Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants

Author(s): Meizhen Wang, Xiaoxiao Qiu, Xian Pan and Caili Li*

Volume 22, Issue 6, 2021

Published on: 22 June, 2020

Page: [848 - 866] Pages: 19

DOI: 10.2174/1389201021666200622121809

Price: $65

Abstract

Plants produce thousands of chemically diverse secondary metabolites, many of which have valuable pharmaceutical properties. There is much interest in the synthesis of these pharmaceuticallyvaluable compounds, including the key enzymes and the transcription factors involved. The function and regulatory mechanism of transcription factors in biotic and abiotic stresses have been studied in depth. However, their regulatory roles in the biosynthesis of bioactive compounds, especially in medicinal plants, have only begun. Here, we review what is currently known about how transcription factors contribute to the synthesis of bioactive compounds (alkaloids, terpenoids, flavonoids, and phenolic acids) in medicinal plants. Recent progress has been made in the cloning and characterization of transcription factors in medicinal plants on the genome scale. So far, several large transcription factors have been identified in MYB, WRKY, bHLH, ZIP, AP2/ERF transcription factors. These transcription factors have been predicted to regulate bioactive compound production. These transcription factors positively or negatively regulate the expression of multiple genes encoding key enzymes, and thereby control the metabolic flow through the biosynthetic pathway. Although the research addressing this niche topic is in its infancy, significant progress has been made, and advances in high-throughput sequencing technology are expected to accelerate the discovery of key regulatory transcription factors in medicinal plants. This review is likely to be useful for those interested in the synthesis of pharmaceutically- valuable plant compounds, especially those aiming to breed or engineer plants that produce greater yields of these compounds.

Keywords: Bioactive compound, transcription factor, medicinal plant, secondary metabolite, genome scale, terpenoids.

Graphical Abstract

[1]
Luscombe, N.M.; Austin, S.E.; Berman, H.M.; Thornton, J.M. An overview of the structures of protein-DNA complexes. Genome Biol., 2000, 1(1)
[PMID: 11104519]
[2]
Guilfoyle, T.J. The structure of plant gene promoters. Genet. Engin., 1997, 19, 15-47.
[http://dx.doi.org/10.1007/978-1-4615-5925-2_2]
[3]
Goff, S.A.; Cone, K.C.; Chandler, V.L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev., 1992, 6(5), 864-875.
[http://dx.doi.org/10.1101/gad.6.5.864] [PMID: 1577278]
[4]
Liu, L.; White, M.J.; MacRae, T.H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur. J. Biochem., 1999, 262(2), 247-257.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00349.x] [PMID: 10336605]
[5]
Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci., 2010, 15(10), 573-581.
[http://dx.doi.org/10.1016/j.tplants.2010.06.005] [PMID: 20674465]
[6]
Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J., 2011, 66(1), 94-116.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04459.x] [PMID: 21443626]
[7]
Rosinski, J.A.; Atchley, W.R. Molecular evolution of the Myb family of transcription factors: Evidence for polyphyletic origin. J. Mol. Evol., 1998, 46(1), 74-83.
[http://dx.doi.org/10.1007/PL00006285] [PMID: 9419227]
[8]
Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol., 2001, 4(5), 447-456.
[http://dx.doi.org/10.1016/S1369-5266(00)00199-0] [PMID: 11597504]
[9]
Wilkins, O.; Nahal, H.; Foong, J.; Provart, N.J.; Campbell, M.M. Expansion and diversification of the populus R2R3-MYB family of transcription factors. Plant Physiol., 2009, 149(2), 981-993.
[http://dx.doi.org/10.1104/pp.108.132795] [PMID: 19091872]
[10]
Du, H.; Feng, B.R.; Yang, S.S.; Huang, Y.B.; Tang, Y.X. The R2R3-MYB transcription factor gene family in maize. PLoS One, 2012, 7(6), e37463.
[http://dx.doi.org/10.1371/journal.pone.0037463] [PMID: 22719841]
[11]
Du, H.; Yang, S.S.; Liang, Z.; Feng, B.R.; Liu, L.; Huang, Y.B.; Tang, Y.X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol., 2012, 12, 106.
[http://dx.doi.org/10.1186/1471-2229-12-106] [PMID: 22776508]
[12]
Chen, J.; Wu, X.T.; Xu, Y.Q.; Zhong, Y.; Li, Y.X.; Chen, J.K.; Li, X.; Nan, P. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. BMC Genomics, 2015, 16(Suppl. 7), S15.
[http://dx.doi.org/10.1186/1471-2164-16-S7-S15] [PMID: 26099797]
[13]
He, C.; Teixeira da Silva, J.A.; Wang, H.; Si, C.; Zhang, M.; Zhang, X.; Li, M.; Tan, J.; Duan, J. Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis. Sci. Rep., 2019, 9(1), 13818.
[http://dx.doi.org/10.1038/s41598-019-49812-8] [PMID: 31554868]
[14]
Li, L.; Liu, M.; Shi, K.; Yu, Z.; Zhou, Y.; Fan, R.; Shi, Q. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides. Int. J. Mol. Sci., 2019, 20(16), E4030.
[http://dx.doi.org/10.3390/ijms20164030] [PMID: 31426587]
[15]
Liu, X.; Yu, W.; Zhang, X.; Wang, G.; Cao, F.; Cheng, H. Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L. Physiol. Mol. Biol. Plants, 2017, 23(3), 503-516.
[http://dx.doi.org/10.1007/s12298-017-0436-9] [PMID: 28878490]
[16]
Zhou, C.; Chen, Y.; Wu, Z.; Lu, W.; Han, J.; Wu, P.; Chen, Y.; Li, M.; Jiang, H.; Wu, G. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.). Gene, 2015, 572(1), 63-71.
[http://dx.doi.org/10.1016/j.gene.2015.06.072] [PMID: 26142104]
[17]
Lai, B.; Hu, B.; Qin, Y.H.; Zhao, J.T.; Wang, H.C.; Hu, G.B. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics, 2015, 16, 225.
[http://dx.doi.org/10.1186/s12864-015-1433-4] [PMID: 25887579]
[18]
Wang, T.; Yang, B.; Guan, Q.; Chen, X.; Zhong, Z.; Huang, W.; Zhu, W.; Tian, J. Transcriptional regulation of Lonicera japonica thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biol., 2019, 19(1), 198.
[http://dx.doi.org/10.1186/s12870-019-1803-1] [PMID: 31088368]
[19]
Liu, T.; Luo, T.; Guo, X.; Zou, X.; Zhou, D.; Afrin, S.; Li, G.; Zhang, Y.; Zhang, R.; Luo, Z. PgMYB2, a MeJA-responsive transcription factor, positively regulates the dammarenediol synthase gene expression in Ptanax ginseng. Int. J. Mol. Sci., 2019, 20(9), E2219.
[http://dx.doi.org/10.3390/ijms20092219] [PMID: 31064108]
[20]
Luo, H.; Sun, C.; Sun, Y.; Wu, Q.; Li, Y.; Song, J.; Niu, Y.; Cheng, X.; Xu, H.; Li, C.; Liu, J.; Steinmetz, A.; Chen, S. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics, 2011, 12(Suppl. 5), S5.
[http://dx.doi.org/10.1186/1471-2164-12-S5-S5] [PMID: 22369100]
[21]
Vashisht, I.; Pal, T.; Sood, H.; Chauhan, R.S. Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis. Mol. Biol. Rep., 2016, 43(12), 1395-1409.
[http://dx.doi.org/10.1007/s11033-016-4073-0] [PMID: 27633652]
[22]
Kumar, P.; Jaiswal, V.; Pal, T.; Singh, J.; Chauhan, R.S. Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. Protoplasma, 2017, 254(1), 217-228.
[http://dx.doi.org/10.1007/s00709-015-0938-7] [PMID: 26733390]
[23]
Wang, F.; Suo, Y.; Wei, H.; Li, M.; Xie, C.; Wang, L.; Chen, X.; Zhang, Z. Identification and characterization of 40 isolated Rehmannia glutinosa MYB family genes and their expression profiles in response to shading and continuous cropping. Int. J. Mol. Sci., 2015, 16(7), 15009-15030.
[http://dx.doi.org/10.3390/ijms160715009] [PMID: 26147429]
[24]
Li, C.; Lu, S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics, 2014, 15, 277.
[http://dx.doi.org/10.1186/1471-2164-15-277] [PMID: 24725266]
[25]
Wang, T.; Chen, Y.; Zhuang, W.; Zhang, F.; Shu, X.; Wang, Z.; Yang, Q. Transcriptome sequencing reveals regulatory mechanisms of taxol synthesis in Taxus wallichiana var. Int. J. Genomics, 2019., 20191596895.
[http://dx.doi.org/10.1155/2019/1596895] [PMID: 31192250]
[26]
Qing, J.; Dawei, W.; Jun, Z.; Yulan, X.; Bingqi, S.; Fan, Z. Genome-wide characterization and expression analyses of the MYB superfamily genes during developmental stages in Chinese jujube. PeerJ, 2019, 7, e6353.
[http://dx.doi.org/10.7717/peerj.6353]
[27]
Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci., 2010, 15(5), 247-258.
[http://dx.doi.org/10.1016/j.tplants.2010.02.006] [PMID: 20304701]
[28]
Ishiguro, S.; Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol. Gen. Genet., 1994, 244(6), 563-571.
[http://dx.doi.org/10.1007/BF00282746] [PMID: 7969025]
[29]
Eulgem, T.; Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol., 2007, 10(4), 366-371.
[http://dx.doi.org/10.1016/j.pbi.2007.04.020] [PMID: 17644023]
[30]
He, X.; Wang, H.; Yang, J.; Deng, K.; Wang, T. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis. Genome, 2018, 61(2), 91-102.
[http://dx.doi.org/10.1139/gen-2017-0142] [PMID: 29338341]
[31]
Guo, H.; Zhang, Y.; Wang, Z.; Lin, L.; Cui, M.; Long, Y.; Xing, Z. Genome-wide identification of WRKY transcription factors in the Asteranae. Plants (Basel), 2019, 8(10), E393.
[http://dx.doi.org/10.3390/plants8100393] [PMID: 31581604]
[32]
Yang, Z.; Wang, X.; Xue, J.; Meng, L.; Li, R. Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus. Sheng Wu Gong Cheng Xue Bao, 2013, 29(6), 785-802.
[PMID: 24063238]
[33]
He, C.; Teixeira da Silva, J.A.; Tan, J.; Zhang, J.; Pan, X.; Li, M.; Luo, J.; Duan, J. A genome-wide identification of the WRKY family genes and a survey of potential WRKY target genes in Dendrobium officinale. Sci. Rep., 2017, 7(1), 9200.
[http://dx.doi.org/10.1038/s41598-017-07872-8] [PMID: 28835632]
[34]
Liao, Y.L.; Shen, Y.B.; Chang, J.; Zhang, W.W.; Cheng, S.Y.; Xu, F. Isolation, expression, and promoter analysis of GbWRKY2: A novel transcription factor gene from Ginkgo biloba. Int. J. Genomics, 2015, 2015, 607185.
[http://dx.doi.org/10.1155/2015/607185] [PMID: 26351628]
[35]
Xiong, W.; Xu, X.; Zhang, L.; Wu, P.; Chen, Y.; Li, M.; Jiang, H.; Wu, G. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene, 2013, 524(2), 124-132.
[http://dx.doi.org/10.1016/j.gene.2013.04.047] [PMID: 23644253]
[36]
Karanja, B.K.; Fan, L.; Xu, L.; Wang, Y.; Zhu, X.; Tang, M.; Wang, R.; Zhang, F.; Muleke, E.M.; Liu, L. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses. Plant Cell Rep., 2017, 36(11), 1757-1773.
[http://dx.doi.org/10.1007/s00299-017-2190-4] [PMID: 28819820]
[37]
Li, H.L.; Zhang, L.B.; Guo, D.; Li, C.Z.; Peng, S.Q. Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene, 2012, 503(2), 248-253.
[http://dx.doi.org/10.1016/j.gene.2012.04.069] [PMID: 22579867]
[38]
Li, C.; Li, D.; Shao, F.; Lu, S. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genomics, 2015, 16, 200.
[http://dx.doi.org/10.1186/s12864-015-1411-x] [PMID: 25881056]
[39]
Singh, G.; Singh, G.; Singh, P.; Parmar, R.; Paul, N.; Vashist, R.; Swarnkar, M.K.; Kumar, A.; Singh, S.; Singh, A.K.; Kumar, S.; Sharma, R.K. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana bert. Sci. Rep., 2017, 7(1), 11835.
[http://dx.doi.org/10.1038/s41598-017-12025-y] [PMID: 28928460]
[40]
Tripathi, S.; Sangwan, R.S.; Narnoliya, L.K.; Srivastava, Y.; Mishra, B.; Sangwan, N.S. Transcription factor repertoire in ashwagandha (Withania somnifera) through analytics of transcriptomic resources: Insights into regulation of development and withanolide metabolism. Sci. Rep., 2017, 7(1), 16649.
[http://dx.doi.org/10.1038/s41598-017-14657-6] [PMID: 29192149]
[41]
Li, Y.; Gou, J.; Chen, F.; Li, C.; Zhang, Y. Comparative transcriptome analysis identifies putative genes involved in the biosynthesis of xanthanolides in Xanthium strumarium l. Front. Plant Sci., 2016, 7, 1317.
[http://dx.doi.org/10.3389/fpls.2016.01317] [PMID: 27625674]
[42]
Chen, X.; Chen, R.; Wang, Y.; Wu, C.; Huang, J. Genome-wide identification of WRKY transcription factors in Chinese jujube (Ziziphus jujuba Mill.) and their involvement in fruit developing, ripening, and abiotic stress. Genes (Basel), 2019, 10(5), E360.
[http://dx.doi.org/10.3390/genes10050360] [PMID: 31083435]
[43]
Carretero-Paulet, L.; Galstyan, A.; Roig-Villanova, I.; Martínez-García, J.F.; Bilbao-Castro, J.R.; Robertson, D.L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol., 2010, 153(3), 1398-1412.
[http://dx.doi.org/10.1104/pp.110.153593] [PMID: 20472752]
[44]
Rushton, P.J.; Bokowiec, M.T.; Han, S.; Zhang, H.; Brannock, J.F.; Chen, X.; Laudeman, T.W.; Timko, M.P. Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol., 2008, 147(1), 280-295.
[http://dx.doi.org/10.1104/pp.107.114041] [PMID: 18337489]
[45]
Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; Vezzi, A.; Legeai, F.; Hugueney, P.; Dasilva, C.; Horner, D.; Mica, E.; Jublot, D.; Poulain, J.; Bruyère, C.; Billault, A.; Segurens, B.; Gouyvenoux, M.; Ugarte, E.; Cattonaro, F.; Anthouard, V.; Vico, V.; Del Fabbro, C.; Alaux, M.; Di Gaspero, G.; Dumas, V.; Felice, N.; Paillard, S.; Juman, I.; Moroldo, M.; Scalabrin, S.; Canaguier, A.; Le Clainche, I.; Malacrida, G.; Durand, E.; Pesole, G.; Laucou, V.; Chatelet, P.; Merdinoglu, D.; Delledonne, M.; Pezzotti, M.; Lecharny, A.; Scarpelli, C.; Artiguenave, F.; Pè, M.E.; Valle, G.; Morgante, M.; Caboche, M.; Adam-Blondon, A.F.; Weissenbach, J.; Quétier, F.; Wincker, P. French-Italian public consortium for grapevine genome characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161), 463-467.
[http://dx.doi.org/10.1038/nature06148] [PMID: 17721507]
[46]
Lau, O.S.; Deng, X.W. Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol., 2010, 13(5), 571-577.
[http://dx.doi.org/10.1016/j.pbi.2010.07.001] [PMID: 20739215]
[47]
Zhou, M.; Memelink, J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv., 2016, 34(4), 441-449.
[http://dx.doi.org/10.1016/j.biotechadv.2016.02.004] [PMID: 26876016]
[48]
Xiang, L.; Jian, D.; Zhang, F.; Yang, C.; Bai, G.; Lan, X.; Chen, M.; Tang, K.; Liao, Z. The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua. J. Exp. Bot., 2019, 70(18), 4835-4848.
[http://dx.doi.org/10.1093/jxb/erz220] [PMID: 31087059]
[49]
Sun, W.; Jin, X.; Ma, Z.; Chen, H.; Liu, M. Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses. Int. J. Biol. Macromol., 2020, 15(155), 1478-1490.
[PMID: 31734362]
[50]
Xu, G.; Huang, J.; Lei, S.K.; Sun, X.G.; Li, X. Comparative gene expression profile analysis of ovules provides insights into jatropha curcas l. ovule development. Sci. Rep., 2019, 9(1), 15973.
[http://dx.doi.org/10.1038/s41598-019-52421-0] [PMID: 31685957]
[51]
Chu, Y.; Xiao, S.; Su, H.; Liao, B.; Zhang, J.; Xu, J.; Chen, S. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm. Sin. B, 2018, 8(4), 666-677.
[http://dx.doi.org/10.1016/j.apsb.2018.04.004] [PMID: 30109190]
[52]
Gao, J.; Peng, H.; Chen, F.; Luo, M.; Li, W. Genome-wide analysis of transcription factors related to anthocyanin biosynthesis in carmine radish (Raphanus sativus L.) fleshy roots. PeerJ, 2019, 7, e8041.
[53]
Zhang, X.; Luo, H.; Xu, Z.; Zhu, Y.; Ji, A.; Song, J.; Chen, S. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci. Rep., 2015, 5, 11244.
[http://dx.doi.org/10.1038/srep11244] [PMID: 26174967]
[54]
Li, H.; Gao, W.; Xue, C.; Zhang, Y.; Liu, Z.; Zhang, Y.; Meng, X.; Liu, M.; Zhao, J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics, 2019, 20(1), 568.
[http://dx.doi.org/10.1186/s12864-019-5936-2] [PMID: 31291886]
[55]
Sakuma, Y.; Liu, Q.; Dubouzet, J.G.; Abe, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun., 2002, 290(3), 998-1009.
[http://dx.doi.org/10.1006/bbrc.2001.6299] [PMID: 11798174]
[56]
Yamasaki, K.; Kigawa, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci., 2013, 18(5), 267-276.
[http://dx.doi.org/10.1016/j.tplants.2012.09.001] [PMID: 23040085]
[57]
Licausi, F.; Ohme-Takagi, M.; Perata, P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol., 2013, 199(3), 639-649.
[http://dx.doi.org/10.1111/nph.12291] [PMID: 24010138]
[58]
Moore, M.; Vogel, M.; Dietz, K. The acclimation response to high light is initiated within seconds as indicated by upregulation of AP2/ERF transcription factor network in Arabidopsis thaliana. Plant Signal. Behav., 2014, 9(10), 976479.
[http://dx.doi.org/10.4161/15592324.2014.976479] [PMID: 25482793]
[59]
Pan, Q.; Wang, C.; Xiong, Z.; Wang, H.; Fu, X.; Shen, Q.; Peng, B.; Ma, Y.; Sun, X.; Tang, K. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of Bisindole Alkaloids and their precursors in Catharanthus roseus. Front. Plant Sci., 2019, 10, 931.
[http://dx.doi.org/10.3389/fpls.2019.00931] [PMID: 31379908]
[60]
Li, M.Y.; Xu, Z.S.; Huang, Y.; Tian, C.; Wang, F.; Xiong, A.S. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Mol. Genet. Genomics, 2015, 290(6), 2049-2061.
[http://dx.doi.org/10.1007/s00438-015-1061-3] [PMID: 25971861]
[61]
Liu, M.; Sun, W.; Ma, Z.; Zheng, T.; Huang, L.; Wu, Q.; Zhao, G.; Tang, Z.; Bu, T.; Li, C.; Chen, H. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biol., 2019, 19(1), 84.
[http://dx.doi.org/10.1186/s12870-019-1681-6] [PMID: 30786863]
[62]
Tang, Y.; Qin, S.; Guo, Y.; Chen, Y.; Wu, P.; Chen, Y.; Li, M.; Jiang, H.; Wu, G. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in Rice increased its sensitivity to salinity stress. PLoS One, 2016, 11(3), e0150879.
[http://dx.doi.org/10.1371/journal.pone.0150879] [PMID: 26943337]
[63]
Najafi, S.; Sorkheh, K.; Nasernakhaei, F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci. Rep., 2018, 8(1), 11576.
[http://dx.doi.org/10.1038/s41598-018-29526-z] [PMID: 30068961]
[64]
Karanja, B.K.; Xu, L.; Wang, Y.; Tang, M.; M’mbone Muleke, E.; Dong, J.; Liu, L. Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): Unveiling evolution and patterns in response to abiotic stresses. Gene, 2019, 718, 144048.
[http://dx.doi.org/10.1016/j.gene.2019.144048] [PMID: 31421189]
[65]
Xu, W.; Li, F.; Ling, L.; Liu, A. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genomics, 2013, 14, 785.
[http://dx.doi.org/10.1186/1471-2164-14-785] [PMID: 24225250]
[66]
Ji, A.J.; Luo, H.M.; Xu, Z.C.; Zhang, X.; Zhu, Y.J.; Liao, B.S.; Yao, H.; Song, J.Y.; Chen, S.L. Genome-wide identification of the AP2/ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza. Plant Genome, 2016, 9(2), 2.
[http://dx.doi.org/10.3835/plantgenome2015.08.0077] [PMID: 27898817]
[67]
Zhang, Z.; Li, X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci. Rep., 2018, 8(1), 15612.
[http://dx.doi.org/10.1038/s41598-018-33744-w] [PMID: 30353116]
[68]
Hurst, H.C. Transcription factors 1: bZIP proteins. Protein Profile, 1995, 2(2), 101-168.
[PMID: 7780801]
[69]
Izawa, T.; Foster, R.; Chua, N.H. Plant bZIP protein DNA binding specificity. J. Mol. Biol., 1993, 230(4), 1131-1144.
[http://dx.doi.org/10.1006/jmbi.1993.1230] [PMID: 8487298]
[70]
Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200.
[http://dx.doi.org/10.1096/fasebj.8.2.8119490] [PMID: 8119490]
[71]
Sibéril, Y.; Benhamron, S.; Memelink, J.; Giglioli-Guivarc’h, N.; Thiersault, M.; Boisson, B.; Doireau, P.; Gantet, P. Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol. Biol., 2001, 45(4), 477-488.
[http://dx.doi.org/10.1023/A:1010650906695] [PMID: 11352466]
[72]
Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111.
[http://dx.doi.org/10.1016/S1360-1385(01)02223-3] [PMID: 11906833]
[73]
Liao, Y.; Zou, H.F.; Wei, W.; Hao, Y.J.; Tian, A.G.; Huang, J.; Liu, Y.F.; Zhang, J.S.; Chen, S.Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228(2), 225-240.
[http://dx.doi.org/10.1007/s00425-008-0731-3] [PMID: 18365246]
[74]
Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 2008, 146(2), 333-350.
[http://dx.doi.org/10.1104/pp.107.112821] [PMID: 18065552]
[75]
Wang, J.; Zhou, J.; Zhang, B.; Vanitha, J.; Ramachandran, S.; Jiang, S.Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J. Integr. Plant Biol., 2011, 53(3), 212-231.
[http://dx.doi.org/10.1111/j.1744-7909.2010.01017.x] [PMID: 21205183]
[76]
Jin, Z.; Xu, W.; Liu, A. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). Planta, 2014, 239(2), 299-312.
[http://dx.doi.org/10.1007/s00425-013-1979-9] [PMID: 24165825]
[77]
Liu, J.; Chen, N.; Chen, F.; Cai, B.; Dal Santo, S.; Tornielli, G.B.; Pezzotti, M.; Cheng, Z.M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 2014, 15, 281.
[http://dx.doi.org/10.1186/1471-2164-15-281] [PMID: 24725365]
[78]
Zhao, J.; Guo, R.; Guo, C.; Hou, H.; Wang, X.; Gao, H. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Front. Plant Sci., 2016, 7, 376.
[http://dx.doi.org/10.3389/fpls.2016.00376] [PMID: 27066030]
[79]
Liu, M.; Wen, Y.; Sun, W.; Ma, Z.; Huang, L.; Wu, Q.; Tang, Z.; Bu, T.; Li, C.; Chen, H. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics, 2019, 20(1), 483.
[http://dx.doi.org/10.1186/s12864-019-5882-z] [PMID: 31185893]
[80]
Que, F.; Wang, G.L.; Huang, Y.; Xu, Z.S.; Wang, F.; Xiong, A.S. Genomic identification of group A bZIP transcription factors and their responses to abiotic stress in carrot. Genet. Mol. Res., 2015, 14(4), 13274-13288.
[http://dx.doi.org/10.4238/2015.October.26.24] [PMID: 26535641]
[81]
Zhang, Y.; Butelli, E.; Alseekh, S.; Tohge, T.; Rallapalli, G.; Luo, J.; Kawar, P.G.; Hill, L.; Santino, A.; Fernie, A.R.; Martin, C. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat. Commun., 2015, 6, 8635.
[http://dx.doi.org/10.1038/ncomms9635] [PMID: 26497596]
[82]
Agarwal, P.; Pathak, S.; Lakhwani, D.; Gupta, P.; Asif, M.H.; Trivedi, P.K. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis. Protoplasma, 2016, 253(3), 857-871.
[http://dx.doi.org/10.1007/s00709-015-0848-8] [PMID: 26108744]
[83]
Mishra, S.; Triptahi, V.; Singh, S.; Phukan, U.J.; Gupta, M.M.; Shanker, K.; Shukla, R.K. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum. PLoS One, 2013, 8(1), e52784.
[http://dx.doi.org/10.1371/journal.pone.0052784] [PMID: 23382823]
[84]
Kato, N.; Dubouzet, E.; Kokabu, Y.; Yoshida, S.; Taniguchi, Y.; Dubouzet, J.G.; Yazaki, K.; Sato, F. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol., 2007, 48(1), 8-18.
[http://dx.doi.org/10.1093/pcp/pcl041] [PMID: 17132631]
[85]
Zhang, H.; Hedhili, S.; Montiel, G.; Zhang, Y.; Chatel, G.; Pré, M.; Gantet, P.; Memelink, J. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J., 2011, 67(1), 61-71.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04575.x] [PMID: 21401746]
[86]
Chatel, G.; Montiel, G.; Pré, M.; Memelink, J.; Thiersault, M.; Saint-Pierre, B.; Doireau, P.; Gantet, P. CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J. Exp. Bot., 2003, 54(392), 2587-2588.
[http://dx.doi.org/10.1093/jxb/erg275] [PMID: 12966042]
[87]
Menke, F.L.; Champion, A.; Kijne, J.W.; Memelink, J. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J., 1999, 18(16), 4455-4463.
[http://dx.doi.org/10.1093/emboj/18.16.4455] [PMID: 10449411]
[88]
van der Fits, L.; Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 2000, 289(5477), 295-297.
[http://dx.doi.org/10.1126/science.289.5477.295] [PMID: 10894776]
[89]
Suttipanta, N.; Pattanaik, S.; Kulshrestha, M.; Patra, B.; Singh, S.K.; Yuan, L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol., 2011, 157(4), 2081-2093.
[http://dx.doi.org/10.1104/pp.111.181834] [PMID: 21988879]
[90]
Pauw, B.; Hilliou, F.A.; Martin, V.S.; Chatel, G.; de Wolf, C.J.; Champion, A.; Pré, M.; van Duijn, B.; Kijne, J.W.; van der Fits, L.; Memelink, J. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem., 2004, 279(51), 52940-52948.
[http://dx.doi.org/10.1074/jbc.M404391200] [PMID: 15465826]
[91]
Yu, Z.X.; Li, J.X.; Yang, C.Q.; Hu, W.L.; Wang, L.J.; Chen, X.Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol. Plant, 2012, 5(2), 353-365.
[http://dx.doi.org/10.1093/mp/ssr087] [PMID: 22104293]
[92]
Ma, D.; Pu, G.; Lei, C.; Ma, L.; Wang, H.; Guo, Y.; Chen, J.; Du, Z.; Wang, H.; Li, G.; Ye, H.; Liu, B. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol., 2009, 50(12), 2146-2161.
[http://dx.doi.org/10.1093/pcp/pcp149] [PMID: 19880398]
[93]
Cao, W.; Wang, Y.; Shi, M.; Hao, X.; Zhao, W.; Wang, Y.; Ren, J.; Kai, G. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front. Plant Sci., 2018, 9, 554.
[http://dx.doi.org/10.3389/fpls.2018.00554] [PMID: 29755494]
[94]
Deng, C.; Hao, X.; Shi, M.; Fu, R.; Wang, Y.; Zhang, Y.; Zhou, W.; Feng, Y.; Makunga, N.P.; Kai, G. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci., 2019, 284, 1-8.
[http://dx.doi.org/10.1016/j.plantsci.2019.03.007] [PMID: 31084862]
[95]
Bai, Z.; Wu, J.; Huang, W.; Jiao, J.; Zhang, C.; Hou, Z.; Yan, K.; Zhang, X.; Han, R.; Liang, Z.; Zhang, X. The ethylene response factor SmERF8 regulates the expression of SmKSL1 and is involved in tanshinone biosynthesis in Saliva miltiorrhiza hairy roots. J. Plant Physiol., 2020, 244, 153006.
[http://dx.doi.org/10.1016/j.jplph.2019.153006] [PMID: 31805420]
[96]
Zhang, Y.; Ji, A.; Xu, Z.; Luo, H.; Song, J. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol. Biol., 2019, 100(1-2), 83-93.
[http://dx.doi.org/10.1007/s11103-019-00845-7] [PMID: 30847712]
[97]
Huang, Q.; Sun, M.; Yuan, T.; Wang, Y.; Shi, M.; Lu, S.; Tang, B.; Pan, J.; Wang, Y.; Kai, G. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem., 2019, 274, 368-375.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.119] [PMID: 30372953]
[98]
Xing, B.; Yang, D.; Yu, H.; Zhang, B.; Yan, K.; Zhang, X.; Han, R.; Liang, Z. Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Plant Sci., 2018, 276, 229-238.
[http://dx.doi.org/10.1016/j.plantsci.2018.07.016] [PMID: 30348323]
[99]
Xing, B.; Liang, L.; Liu, L.; Hou, Z.; Yang, D.; Yan, K.; Zhang, X.; Liang, Z. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep., 2018, 37(12), 1681-1692.
[http://dx.doi.org/10.1007/s00299-018-2339-9] [PMID: 30229287]
[100]
Zhou, Y.; Sun, W.; Chen, J.; Tan, H.; Xiao, Y.; Li, Q.; Ji, Q.; Gao, S.; Chen, L.; Chen, S.; Zhang, L.; Chen, W. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Sci. Rep., 2016, 6, 22852.
[http://dx.doi.org/10.1038/srep22852] [PMID: 26947390]
[101]
Zhang, S.; Ma, P.; Yang, D.; Li, W.; Liang, Z.; Liu, Y.; Liu, F. Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS One, 2013, 8(9), e73259.
[http://dx.doi.org/10.1371/journal.pone.0073259] [PMID: 24039895]
[102]
Sun, M.; Shi, M.; Wang, Y.; Huang, Q.; Yuan, T.; Wang, Q.; Wang, C.; Zhou, W.; Kai, G. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J. Exp. Bot., 2019, 70(1), 243-254.
[http://dx.doi.org/10.1093/jxb/ery349] [PMID: 30299490]
[103]
Yang, N.; Zhou, W.; Su, J.; Wang, X.; Li, L.; Wang, L.; Cao, X.; Wang, Z. Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front. Plant Sci., 2017, 8, 1804.
[http://dx.doi.org/10.3389/fpls.2017.01804] [PMID: 29230228]
[104]
Du, T.; Niu, J.; Su, J.; Li, S.; Guo, X.; Li, L.; Cao, X.; Kang, J. SmbHLH37 functions antagonistically with SmMYC2 in regulating Jasmonate-Mediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Front. Plant Sci., 2018, 9, 1720.
[http://dx.doi.org/10.3389/fpls.2018.01720] [PMID: 30524467]
[105]
Lenka, S.K.; Nims, N.E.; Vongpaseuth, K.; Boshar, R.A.; Roberts, S.C.; Walker, E.L. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front. Plant Sci., 2015, 6, 115.
[http://dx.doi.org/10.3389/fpls.2015.00115] [PMID: 25767476]
[106]
Zhang, M.; Jin, X.; Chen, Y.; Wei, M.; Liao, W.; Zhao, S.; Fu, C.; Yu, L. TcMYC2a, a basic helix-loop-helix transcription factor, transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis. Front. Plant Sci., 2018, 9, 863.
[http://dx.doi.org/10.3389/fpls.2018.00863] [PMID: 29977250]
[107]
Kazan, K.; Manners, J.M. MYC2: The master in action. Mol. Plant, 2013, 6(3), 686-703.
[http://dx.doi.org/10.1093/mp/sss128] [PMID: 23142764]
[108]
Zhang, M.; Li, S.; Nie, L.; Chen, Q.; Xu, X.; Yu, L.; Fu, C. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. Plant Mol. Biol., 2015, 89(4-5), 463-473.
[http://dx.doi.org/10.1007/s11103-015-0382-2] [PMID: 26445975]
[109]
Zhang, M.; Chen, Y.; Nie, L.; Jin, X.; Liao, W.; Zhao, S.; Fu, C.; Yu, L. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci. Rep., 2018, 8(1), 5197.
[http://dx.doi.org/10.1038/s41598-018-23558-1] [PMID: 29581461]
[110]
Sun, Y.; Niu, Y.; Xu, J.; Li, Y.; Luo, H.; Zhu, Y.; Liu, M.; Wu, Q.; Song, J.; Sun, C.; Chen, S. Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius. Plant Cell Tissue Organ Cult., 2013, 114, 269-277.
[http://dx.doi.org/10.1007/s11240-013-0323-1]
[111]
Zhang, X.; Ge, F.; Deng, B.; Shah, T.; Huang, Z.; Liu, D.; Chen, C. Ge.; Deng, B.; Shah, T.; Huang, Z.; Liu, D.; Chen, C. Molecular cloning and characterization of PnbHLH1 transcription factor in Panax notoginseng. Molecules, 2017, 22(8), E1268.
[http://dx.doi.org/10.3390/molecules22081268] [PMID: 28758911]
[112]
Facchini, P.J.; De Luca, V. Opium poppy and Madagascar periwinkle: Model non-model systems to investigate alkaloid biosynthesis in plants. Plant J., 2008, 54(4), 763-784.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03438.x] [PMID: 18476877]
[113]
Liscombe, D.K.; MacLeod, B.P.; Loukanina, N.; Nandi, O.I.; Facchini, P.J. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 2005, 66(20), 2501-2520.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.029] [PMID: 16342378]
[114]
Lee, E.J.; Facchini, P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell, 2010, 22(10), 3489-3503.
[http://dx.doi.org/10.1105/tpc.110.077958] [PMID: 21037103]
[115]
Apuya, N.R.; Park, J.H.; Zhang, L.; Ahyow, M.; Davidow, P.; Van Fleet, J.; Rarang, J.C.; Hippley, M.; Johnson, T.W.; Yoo, H.D.; Trieu, A.; Krueger, S.; Wu, C.Y.; Lu, Y.P.; Flavell, R.B.; Bobzin, S.C. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors. Plant Biotechnol. J., 2008, 6(2), 160-175.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00302.x] [PMID: 17961129]
[116]
Misra, P.; Pandey, A.; Tiwari, M.; Chandrashekar, K.; Sidhu, O.P.; Asif, M.H.; Chakrabarty, D.; Singh, P.K.; Trivedi, P.K.; Nath, P.; Tuli, R. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol., 2010, 152(4), 2258-2268.
[http://dx.doi.org/10.1104/pp.109.150979] [PMID: 20190095]
[117]
Pandey, A.; Misra, P.; Chandrashekar, K.; Trivedi, P.K. Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep., 2012, 31(10), 1867-1876.
[http://dx.doi.org/10.1007/s00299-012-1300-6] [PMID: 22733206]
[118]
Yamada, Y.; Motomura, Y.; Sato, F. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells. Plant Cell Physiol., 2015, 56(5), 1019-1030.
[http://dx.doi.org/10.1093/pcp/pcv027] [PMID: 25713177]
[119]
Ziegler, J.; Diaz-Chávez, M.L.; Kramell, R.; Ammer, C.; Kutchan, T.M. Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta, 2005, 222(3), 458-471.
[http://dx.doi.org/10.1007/s00425-005-1550-4] [PMID: 16034588]
[120]
Liscombe, D.K.; Facchini, P.J. Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J. Biol. Chem., 2007, 282(20), 14741-14751.
[http://dx.doi.org/10.1074/jbc.M611908200] [PMID: 17389594]
[121]
Hagel, J.M.; Facchini, P.J. Biochemistry and occurrence of o-demethylation in plant metabolism. Front. Physiol., 2010, 1, 14.
[http://dx.doi.org/10.3389/fphys.2010.00014] [PMID: 21423357]
[122]
Hagel, J.M.; Facchini, P.J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in Opium poppy. Nat. Chem. Biol., 2010, 6(4), 273-275.
[http://dx.doi.org/10.1038/nchembio.317] [PMID: 20228795]
[123]
Facchini, P.J.; Hagel, J.M.; Liscombe, D.K.; Loukanina, N.; MacLeod, B.P.; Samanani, N.; Zulak, K.G. Opium poppy: Blueprint for an alkaloid factory. Phytochem. Rev., 2007, 6, 97-124.
[http://dx.doi.org/10.1007/s11101-006-9042-0]
[124]
Dang, T.T.; Facchini, P.J. Characterization of three O-methyltransferases involved in noscapine biosynthesis in Opium poppy. Plant Physiol., 2012, 159(2), 618-631.
[http://dx.doi.org/10.1104/pp.112.194886] [PMID: 22535422]
[125]
Pathak, S.; Lakhwani, D.; Gupta, P.; Mishra, B.K.; Shukla, S.; Asif, M.H.; Trivedi, P.K. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PLoS One, 2013, 8(5), e65622.
[http://dx.doi.org/10.1371/journal.pone.0065622] [PMID: 23738019]
[126]
Minami, H.; Kim, J.S.; Ikezawa, N.; Takemura, T.; Katayama, T.; Kumagai, H.; Sato, F. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7393-7398.
[http://dx.doi.org/10.1073/pnas.0802981105] [PMID: 18492807]
[127]
Sato, F.; Yamada, Y. Engineering formation of medicinal compounds in cell cultures. Adv. Plant Biochem. Mol. Biol., 2008, 1, 311-345.
[http://dx.doi.org/10.1016/S1755-0408(07)01011-9]
[128]
Desgagné-Penix, I.; Khan, M.F.; Schriemer, D.C.; Cram, D.; Nowak, J.; Facchini, P.J. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in Opium poppy cell cultures. BMC Plant Biol., 2010, 10, 252.
[http://dx.doi.org/10.1186/1471-2229-10-252] [PMID: 21083930]
[129]
Desgagné-Penix, I.; Farrow, S.C.; Cram, D.; Nowak, J.; Facchini, P.J. Integration of deep transcript and targeted metabolite profiles for eight cultivars of Opium poppy. Plant Mol. Biol., 2012, 79(3), 295-313.
[http://dx.doi.org/10.1007/s11103-012-9913-2] [PMID: 22527754]
[130]
O’Connor, S.E.; Maresh, J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep., 2006, 23(4), 532-547.
[http://dx.doi.org/10.1039/b512615k] [PMID: 16874388]
[131]
van Der Heijden, R.; Jacobs, D.I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr. Med. Chem., 2004, 11(5), 607-628.
[http://dx.doi.org/10.2174/0929867043455846] [PMID: 15032608]
[132]
Liu, D.H.; Jin, H.B.; Chen, Y.H.; Cui, L.J.; Ren, W.W.; Gong, Y.F.; Tang, K.X. Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. J. Integr. Plant Biol., 2007, 49, 961-974.
[http://dx.doi.org/10.1111/j.1672-9072.2007.00457.x]
[133]
Van Moerkercke, A.; Steensma, P.; Gariboldi, I.; Espoz, J.; Purnama, P.C.; Schweizer, F.; Miettinen, K.; Vanden Bossche, R.; De Clercq, R.; Memelink, J.; Goossens, A. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J., 2016, 88(1), 3-12.
[http://dx.doi.org/10.1111/tpj.13230] [PMID: 27342401]
[134]
Van Moerkercke, A.; Steensma, P.; Schweizer, F.; Pollier, J.; Gariboldi, I.; Payne, R.; Vanden Bossche, R.; Miettinen, K.; Espoz, J.; Purnama, P.C.; Kellner, F.; Seppänen-Laakso, T.; O’Connor, S.E.; Rischer, H.; Memelink, J.; Goossens, A. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc. Natl. Acad. Sci. USA, 2015, 112(26), 8130-8135.
[http://dx.doi.org/10.1073/pnas.1504951112] [PMID: 26080427]
[135]
Kellner, F.; Kim, J.; Clavijo, B.J.; Hamilton, J.P.; Childs, K.L.; Vaillancourt, B.; Cepela, J.; Habermann, M.; Steuernagel, B.; Clissold, L.; McLay, K.; Buell, C.R.; O’Connor, S.E. Genome-guided investigation of plant natural product biosynthesis. Plant J., 2015, 82(4), 680-692.
[http://dx.doi.org/10.1111/tpj.12827] [PMID: 25759247]
[136]
Zhang, X.N.; Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Yu, Z.G.; Tang, Z.H. Metabolomics analysis reveals that ethylene and methyl jasmonate regulate different branch pathways to promote the accumulation of terpenoid indole alkaloids in Catharanthus roseus. J. Nat. Prod., 2018, 81(2), 335-342.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00782] [PMID: 29406718]
[137]
El-Sayed, M.; Verpoorte, R. Catharanthus terpenoid indole akaloids: Biosynthesis and regulation. Phytochem. Rev., 2007, 6, 277-305.
[http://dx.doi.org/10.1007/s11101-006-9047-8]
[138]
Zhou, M.L.; Shao, J.R.; Tang, Y.X. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnol. Appl. Biochem., 2009, 52(Pt 4), 313-323.
[http://dx.doi.org/10.1042/BA20080239] [PMID: 19281450]
[139]
Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol., 2007, 3(7), 408-414.
[http://dx.doi.org/10.1038/nchembio.2007.5] [PMID: 17576428]
[140]
Bohlmann, J.; Keeling, C.I. Terpenoid biomaterials. Plant J., 2008, 54(4), 656-669.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03449.x] [PMID: 18476870]
[141]
Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.; Hall, R.D.; Bovy, A.G.; Luo, J.; Martin, C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol., 2008, 26(11), 1301-1308.
[http://dx.doi.org/10.1038/nbt.1506] [PMID: 18953354]
[142]
Lu, X.; Zhang, L.; Zhang, F.; Jiang, W.; Shen, Q.; Zhang, L.; Lv, Z.; Wang, G.; Tang, K. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol., 2013, 198(4), 1191-1202.
[http://dx.doi.org/10.1111/nph.12207] [PMID: 23448426]
[143]
Tan, H.; Xiao, L.; Gao, S.; Li, Q.; Chen, J.; Xiao, Y.; Ji, Q.; Chen, R.; Chen, W.; Zhang, L. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol. Plant, 2015, 8(9), 1396-1411.
[http://dx.doi.org/10.1016/j.molp.2015.04.002] [PMID: 25870149]
[144]
Zhou, W.; Huang, Q.; Wu, X.; Zhou, Z.; Ding, M.; Shi, M.; Huang, F.; Li, S.; Wang, Y.; Kai, G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep., 2017, 7(1), 10554.
[http://dx.doi.org/10.1038/s41598-017-10215-2] [PMID: 28874707]
[145]
Xu, H.; Zhang, L.; Zhou, C.C.; Xiao, J.B.; Liao, P.; Kai, G.Y. Metabolic regulation and genetic engineering of pharmaceutical component tanshinone biosynthesis in Salvia miltiorrhiza. J. Med. Plants Res., 2010, 4, 2591-2597.
[http://dx.doi.org/10.5897/JMPR09.636]
[146]
Kai, G.; Xu, H.; Zhou, C.; Liao, P.; Xiao, J.; Luo, X.; You, L.; Zhang, L. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab. Eng., 2011, 13(3), 319-327.
[http://dx.doi.org/10.1016/j.ymben.2011.02.003] [PMID: 21335099]
[147]
Wu, S.J.; Shi, M.; Wu, J.Y. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots. Biotechnol. Appl. Biochem., 2009, 52(Pt 1), 89-95.
[http://dx.doi.org/10.1042/BA20080004] [PMID: 18302535]
[148]
Gao, W.; Hillwig, M.L.; Huang, L.; Cui, G.; Wang, X.; Kong, J.; Yang, B.; Peters, R.J. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org. Lett., 2009, 11(22), 5170-5173.
[http://dx.doi.org/10.1021/ol902051v] [PMID: 19905026]
[149]
Guo, J.; Zhou, Y.J.; Hillwig, M.L.; Shen, Y.; Yang, L.; Wang, Y.; Zhang, X.; Liu, W.; Peters, R.J.; Chen, X.; Zhao, Z.K.; Huang, L. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 12108-12113.
[http://dx.doi.org/10.1073/pnas.1218061110] [PMID: 23812755]
[150]
Guo, J.; Ma, X.; Cai, Y.; Ma, Y.; Zhan, Z.; Zhou, Y.J.; Liu, W.; Guan, M.; Yang, J.; Cui, G.; Kang, L.; Yang, L.; Shen, Y.; Tang, J.; Lin, H.; Ma, X.; Jin, B.; Liu, Z.; Peters, R.J.; Zhao, Z.K.; Huang, L. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol., 2016, 210(2), 525-534.
[http://dx.doi.org/10.1111/nph.13790] [PMID: 26682704]
[151]
Zhang, C.; Xing, B.; Yang, D.; Ren, M.; Guo, H.; Yang, S.; Liang, Z. SmbHLH3 acts as a transcription repressor for both phenolic acids and tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Phytochemistry, 2020., 169112183.
[http://dx.doi.org/10.1016/j.phytochem.2019.112183] [PMID: 31704239]
[152]
Zhang, J.; Zhou, L.; Zheng, X.; Zhang, J.; Yang, L.; Tan, R.; Zhao, S. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Rep., 2017, 36(8), 1297-1309.
[http://dx.doi.org/10.1007/s00299-017-2154-8] [PMID: 28508121]
[153]
Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev., 2006, 5(1), 75-97.
[http://dx.doi.org/10.1007/s11101-005-3748-2] [PMID: 20622989]
[154]
Nims, E.; Dubois, C.P.; Roberts, S.C.; Walker, E.L. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab. Eng., 2006, 8(5), 385-394.
[http://dx.doi.org/10.1016/j.ymben.2006.04.001] [PMID: 16793302]
[155]
Li, S.T.; Zhang, P.; Zhang, M.; Fu, C.H.; Zhao, C.F.; Dong, Y.S.; Guo, A.Y.; Yu, L.J. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genomics, 2012, 13, 295.
[http://dx.doi.org/10.1186/1471-2164-13-295] [PMID: 22748077]
[156]
Yan, X.; Fan, Y.; Wei, W.; Wang, P.; Liu, Q.; Wei, Y.; Zhang, L.; Zhao, G.; Yue, J.; Zhou, Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res., 2014, 24(6), 770-773.
[http://dx.doi.org/10.1038/cr.2014.28] [PMID: 24603359]
[157]
Zhang, B.; Tieman, D.M.; Jiao, C.; Xu, Y.; Chen, K.; Fei, Z.; Giovannoni, J.J.; Klee, H.J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. USA, 2016, 113(44), 12580-12585.
[http://dx.doi.org/10.1073/pnas.1613910113] [PMID: 27791156]
[158]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[159]
Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot., 2011, 62(8), 2465-2483.
[http://dx.doi.org/10.1093/jxb/erq442] [PMID: 21278228]
[160]
Deng, Y.; Lu, S.F. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci., 2017, 36, 257-290.
[http://dx.doi.org/10.1080/07352689.2017.1402852]
[161]
Huang, W.; Sun, W.; Lv, H.; Luo, M.; Zeng, S.; Pattanaik, S.; Yuan, L.; Wang, Y.A. R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One, 2013, 8(8), e70778.
[http://dx.doi.org/10.1371/journal.pone.0070778] [PMID: 23936468]
[162]
Huang, W.; Khaldun, A.B.M.; Chen, J.; Zhang, C.; Lv, H.; Yuan, L.; Wang, Y. R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum. Front. Plant Sci., 2016, 7, 1089.
[http://dx.doi.org/10.3389/fpls.2016.01089] [PMID: 27493658]
[163]
Huang, W.; Khaldun, A.B.M.; Lv, H.; Du, L.; Zhang, C.; Wang, Y. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. Plant Cell Rep., 2016, 35(4), 883-894.
[http://dx.doi.org/10.1007/s00299-015-1929-z] [PMID: 26849670]
[164]
Huang, W.; Sun, W.; Lv, H.; Xiao, G.; Zeng, S.; Wang, Y. Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum. Int. J. Mol. Sci., 2012, 14(1), 594-610.
[http://dx.doi.org/10.3390/ijms14010594] [PMID: 23271373]
[165]
Huang, W.; Lv, H.; Wang, Y. Functional characterization of a novel R2R3-MYB transcription factor modulating the flavonoid biosynthetic pathway from Epimedium sagittatum. Front. Plant Sci., 2017, 8, 1274.
[http://dx.doi.org/10.3389/fpls.2017.01274] [PMID: 28769969]
[166]
Huang, Y.; Wu, Q.; Wang, S.; Shi, J.; Dong, Q.; Yao, P.; Shi, G.; Xu, S.; Deng, R.; Li, C.; Chen, H.; Zhao, H. FtMYB8 from Tartary buckwheat inhibits both anthocyanin/Proanthocyanidin accumulation and marginal Trichome initiation. BMC Plant Biol., 2019, 19(1), 263.
[http://dx.doi.org/10.1186/s12870-019-1876-x] [PMID: 31215400]
[167]
Luo, X.; Zhao, H.; Yao, P.; Li, Q.; Huang, Y.; Li, C.; Chen, H.; Wu, Q. An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from Tartary buckwheat. J. Plant Growth Regul., 2017, 37, 76-84.
[http://dx.doi.org/10.1007/s00344-017-9709-3]
[168]
Ma, P.; Liu, J.; Zhang, C.; Liang, Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol., 2013, 170(6), 1253-1262.
[http://dx.doi.org/10.1007/s12010-013-0265-4] [PMID: 23673485]
[169]
Di, P.; Zhang, L.; Chen, J.; Tan, H.; Xiao, Y.; Dong, X.; Zhou, X.; Chen, W. 13C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem. Biol., 2013, 8(7), 1537-1548.
[http://dx.doi.org/10.1021/cb3006962] [PMID: 23614461]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy