111/j.1467-7652.2004.00099.x] [PMID: 17168899]
[14]
D’Introno, A.; Paradiso, A.; Scoditti, E.; D’Amico, L.; De Paolis, A.; Carluccio, M.A.; Nicoletti, I.; DeGara, L.; Santino, A.; Giovinazzo, G. Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnol. J., 2009, 7(5), 422-429.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00409.x] [PMID: 19490505]
[15]
Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; De Gara, L.; Santino, A. Resveratrol biosynthesis: Plant metabolic engineering for nutritional improvement of food. Plant Foods Hum. Nutr., 2012, 67(3), 191-199.
[http://dx.doi.org/10.1007/s11130-012-0299-8] [PMID: 22777386]
[16]
Giovinazzo, G.; Ingrosso, I.; Taurino, M.; Santino, A. Metabolic engineering for functional foods: Tomato fruits and stilbenes. InNatural Products; Ramawat, K.; Mérillon, J.M., Eds.; Springer: Berlin, 2013, pp. 1581-1597.
[http://dx.doi.org/10.1007/978-3-642-22144-6_193]
[17]
Subedi, L.; Baek, S-H.; Kim, S.Y. Genetically engineered resveratrol-enriched rice inhibits neuroinflammation in Lipopolysaccharide-activated BV2 microglia via downregulating mitogen-activated protein kinase-nuclear factor kappa B signaling pathway. Oxidative Med. Cellular Longev., 2018, 2018, Article ID 8092713;
[18]
Ma, F.; Wang, L.; Wang, Y. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. Planta, 2018, 248(1), 89-103.
[http://dx.doi.org/10.1007/s00425-018-2883-0] [PMID: 29589146]
[19]
Martínez-Márquez, A.; Morante-Carriel, J.A.; Ramírez-Estrada, K.; Cusidó, R.M.; Palazon, J.; Bru-Martínez, R. Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures. Plant Biotechnol. J., 2016, 14(9), 1813-1825.
[http://dx.doi.org/10.1111/pbi.12539] [PMID: 26947765]
[20]
Jiang, Z.; Chen, K.; Cheng, L.; Yan, B.; Qian, W.; Cao, J.; Li, J.; Wu, E.; Ma, Q.; Yang, W. Resveratrol and cancer treatment. Updates. Ann. N.Y. Acad. Sci., 2017, 1403(1), 59-69.
[http://dx.doi.org/10.1111/nyas.13466] [PMID: 28945938]
[21]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis Oncol, 2017, 1, 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[22]
Popat, R.; Plesner, T.; Davies, F.; Cook, G.; Cook, M.; Elliott, P.; Jacobson, E.; Gumbleton, T.; Oakervee, H.; Cavenagh, J. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br. J. Haematol., 2013, 160(5), 714-717.
[http://dx.doi.org/10.1111/bjh.12154] [PMID: 23205612]
[23]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer Cell Int., 2019, 19, 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[24]
Samsami-Kor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Anti‐inflammatory effects of resveratrol in patients with ulcerative colitis: A randomized, double‐blind, placebo‐controlled pilot study. Arch. Med. Res., 2015, 46(4), 280-285.
[http://dx.doi.org/10.1016/j.arcmed.2015.05.005] [PMID: 26002728]
[25]
Samsamikor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Resveratrol supplementation and oxidative/anti‐oxidative status in patients with ulcerative colitis: A randomized, double‐blind, placebo‐controlled pilot study. Arch. Med. Res., 2016, 47(4), 304-309.
[http://dx.doi.org/10.1016/j.arcmed.2016.07.003] [PMID: 27664491]
[26]
Choo, Q-Y.; Yeo, S.C.M.; Ho, P.C.; Tanaka, Y.; Lin, H-S. Pterostilbene surpassed resveratrol for anti-inflammatory application: Potency consideration and pharmacokinetics perspective. J. Funct. Foods, 2014, 11, 352-362.
[http://dx.doi.org/10.1016/j.jff.2014.10.018]
[27]
Peng, R-M.; Lin, G-R.; Ting, Y.; Hu, J-Y. Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. Biofactors, 2018, 44(1), 5-15.
[http://dx.doi.org/10.1002/biof.1405] [PMID: 29322567]
[28]
Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1114-1123.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[29]
Yeo, S.C.M.; Fenwick, P.S.; Barnes, P.J.; Lin, H.S.; Donnelly, L.E. Isorhapontigenin, a bioavailable dietary polyphenol, suppresses airway epithelial cell inflammation through a corticosteroid-independent mechanism. Br. J. Pharmacol., 2017, 174(13), 2043-2059.
[http://dx.doi.org/10.1111/bph.13803] [PMID: 28369685]
[30]
Han, Y.; Jo, H.; Cho, J.H.; Dhanasekaran, D.N.; Song, Y.S. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int. J. Mol. Sci., 2019, 20(4), 925.
[http://dx.doi.org/10.3390/ijms20040925] [PMID: 30791624]
[31]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[32]
Gerhart-Hines, Z.; Rodgers, J.T.; Bare, O.; Lerin, C.; Kim, S.H.; Mostoslavsky, R.; Alt, F.W.; Wu, Z.; Puigserver, P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J., 2007, 26(7), 1913-1923.
[http://dx.doi.org/10.1038/sj.emboj.7601633] [PMID: 17347648]
[33]
Um, J.H.; Park, S.J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes, 2010, 59(3), 554-563.
[http://dx.doi.org/10.2337/db09-0482] [PMID: 19934007]
[34]
Fulco, M.; Cen, Y.; Zhao, P.; Hoffman, E.P.; McBurney, M.W.; Sauve, A.A.; Sartorelli, V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell, 2008, 14(5), 661-673.
[http://dx.doi.org/10.1016/j.devcel.2008.02.004] [PMID: 18477450]
[35]
Cantó, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab., 2010, 11(3), 213-219.
[http://dx.doi.org/10.1016/j.cmet.2010.02.006] [PMID: 20197054]
[36]
Bhullar, K.S.; Hubbard, B.P. Lifespan and healthspan extension by resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1209-1218.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.012] [PMID: 25640851]
[37]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[38]
Fei, Q.; Kent, D.; Botello-Smith, W.M.; Nur, F.; Nur, S.; Alsamarah, A.; Chatterjee, P.; Lambros, M.; Luo, Y. Molecular mechanism of resveratrol’s lipid membrane protection. Sci. Rep., 2018, 8(1), 1587.
[http://dx.doi.org/10.1038/s41598-017-18943-1] [PMID: 29371621]
[39]
Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11(5), 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[40]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40-41, 209-232.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[41]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[42]
Iturri, J.; Weber, A.; Moreno-Cencerrado, A.; Vivanco, M.D.; Benítez, R.; Leporatti, S.; Toca-Herrera, J.L. Resveratrol-induced temporal variation in the mechanical properties of MCF-7 breast cancer cells investigated by Atomic Force Microscopy. Int. J. Mol. Sci., 2019, 20(13), 3275.
[http://dx.doi.org/10.3390/ijms20133275] [PMID: 31277289]
[43]
Yang, Z.; Xie, Q.; Chen, Z.; Ni, H.; Xia, L.; Zhao, Q.; Chen, Z.; Chen, P. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Exp. Ther. Med., 2019, 17(3), 1569-1578.
[PMID: 30783423]
[44]
Ko, J-H.; Sethi, G.; Um, J-Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[45]
Dyck, J.R.B.; Schrauwen, P. Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim. Biophys. Acta, 2015, 1852(6), 1069-1070.
[http://dx.doi.org/10.1016/j.bbadis.2015.02.002] [PMID: 25700724]
[46]
Tsai, H-Y.; Ho, C-T.; Chen, Y-K. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. Yao Wu Shi Pin Fen Xi, 2017, 25(1), 134-147.
[http://dx.doi.org/10.1016/j.jfda.2016.07.004] [PMID: 28911531]
[47]
Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res., 2012, 32(7), 537-541.
[http://dx.doi.org/10.1016/j.nutres.2012.06.003] [PMID: 22901562]
[48]
Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Müller, M.; Schrauwen, P.; Mariman, E.C.; Blaak, E.E. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int. J. Obes., 2014, 38(3), 470-473.
[http://dx.doi.org/10.1038/ijo.2013.155] [PMID: 23958793]
[49]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta, 2015, 1852(6), 1178-1185.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004] [PMID: 25446990]
[50]
Kong, Y.; Chen, G.; Xu, Z.; Yang, G.; Li, B.; Wu, X.; Xiao, W.; Xie, B.; Hu, L.; Sun, X.; Chang, G.; Gao, M.; Gao, L.; Dai, B.; Tao, Y.; Zhu, W.; Shi, J. Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells. Sci. Rep., 2016, 6, 37417.
[http://dx.doi.org/10.1038/srep37417] [PMID: 27869173]
[51]
Cao, D.; Wang, M.; Qiu, X.; Liu, D.; Jiang, H.; Yang, N.; Xu, R-M. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev., 2015, 29(12), 1316-1325.
[http://dx.doi.org/10.1101/gad.265462.115] [PMID: 26109052]
[52]
Sajish, M.; Schimmel, P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature, 2015, 519(7543), 370-373.
[http://dx.doi.org/10.1038/nature14028] [PMID: 25533949]
[53]
Bock, F.J.; Chang, P. Stress response: PARP1 911. Nat. Chem. Biol., 2015, 11(3), 179-180.
[http://dx.doi.org/10.1038/nchembio.1756] [PMID: 25689334]
[54]
Yanez, M.; Jhanji, M.; Murphy, K.; Gower, R.M.; Sajish, M.; Jabbarzadeh, E. Nicotinamide augments the anti-inflammatory properties of resveratrol through PARP1 activation. Sci. Rep., 2019, 9(1), 10219.
[http://dx.doi.org/10.1038/s41598-019-46678-8] [PMID: 31308445]
[55]
Farhan, M.; Ullah, M.F.; Faisal, M.; Farooqi, A.A.; Sabitaliyevich, U.Y.; Biersack, B.; Ahmad, A. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines (Basel), 2019, 6(1), 24.
[http://dx.doi.org/10.3390/medicines6010024] [PMID: 30781847]
[56]
Aldawsari, F.S.; Aguayo-Ortiz, R.; Kapilashrami, K.; Yoo, J.; Luo, M.; Medina-Franco, J.L.; Velázquez-Martínez, C.A. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 695-703.
[PMID: 26118420]
[57]
Lan, T.; Ma, W.; Hong, Z.; Wu, L.; Chen, X.; Yuan, Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 11.
[http://dx.doi.org/10.1186/s13046-016-0486-9] [PMID: 28073380]
[58]
Arai, T.; Okato, A.; Yamada, Y.; Sugawara, S.; Kurozumi, A.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med., 2018, 7(5), 1988-2002.
[http://dx.doi.org/10.1002/cam4.1455] [PMID: 29608247]
[59]
Liu, X.; Zheng, J.; Xue, Y.; Qu, C.; Chen, J.; Wang, Z.; Li, Z.; Zhang, L.; Liu, Y. Inhibition of TDP43-mediated SNHG12-miR-195-SOX5 feedback loop impeded malignant biological behaviors of glioma cells. Mol. Ther. Nucleic Acids, 2018, 10, 142-158.
[http://dx.doi.org/10.1016/j.omtn.2017.12.001] [PMID: 29499929]
[60]
Sun, Y.; Liu, J.; Chu, L.; Yang, W.; Liu, H.; Li, C.; Yang, J. Long noncoding RNA SNHG12 facilitates the tumorigenesis of glioma through miR-101-3p/FOXP1 axis. Gene, 2018, 676, 315-321.
[http://dx.doi.org/10.1016/j.gene.2018.08.034] [PMID: 30098431]
[61]
Xiao, H.; Zhang, F.; Zou, Y.; Li, J.; Liu, Y.; Huang, W. The function and mechanism of long non-coding RNA-ATB in cancers. Front. Physiol., 2018, 9, 321.
[http://dx.doi.org/10.3389/fphys.2018.00321] [PMID: 29692736]
[62]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[63]
Farooqi, A.A.; Fuentes-Mattei, E.; Fayyaz, S.; Raj, P.; Goblirsch, M.; Poltronieri, P.; Calin, G.A. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Semin. Cancer Biol., 2019, 58, 47-55.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.003] [PMID: 30742906]
[64]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[65]
Carden, T.; Singh, B.; Mooga, V.; Bajpai, P.; Singh, K.K. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J. Biol. Chem., 2017, 292(50), 20694-20706.
[http://dx.doi.org/10.1074/jbc.M117.797001] [PMID: 29066618]
[66]
Michaille, J-J.; Piurowski, V.; Rigot, B.; Kelani, H.; Fortman, E.C.; Tili, E. MiR-663, a microRNA linked with inflammation and cancer that is under the influence of resveratrol. Medicines (Basel), 2018, 5(3), 74.
[http://dx.doi.org/10.3390/medicines5030074] [PMID: 29987196]
[67]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One, 2013, 8(11)e78700
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[68]
Tian, W.; Du, Y.; Ma, Y.; Gu, L.; Zhou, J.; Deng, D. MALAT1-miR663a negative feedback loop in colon cancer cell functions through direct miRNA-lncRNA binding. Cell Death Dis., 2018, 9(9), 857.
[http://dx.doi.org/10.1038/s41419-018-0925-y] [PMID: 30154407]
[69]
Fernandes, G.F.S.; Silva, G.D.B.; Pavan, A.R.; Chiba, D.E.; Chin, C.M.; Dos Santos, J.L. Epigenetic regulatory mechanisms induced by resveratrol. Nutrients, 2017, 9(11)E1201
[http://dx.doi.org/10.3390/nu9111201] [PMID: 29104258]
[70]
Kumar, A.; Rimando, A.M.; Levenson, A.S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann. N. Y. Acad. Sci., 2017, 1403(1), 15-26.
[http://dx.doi.org/10.1111/nyas.13372] [PMID: 28662290]
[71]
Lee, P-S.; Chiou, Y-S.; Ho, C-T.; Pan, M-H. Chemoprevention by resveratrol and pterostilbene: Targeting on epigenetic regulation. Biofactors, 2018, 44(1), 26-35.
[http://dx.doi.org/10.1002/biof.1401] [PMID: 29220106]
[72]
Lu, M.; Liu, B.; Xiong, H.; Wu, F.; Hu, C.; Liu, P. Trans-3,5,4´-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498. J. Cell. Mol. Med., 2019, 23(4), 2431-2441.
[http://dx.doi.org/10.1111/jcmm.14086] [PMID: 30701693]
[73]
Özdemir, F.; Apaydın, E.; Önder, N.İ.; Şen, M.; Ayrım, A.; Öğünç, Y.; İncesu, Z. Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells. Cytotechnology, 2018, 70(3), 1061-1073.
[http://dx.doi.org/10.1007/s10616-018-0197-5] [PMID: 29476302]
[74]
Matsumura, N.; Zordoky, B.N.; Robertson, I.M.; Hamza, S.M.; Parajuli, N.; Soltys, C.M.; Beker, D.L.; Grant, M.K.; Razzoli, M.; Bartolomucci, A.; Dyck, J.R.B. Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes. Cardiovasc. Res., 2018, 114(10), 1350-1359.
[http://dx.doi.org/10.1093/cvr/cvy064] [PMID: 29566148]
[75]
Shoukry, H.S.; Ammar, H.I.; Rashed, L.A.; Zikri, M.B.; Shamaa, A.A.; Abou Elfadl, S.G.; Rub, E.A.; Saravanan, S.; Dhingra, S. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS One, 2017, 12(7)e0181535
[http://dx.doi.org/10.1371/journal.pone.0181535] [PMID: 28727797]
[76]
Hassan, A.H.E.; Choi, E.; Yoon, Y.M.; Lee, K.W.; Yoo, S.Y.; Cho, M.C.; Yang, J.S.; Kim, H.I.; Hong, J.Y.; Shin, J-S.; Chung, K-S.; Lee, J-H.; Lee, K-T.; Lee, Y.S. Natural products hybrids: 3,5,4′-Trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur. J. Med. Chem., 2019, 161, 559-580.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.062] [PMID: 30396104]
[77]
Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci., 2019, 20(6), 1381.
[http://dx.doi.org/10.3390/ijms20061381] [PMID: 30893846]
[78]
Chatsumpun, N.; Chuanasa, T.; Sritularak, B.; Lipipun, V.; Jongbunprasert, V.; Ruchirawat, S.; Ploypradith, P.; Likhitwitayawuid, K. Oxyresveratrol: Structural modification and evaluation of biological activities. Molecules, 2016, 21(4), 489.
[http://dx.doi.org/10.3390/molecules21040489] [PMID: 27104505]
[79]
Wang, L.; Wu, Y.; Chen, Y.; Zou, J.; Li, X. Biotransformation of resveratrol: New prenylated trans-resveratrol synthesized by Aspergillus sp. SCSIOW2. Molecules, 2016, 21(7), 883.
[http://dx.doi.org/10.3390/molecules21070883] [PMID: 27399656]
[80]
Vervandier-Fasseur, D.; Vang, O.; Latruffe, N. Special issue: Improvements for resveratrol efficacy. Molecules, 2017, 22(10), 1737.
[http://dx.doi.org/10.3390/molecules22101737] [PMID: 29035340]
[81]
Peterson, J.A.; Crowther, C.M.; Andrus, M.B.; Kenealey, J.D. Resveratrol derivatives increase cytosolic calcium by inhibiting plasma membrane ATPase and inducing calcium release from the endoplasmic reticulum in prostate cancer cells. Biochem. Biophys. Rep., 2019, 19100667
[http://dx.doi.org/10.1016/j.bbrep.2019.100667] [PMID: 31463373]
[82]
Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to improve resveratrol systemic and topical bioavailability: An update. Antioxidants, 2019, 8(8), 244.
[http://dx.doi.org/10.3390/antiox8080244] [PMID: 31349656]
[83]
Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients, 2017, 9(11), 1188.
[http://dx.doi.org/10.3390/nu9111188] [PMID: 29109374]
[84]
Biasutto, L.; Mattarei, A.; Azzolini, M.; La Spina, M.; Sassi, N.; Romio, M.; Paradisi, C.; Zoratti, M. Resveratrol derivatives as a pharmacological tool. Ann. N. Y. Acad. Sci., 2017, 1403(1), 27-37.
[http://dx.doi.org/10.1111/nyas.13401] [PMID: 28675763]
[85]
Biasutto, L.; Mattarei, A.; Sassi, N.; Azzolini, M.; Romio, M.; Paradisi, C.; Zoratti, M. Improving the efficacy of plant polyphenols. Anticancer. Agents Med. Chem., 2014, 14(10), 1332-1342.
[http://dx.doi.org/10.2174/1871520614666140627150054] [PMID: 24975033]
[86]
Mikstacka, R.; Zielińska-Przyjemska, M.; Dutkiewicz, Z.; Cichocki, M.; Stefański, T.; Kaczmarek, M.; Baer-Dubowska, W. Cytotoxic, tubulin-interfering and proapoptotic activities of 4′-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol. Cytotechnology, 2018, 70(5), 1349-1362.
[http://dx.doi.org/10.1007/s10616-018-0227-3] [PMID: 29808373]
[87]
Bommagani, S.; Penthala, N.R.; Balasubramaniam, M.; Kuravi, S.; Caldas-Lopes, E.; Guzman, M.L.; Balusu, R.; Crooks, P.A. A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg. Med. Chem. Lett., 2019, 29(2), 172-178.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.006] [PMID: 30528695]
[88]
Sallem, F.; Haji, R.; Vervandier-Fasseur, D.; Nury, T.; Maurizi, L.; Boudon, J.; Lizard, G.; Millot, N. Elaboration of trans-resveratrol derivative-loaded superparamagnetic iron oxide nanoparticles for glioma treatment. Nanomaterials (Basel), 2019, 9(2), 287.
[http://dx.doi.org/10.3390/nano9020287] [PMID: 30781702]
[89]
Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces, 2018, 164, 414-423.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.044] [PMID: 29433059]
[90]
Bonsegna, S.; Bettini, S.; Pagano, R.; Zacheo, A.; Vergaro, V.; Giovinazzo, G.; Caminati, G.; Leporatti, S.; Valli, L.; Santino, A. Plant oil bodies: Novel carriers to deliver lipophilic molecules. Appl. Biochem. Biotechnol., 2011, 163(6), 792-802.
[http://dx.doi.org/10.1007/s12010-010-9083-0] [PMID: 20853067]
[91]
Wan, S.; Zhang, L.; Quan, Y.; Wei, K. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R. Soc. Open Sci., 2018, 5(11)181457
[http://dx.doi.org/10.1098/rsos.181457] [PMID: 30564426]
[92]
Meng, E.; Chen, C.L.; Liu, C.C.; Liu, C.C.; Chang, S.J.; Cherng, J.H.M.; Wang, H.H.; Wu, S.T. Bioapplications of bacterial cellulose polymers conjugated with resveratrol for epithelial defect regeneration. Polymers (Basel), 2019, 11(6)E1048
[http://dx.doi.org/10.3390/polym11061048] [PMID: 31208051]
[93]
Singh, G.; Pai, R.S. Trans-resveratrol Self-Nano-Emulsifying Drug Delivery System (SNEDDS) with enhanced bioavailability potential: Optimization, pharmacokinetics and in situ single Pass Intestinal Perfusion (SPIP) studies. Drug Deliv., 2015, 22(4), 522-530.
[http://dx.doi.org/10.3109/10717544.2014.885616] [PMID: 24512464]
[94]
Santos, A.C.; Pereira, I.; Magalhães, M.; Pereira-Silva, M.; Caldas, M.; Ferreira, L.; Figueiras, A.; Ribeiro, A.J.; Veiga, F. Targeting cancer via resveratrol-loaded nanoparticles administration: Focusing on in vivo evidence. AAPS J., 2019, 21(4), 57.
[http://dx.doi.org/10.1208/s12248-019-0325-y] [PMID: 31016543]
[95]
Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther., 2019, 21(2), 84-90.
[http://dx.doi.org/10.1080/14764172.2018.1469767] [PMID: 29737899]
[96]
Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules, 2017, 22(1), 137.
[http://dx.doi.org/10.3390/molecules22010137] [PMID: 28098828]
[97]
Sibuyi, N.R.S.; Moabelo, K.L.; Meyer, M.; Onani, M.O.; Dube, A.; Madiehe, A.M. Nanotechnology advances towards development of targeted-treatment for obesity. J. Nanobiotechnology, 2019, 17(1), 122.
[http://dx.doi.org/10.1186/s12951-019-0554-3] [PMID: 31842876]
[98]
Vaiserman, A.; Koliada, A.; Zayachkivska, A.; Lushchak, O. Nanodelivery of natural antioxidants: An anti-aging perspective. Front. Bioeng. Biotechnol., 2020, 7, 447.
[http://dx.doi.org/10.3389/fbioe.2019.00447] [PMID: 31998711]
[99]
Machado, N.D.; Fernández, M.A.; Díaz, D.D. Recent strategies in resveratrol delivery systems. ChemPlusChem, 2019, 84(7), 951-973.
[http://dx.doi.org/10.1002/cplu.201900267] [PMID: 31943987]
[100]
Loepfe, M.; Duss, A.; Zafeiropoulou, K-A.; Björgvinsdóttir, O.; D’Este, M.; Eglin, D.; Fortunato, G.; Klasen, J.; Ferguson, S.J.; Wuertz-Kozak, K.; Krupkova, O.M.; Eglin, D.; Fortunato, G.; Klasen, J.; Ferguson, S.J.; Wuertz-Kozak, K.; Krupkova, O. Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc. Pharmaceutics, 2019, 11(9), 435.
[http://dx.doi.org/10.3390/pharmaceutics11090435] [PMID: 31480533]
[101]
Loureiro, J.A.; Andrade, S.; Duarte, A.; Neves, A.R.; Queiroz, J.F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.A.N.; Pereira, M.C. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules, 2017, 22(2), 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy