Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

In-Vitro Screening and Biosynthesis of Secondary Metabolites from a New Streptomyces sp. SA1 from a Marine Environment

Author(s): Mohammed A. Almalki*

Volume 21, Issue 13, 2020

Page: [1333 - 1341] Pages: 9

DOI: 10.2174/1389201021666200622120850

Price: $65

Abstract

Background: Streptomyces sp. produces various antibiotic agents and the number of lead molecules from the genus Streptomyces increased rapidly in recent years. Drug resistance against various commercially available antibiotics is one of the important problems throughout the world. Streptomyces spp. produce various antimicrobials with potent activity against drug-resistant bacteria.

Methods: Streptomyces sp. SA1 was isolated from the marine environment for the biosynthesis of antibiotics. The important variables influencing secondary metabolite biosynthesis were optimized to increase the biosynthesis of antimicrobial agents using the traditional method and statistical approach.

Results: Streptomyces sp. SA1 produced novel antibiotics and the process variables were optimized by the traditional method (One-variable-at-a-time approach). Maltose showed maximum antimicrobial activity (220 U/mL). Analysis of the nitrogen, the effect of nitrogen sources revealed that beef extract incorporated culture medium showed rich antibacterial activity (188/mL). Among the ionic sources, KCl significantly influenced antibiotic production. Maltose, beef extract and KCl were considered as the most influencing medium components. Antimicrobial agent biosynthesis was achieved with maltose 1.22 g/L, beef extract 0.93 g/L and KCl 0.27 g/L in response surface methodology.

Conclusion: Actinomycetes, especially Streptomyces, play an important role as a source for bioactive compounds that are used to treat infections, and many other diseases. The isolated Streptomyces sp. was a good producer of antibacterial agent, which required various nutritional supplements in the culture medium. The optimized medium components investigated in this study will be useful for future studies with the mass production of secondary metabolites.

Keywords: Streptomyces sp., secondary metabolites, antibiotics, pathogens, marine environment, antimicrobial activity.

Graphical Abstract

[1]
Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers, 2018, 4, 18033.
[http://dx.doi.org/10.1038/nrdp.2018.33] [PMID: 29849094]
[2]
Sahin, N.; Ugur, A. Investigation of the antimicrobial activity of some Streptomyces isolates. Turk. J. Biol., 2003, 27, 79-84.
[3]
Olano, C.; Lombó, F.; Méndez, C.; Salas, J.A. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng., 2008, 10(5), 281-292.
[http://dx.doi.org/10.1016/j.ymben.2008.07.001] [PMID: 18674632]
[4]
Manteca, A.; Yagüe, P. Streptomyces as a source of antimicrobials: Novel approaches to activate cryptic secondary metabolite pathways.Antimicrobials; Antibiotic Resistance, Antibiofilm Strategies and Activity Methods Intech Open, 2019.
[5]
Gao, H.; Liu, M.; Liu, J.; Dai, H.; Zhou, X.; Liu, X.; Zhuo, Y.; Zhang, W.; Zhang, L. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol., 2009, 100(17), 4012-4016.
[http://dx.doi.org/10.1016/j.biortech.2009.03.013] [PMID: 19356927]
[6]
Ren, J.; Lin, W.T.; Shen, Y.J.; Wang, J.F.; Luo, X.C.; Xie, M.Q. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour. Technol., 2008, 99(17), 7923-7927.
[http://dx.doi.org/10.1016/j.biortech.2008.03.027] [PMID: 18440806]
[7]
Vijayaraghavan, P.; Kalaiyarasi, M.; Vincent, S.G.P. Cow dung is an ideal fermentation medium for amylase production in solid-state fermentation by Bacillus cereus. J. Genet. Eng. Biotechnol., 2015, 13(2), 111-117.
[http://dx.doi.org/10.1016/j.jgeb.2015.09.004] [PMID: 30647574]
[8]
Vijayaraghavan, P.; Arun, A.; Al-Dhabi, N.A.; Vincent, S.G.P.; Arasu, M.V.; Choi, K.C. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation. Biotechnol. Biofuels, 2016, 9, 73.
[http://dx.doi.org/10.1186/s13068-016-0481-6] [PMID: 27011767]
[9]
Deepak, V.; Kalishwaralal, K.; Ramkumarpandian, S.; Babu, S.V.; Senthilkumar, S.R.; Sangiliyandi, G. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour. Technol., 2008, 99(17), 8170-8174.
[http://dx.doi.org/10.1016/j.biortech.2008.03.018] [PMID: 18430568]
[10]
Sayyad, S.A.; Panda, B.P.; Javed, S.; Ali, M. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl. Microbiol. Biotechnol., 2007, 73(5), 1054-1058.
[http://dx.doi.org/10.1007/s00253-006-0577-1] [PMID: 17019609]
[11]
Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact., 2011, 10, 98.
[http://dx.doi.org/10.1186/1475-2859-10-98] [PMID: 22082189]
[12]
Maxwell, P.W.; Chen, G.; Webster, J.M.; Dunphy, G.B. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus. Appl. Environ. Microbiol., 1994, 60(2), 715-721.
[http://dx.doi.org/10.1128/AEM.60.2.715-721.1994] [PMID: 16349198]
[13]
Bibb, M.J. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol., 2005, 8(2), 208-215.
[http://dx.doi.org/10.1016/j.mib.2005.02.016] [PMID: 15802254]
[14]
Govindarajan, G.; Satheeja Santhi, V.; Jebakumar, S.R.D. Antimicrobial potential of phylogenetically unique actinomycete, Streptomyces sp. JRG-04 from marine origin. Biologicals, 2014, 42(6), 305-311.
[http://dx.doi.org/10.1016/j.biologicals.2014.08.003] [PMID: 25205608]
[15]
Wang, Y.H.; Li, Y.P.; Zhang, Q.; Zhang, X. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Bioresour. Technol., 2008, 99(6), 1708-1715.
[http://dx.doi.org/10.1016/j.biortech.2007.03.053] [PMID: 17531470]
[16]
Rateb, M.E.; Yu, Z.; Yan, Y.; Yang, D.; Huang, T.; Vodanovic-Jankovic, S.; Kron, M.A.; Shen, B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I and J. J. Antibiot. (Tokyo), 2014, 67(1), 127-132.
[http://dx.doi.org/10.1038/ja.2013.50] [PMID: 23715040]
[17]
Narayana, K.J.P.; Vijayalakshmi, M. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Res. J. Pharmacol., 2008, 2, 4-7.
[18]
Voelker, F.; Altaba, S. Nitrogen source governs the patterns of growth and pristinamycin production in ‘Streptomyces pristinaespiralis’. Microbiology, 2001, 147(Pt 9), 2447-2459.
[http://dx.doi.org/10.1099/00221287-147-9-2447] [PMID: 11535785]
[19]
Chuan-He, Z.; Fu-Ping, L.; Ya-Nan, H. Juan- Kun, Z.; Lian-Xiang, D. Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes Tu¨57-1 using response surface methodology. J. Ind. Microbiol. Biotechnol., 2007, 34, 271-278.
[http://dx.doi.org/10.1007/s10295-006-0195-z] [PMID: 17186208]
[20]
Chen, X.C.; Bai, J.X.; Cao, J.M.; Li, Z.J.; Xiong, J.; Zhang, L.; Hong, Y.; Ying, H.J. Medium optimization for the production of cyclic adenosine 3′,5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour. Technol., 2009, 100(2), 919-924.
[http://dx.doi.org/10.1016/j.biortech.2008.07.062] [PMID: 18778935]
[21]
Abou-Elela, G.M.; El-Sersy, N.; Wefky, S.H. Statistical optimization of cold adapted α-amylase production by free and immobilized cells of Nocardio psisaegyptia. J. Appl. Sci. Res., 2009, 5, 286-292.
[22]
Sharma, D.; Manhas, R.K. Applications of Plackett-Burman experimental design and Box and Wilson design to improve broad spectrum antimicrobial compound. Int. J. Biotechnol., 2013, 12, 386-394.
[23]
Zeinab, A.K.; Aly, M.S.; Faiza, A.; Fatma, E.M. The PlackettBurman design to evaluate significant media components for antimicrobial production of Lactobacillus rhamnosus. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 1082-1096.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy