Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

Lewis Acid-Mediated Efficient Synthesis of 4H-1,3-benzo-xazines and Their Derivatives 4,5-dihydro-1,3-benzo-xazepines

Author(s): An Junkai, Liu Jikun, Shi Ying, Zhu Weiwei, Guo Guoying, Jiang Xianxing, Xue Jijun* and Zhang Hongrui

Volume 24, Issue 11, 2020

Page: [1263 - 1273] Pages: 11

DOI: 10.2174/1385272824999200701120327

Price: $65

Abstract

Compounds containing 4H-1,3-benzo-xazine core usually possess characteristic features and have been applied in the fields of organic synthesis, pharmaceutical research, materials science and bioscience. Here we reported convenient and direct access to 4H-1,3- benzo-xazines and their derivatives through intramolecular cyclization of olefinic amides or ureas with good to excellent yields in the presence of TMSOTf. The properties (mild conditions, metal or additives-free, wide substrate scope and functional group tolerance) of the process made it a promising strategy to synthesize various benzo-xazines and their derivatives.

Keywords: Olefinic amides, intramolecular cyclization, TMSOTf, benzoxazine, mild conditions, metal-free.

« Previous
Graphical Abstract

[1]
(a)Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
(b)Chen, Z.P.; Zhou, Y.G. Asymmetric hydrogenation of heteroarenes with multiple heteroatoms. Synthesis, 2016, 48, 1769-1781.
[http://dx.doi.org/10.1055/s-0035-1561622]
(c)Rohokale, R.S.; Kshirsagar, U.A. Advanced synthetic strategies for constructing quinazolinone scaffolds. Synthesis, 2016, 48, 1253-1260.
[http://dx.doi.org/10.1055/s-0035-1560413]
(d)Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem., 2016, 81(21), 10109-10125.
[http://dx.doi.org/10.1021/acs.joc.6b02034] [PMID: 27680573]
(e)Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv. Mater., 2012, 24(42), 5703-5707.
[http://dx.doi.org/10.1002/adma.201202447] [PMID: 23008146]
(f)Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Félix, A.A.N.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; Aebischer, P.; Sandi, C.; Rinsch, C.; Auwerx, J. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med., 2016, 22(8), 879-888.
[http://dx.doi.org/10.1038/nm.4132] [PMID: 27400265]
[2]
(a)Gandini, A.; Lacerda, T.M.; Carvalho, A.J.F.; Trovatti, E. Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem. Rev., 2016, 116(3), 1637-1669.
[http://dx.doi.org/10.1021/acs.chemrev.5b00264] [PMID: 26291381]
(b)Chinnappan, A.; Baskar, C.; Kim, H. Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Adv., 2016, 6, 63991-64002.
[http://dx.doi.org/10.1039/C6RA12021K]
(c)Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Sherwood, J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci., 2015, 16(8), 17101-17159.
[http://dx.doi.org/10.3390/ijms160817101] [PMID: 26225963]
(d)Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
(e)Brown, L.E.; Konopelski, J.P. Turning the corner: recent advances in the synthesis of the welwitindolinones. Org. Prep. Proced. Int., 2008, 40, 411-445.
[http://dx.doi.org/10.1080/00304940809458104]
(f)Tan, L.P.; Wu, H.; Yang, P-Y.; Kalesh, K.A.; Zhang, X.; Hu, M.; Srinivasan, R.; Yao, S.Q. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Org. Lett., 2009, 11(22), 5102-5105.
[http://dx.doi.org/10.1021/ol9023419] [PMID: 19852491]
(g)Boiani, M.; González, M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem., 2005, 5(4), 409-424.
[http://dx.doi.org/10.2174/1389557053544047] [PMID: 15853629]
(h)Bignan, G.C.; Battista, K.; Connolly, P.J.; Orsini, M.J.; Liu, J.; Middleton, S.A.; Reitz, A.B. Preparation of 3-spirocyclic indolin-2-ones as ligands for the ORL-1 receptor. Bioorg. Med. Chem. Lett., 2005, 15(22), 5022-5026.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.009] [PMID: 16153834]
(i)Yurchenko, R.I.; Ponomarenko, A.D.; Svarovskaya, N.N. 2-(Adamantan-1-yl) imidazo [1, 2-a] pyridines and their Derivatives. Chem. Heterocycl. Compd., 2005, 41, 656-661.
[http://dx.doi.org/10.1007/s10593-005-0198-0]
(j)Ueda, T.; Mizushige, K.; Yukiiri, K.; Takahashi, T.; Kohno, M. Improvement of cerebral blood flow by olprinone, a phosphodiesterase-3 inhibitor, in mild heart failure. Cerebrovasc. Dis., 2003, 16(4), 396-401.
[http://dx.doi.org/10.1159/000072563] [PMID: 13130181]
(k)Hecker, E. Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Res., 1968, 28(11), 2338-2349.
[PMID: 5723975]
[3]
(a)indhu, T. J.; Arikkatt, S. D.; Vincent, G.; Chandran, M.; Bhat, A. R.; Krishnakumar, K. Biological activities of oxazine and its derivatives: a review. Int. J. Pharm. Sci. Res., 2013, 4, 134-143.
(b)Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
(c)Laobuthee, A.; Chirachanchai, S.; Ishida, H.; Tashiro, K. Asymmetric mono-oxazine: an inevitable product from Mannich reaction of benzoxazine dimers. J. Am. Chem. Soc., 2001, 123(41), 9947-9955.
[http://dx.doi.org/10.1021/ja004048o] [PMID: 11592873]
[4]
(a)George, M.; Joseph, L.; Sadanandan, H.R. A review on screening of novel oxazine derivatives for certain pharmacological activities. IJPPR. Human, 2016, 6, 1-6.
(b)Yakovlev, I.P.; Prep’yalov, A.V.; Ivin, B.A. Unsaturated 4H-1, 3-oxazines. Heterocycl. Compd., 1994, 30, 255-271.
[http://dx.doi.org/10.1007/BF01165688]
(c)Prostota, Y.; Berthet, J.; Delbaere, S.; Coelho, P.J. Bichromophoric dye derived from benzo [1, 3] oxazine system. Dyes Pigm., 2013, 96, 569-573.
[http://dx.doi.org/10.1016/j.dyepig.2012.09.017]
[5]
(a)Gaonkar, S.L.; Nagaraj, V.U.; Nayak, S. A review on current synthetic strategies of oxazines. Mini Rev. Org. Chem., 2019, 16(1), 43-58.
[http://dx.doi.org/10.2174/1570193X15666180531092843]
(b)Vibhute, A.Y.; Zangade, S.B.; Chavan, S.B.; Vibhute, Y.B. Pelagia research library. Pharm. Sin., 2011, 2, 217-222.
(c)Siddiqui, N.; Ali, R.; Alam, M.S.; Ahsan, W. Pharmacological profile of benzoxazines: a short review. J. Chem. Pharm. Res., 2010, 2, 309-316.
[6]
(a)Ishida, H.; Agag, T. Handbook of Benzoxazine Resins; Elsevier Publication, 2011.
(b)Fang, B.; Lu, X.; Hu, J.; Zhang, G.; Zheng, X.; He, L.; Cao, J.; Gu, J.; Cao, F. pH controlled green luminescent carbon dots derived from benzoxazine monomers for the fluorescence turn-on and turn-off detection. J. Colloid Interface Sci., 2019, 536, 516-525.
[http://dx.doi.org/10.1016/j.jcis.2018.10.088] [PMID: 30388529]
[7]
(a)Qiang, L.G.; Baine, N.H. A convenient synthesis of substituted quinolines by thermal or photochemical electrocyclic rearrangement of o-vinyl imidates under non-acidic conditions. Tetrahedron Lett., 1988, 29, 3517-3520.
[http://dx.doi.org/10.1016/0040-4039(88)85281-X]
(b)Capozzi, Giuseppe; Ottana, Rosaria; Romeo, Giovanni; Valle, Giovanni. Intramolecular cyclization using methylbis(methylthio)sulfonium salts. Part 3. Synthesis of 3,1-benzo-xazines. J. Chem. Res. Synop., 1986, 6, 200-201.
[8]
(a)Tsoungas, P.G. Synthesis of 1, 2-oxazines and their N-oxides. Heterocycles, 2002, 57, 1149-1178.
[http://dx.doi.org/10.3987/REV-02-547]
(b)Varela, J.A.; Saa, C. Metal-catalyzed cyclizations to pyran and oxazine derivatives. Synthesis, 2016, 48, 3470-3478.
[http://dx.doi.org/10.1055/s-0035-1562466]
(c)Smist, M.; Kwiecien, H. Synthesis of 3, 4-dihydro-2H-1, 4-benzoxazines and their oxo derivatives: a review. Curr. Org. Synth., 2014, 11, 676-695.
[http://dx.doi.org/10.2174/1570179411666140623230529]
(d)Achari, B.; Mandal, S.B.; Dutta, P.K.; Chowdhury, C. Perspectives on 1, 4-benzodioxins, 1, 4-benzoxazines and their 2, 3-dihydro derivatives. Synlett, 2004, 14, 2449-2467.
(e)Pfrengle, F.; Reissig, H.U. Amino sugars and their mimetics via 1,2-oxazines. Chem. Soc. Rev., 2010, 39(2), 549-557.
[http://dx.doi.org/10.1039/B914356D] [PMID: 20111779]
(f)Sukhorukov, A.Y.; Klenov, M.S.; Ivashkin, P.E.; Lesiv, A.V.; Khomutova, Y.A.; Loffe, S.L. A convenient procedure for the synthesis of 3-substituted 5, 6-dihydro-4H-1, 2-oxazines from nitroethane. Synthesis, 2007, 97-107.
[9]
(a)Liu, Y.; Zhao, S.; Wang, H.; Run, M. Synthesis, polymerization, and thermal properties of benzoxazine based on p-aminobenzonitrile. Thermochim. Acta, 2012, 549, 42-48.
[http://dx.doi.org/10.1016/j.tca.2012.09.017]
(b)Bendorf, H.D.; Vebrosky, E.N.; Eck, B.J. Synthesis and characterization of 1, 4-dihydro-3, 1-benzoxazines and 1, 2, 3, 4-tetrahydroquinazolines: an unknown structure determination experiment. J. Chem. Educ., 2016, 93, 1637-1641.
[http://dx.doi.org/10.1021/acs.jchemed.6b00155]
(c)Han, B.; Yang, X.L.; Wang, C.; Bai, Y.W.; Pan, T.C.; Chen, X.; Yu, W. CuCl/DABCO/4-HO-TEMPO-catalyzed aerobic oxidative synthesis of 2-substituted quinazolines and 4H-3,1-benzoxazines. J. Org. Chem., 2012, 77(2), 1136-1142.
[http://dx.doi.org/10.1021/jo2020399] [PMID: 22168403]
(d)Butler, J.D.; Solano, D.M.; Robins, L.I.; Haddadin, M.J.; Kurth, M.J. A facile synthesis of new 5H-indazolo[3,2-b]benzo[d]-1,3-oxazines via one-pot intramolecular bis-heterocyclizations. J. Org. Chem., 2008, 73(1), 234-240.
[http://dx.doi.org/10.1021/jo702067z] [PMID: 18052193]
[10]
(a)Lonca, G.H.; Tejo, C.; Chan, H.L.; Chiba, S.; Gagosz, F. Gold(I)-catalyzed 6-endo-dig azide-yne cyclization: efficient access to 2H-1,3-oxazines. Chem. Commun. (Camb.), 2017, 53(4), 736-739.
[http://dx.doi.org/10.1039/C6CC08397H] [PMID: 27990524]
(b)El-Bayouki, K.A.M.; Basyouni, W.M.; Khatab, T.K.; Kandel, E.M.; Badawy, D.S.; Abdel-Galil, E.; El-Henawy, A.A. Efficient one-pot synthesis, antimicrobial and docking studies of some newer tetrahydro‐4H‐benzo [1,3-e] oxazines and related β‐acylamino ketone derivatives. J. Heterocycl. Chem., 2016, 54, 1054-1064.
[http://dx.doi.org/10.1002/jhet.2674]
(c)Cai, Z.J.; Li, F.H.; Wang, S.Y.; Ji, S.J. Palladium-catalyzed cascade arene/alkyne annulation: synthesis of fluorene-benzoxazine derivatives. Org. Lett., 2016, 18(19), 4810-4813.
[http://dx.doi.org/10.1021/acs.orglett.6b02224] [PMID: 27616460]
[11]
(a)Mollo, M.C.; Orelli, L.R. Microwave-assisted synthesis of 2-aryl-2-oxazolines, 5, 6-dihydro-4H-1, 3-oxazines, and 4, 5, 6, 7-tetrahydro-1, 3-oxazepines. Org. Lett., 2016, 18(23), 6116-6119.
[http://dx.doi.org/10.1021/acs.orglett.6b03122] [PMID: 27934376]
(b)de Brito, M.R.M.; Peláez, W.J.; Faillace, M.S.; Militão, G.C.G.; Almeida, J.R.G.S.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Salvadori, M.C.; Teixeira, F.S.; Freitas, R.M.; Pinto, P.L.S.; Mengarda, A.C.; Silva, M.P.N.; Da Silva Filho, A.A.; de Moraes, J. Cyclohexene-fused 1,3-oxazines with selective antibacterial and antiparasitic action and low cytotoxic effects. Toxicol. In Vitro, 2017, 44, 273-279.
[http://dx.doi.org/10.1016/j.tiv.2017.07.021] [PMID: 28755871]
(c)Ranjith, J.; Rajesh, N.; Sridhar, B.; Radha Krishna, P. Intramolecular oxyacetoxylation of N-allylamides: an expeditious synthesis of oxazolines and oxazines by using a PhI(OAc)2/hydrogen fluoride-pyridine system. Org. Biomol. Chem., 2016, 14(42), 10074-10079.
[http://dx.doi.org/10.1039/C6OB01752E] [PMID: 27722637]
(d)Wang, J.; Zhou, R.; Zhuang, S.; Wu, A. Acid-mediated four-component tandem cyclization: access to multifused 1, 3-benzoxazine frameworks. Tetrahedron, 2018, 74, 7283-7289.
[http://dx.doi.org/10.1016/j.tet.2018.10.059]
[12]
(a)Maity, A.; Teets, T.S. Main group Lewis acid-mediated transformations of transition-metal hydride complexes. Chem. Rev., 2016, 116(15), 8873-8911.
[http://dx.doi.org/10.1021/acs.chemrev.6b00034] [PMID: 27164024]
(b)North, M.; Usanov, D.L.; Young, C. Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 2008, 108(12), 5146-5226.
[http://dx.doi.org/10.1021/cr800255k] [PMID: 19067648]
(c)Mahrwald, R. Diastereoselection in Lewis-acid-mediated aldol additions. Chem. Rev., 1999, 99(5), 1095-1120.
[http://dx.doi.org/10.1021/cr980415r] [PMID: 11749441]
(d)Hong, M.; Chen, J.; Chen, E.Y.X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev., 2018, 118(20), 10551-10616.
[http://dx.doi.org/10.1021/acs.chemrev.8b00352] [PMID: 30350583]
(e)Kessar, S.V.; Singh, P. Lewis acid complexation of tertiary amines and related compounds: a strategy for α-deprotonation and stereocontrol. Chem. Rev., 1997, 97(3), 721-738.
[http://dx.doi.org/10.1021/cr950082n] [PMID: 11848886]
(f)Liu, L.L.; Stephan, D.W. Radicals derived from Lewis acid/base pairs. Chem. Soc. Rev., 2019, 48(13), 3454-3463.
[http://dx.doi.org/10.1039/C8CS00940F] [PMID: 30724924]
(g)Liu, Y.; Lau, T.C. Activation of metal oxo and nitrido complexes by Lewis acids. J. Am. Chem. Soc., 2019, 141(9), 3755-3766.
[http://dx.doi.org/10.1021/jacs.8b13100] [PMID: 30707842]
(h)Bayne, J.M.; Stephan, D.W. Phosphorus Lewis acids: emerging reactivity and applications in catalysis. Chem. Soc. Rev., 2016, 45(4), 765-774.
[http://dx.doi.org/10.1039/C5CS00516G] [PMID: 26255595]
(i)Cañeque, T.; Truscott, F.M.; Rodriguez, R.; Maestri, G.; Malacria, M. Electrophilic activation of allenenes and allenynes: analogies and differences between Brønsted and Lewis acid activation. Chem. Soc. Rev., 2014, 43(9), 2916-2926.
[http://dx.doi.org/10.1039/C4CS00023D] [PMID: 24643348]
(j)Lichtenberg, C.; Pan, F.; Spaniol, T.P.; Englert, U.; Okuda, J. The bis(allyl)bismuth cation: a reagent for direct allyl transfer by Lewis acid activation and controlled radical polymerization. Angew. Chem. Int. Ed. Engl., 2012, 51(52), 13011-13015.
[http://dx.doi.org/10.1002/anie.201206782] [PMID: 23166056]
(k)Bai, Y.; Tao, W.; Ren, J.; Wang, Z. Lewis acid catalyzed intramolecular [4+2] and [3+2] cross-cycloaddition of alkynylcyclopropane ketones with carbonyl compounds and imines. Angew. Chem. Int. Ed. Engl., 2012, 51(17), 4112-4116.
[http://dx.doi.org/10.1002/anie.201200450] [PMID: 22407901]
(l)Denmark, S.E.; Beutner, G.L.; Wynn, T.; Eastgate, M.D. Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes. J. Am. Chem. Soc., 2005, 127(11), 3774-3789.
[http://dx.doi.org/10.1021/ja047339w] [PMID: 15771512]
(m)Corma, A.; García, H. Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev., 2003, 103(11), 4307-4365.
[http://dx.doi.org/10.1021/cr030680z] [PMID: 14611265]
[13]
Wang, Y-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F.D. Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. J. Am. Chem. Soc., 2012, 134(31), 12928-12931.
[http://dx.doi.org/10.1021/ja305795x] [PMID: 22830953]
[14]
Jana, S.; Ashokan, A.; Kumar, S.; Verma, A.; Kumar, S. Copper-catalyzed trifluoromethylation of alkenes: synthesis of trifluoromethylated benzoxazines. Org. Biomol. Chem., 2015, 13(31), 8411-8415.
[http://dx.doi.org/10.1039/C5OB01196E] [PMID: 26166814]
[15]
Xia, H.D.; Zhang, Y.D.; Wang, Y.H.; Zhang, C. Water-soluble hypervalent Iodine(III) having an I-N bond. A reagent for the synthesis of indoles. Org. Lett., 2018, 20(13), 4052-4056.
[http://dx.doi.org/10.1021/acs.orglett.8b01615] [PMID: 29911872]
[16]
Du, W.; Gu, Q.; Li, Z.; Yang, D. Palladium(II)-catalyzed intramolecular tandem aminoalkylation via divergent C(sp3)-H functionalization. J. Am. Chem. Soc., 2015, 137(3), 1130-1135.
[http://dx.doi.org/10.1021/ja5102739] [PMID: 25541675]
[17]
Pereira, G.J.V.; Tavares, M.T.; Azevedo, R.A.; Martins, B.B.; Cunha, M.R.; Bhardwaj, R.; Cury, Y.; Zambelli, V.O.; Barbosa, E.G.; Hediger, M.A.; Filho, R.P. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: design, synthesis and molecular modeling. Bioorg. Med. Chem., 2019, 27(13), 2893-2904.
[http://dx.doi.org/10.1016/j.bmc.2019.05.020] [PMID: 31104785]
[18]
Wang, Y.F.; Chen, H.; Zhu, X.; Chiba, S. Copper-catalyzed aerobic aliphatic C-H oxygenation directed by an amidine moiety. J. Am. Chem. Soc., 2012, 134(29), 11980-11983.
[http://dx.doi.org/10.1021/ja305833a] [PMID: 22789112]
[19]
Zimaity, T.; Anwar, M.; Abdel, I. Study of the reaction of Grignard reagents with 4(3H)-quinazolinones and 4H-3,1-benzoxazin-4-ones. Acta Chir. Acad. Sci. Hung., 1975, 87(3), 251-255.
[20]
Qiang, L.G.; Baine, N.H. A convenient synthesis of substituted quinolines by thermal electrocyclic rearrangement of o-vinyl anils under nonacidic conditions. J. Org. Chem., 1988, 53(18), 4218-4222.
[http://dx.doi.org/10.1021/jo00253a011]
[21]
Katritzky, A.R.; Zhang, G.; Jiang, J.; Steel, P.J. A novel o-iminophenyl anion route to heterocycles and ortho-substituted anilines. J. Org. Chem., 1995, 60(23), 7625-7630.
[http://dx.doi.org/10.1021/jo00128a040]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy