Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Omics Insight on Fusarium Head Blight of Wheat for Translational Research Perspective

Author(s): Basavaraj Teli, Jyotika Purohit, Md. Mahtab Rashid, A. Abdul Kader Jailani and Anirudha Chattopadhyay*

Volume 21, Issue 6, 2020

Page: [411 - 428] Pages: 18

DOI: 10.2174/1389202921999200620222631

Price: $65

Abstract

In the scenario of global warming and climate change, an outbreak of new pests and pathogens has become a serious concern owing to the rapid emergence of arms races, their epidemic infection, and the ability to break down host resistance, etc. Fusarium head blight (FHB) is one such evidence that depredates major cereals throughout the world. The symptomatological perplexity and aetiological complexity make this disease very severe, engendering significant losses in the yield. Apart from qualitative and quantitative losses, mycotoxin production solemnly deteriorates the grain quality in addition to life endangerment of humans and animals after consumption of toxified grains above the permissible limit. To minimize this risk, we must be very strategic in designing sustainable management practices constituting cultural, biological, chemical, and host resistance approaches. Even though genetic resistance is the most effective and environmentally safe strategy, a huge genetic variation and unstable resistance response limit the holistic deployment of resistance genes in FHB management. Thus, the focus must shift towards the editing of susceptible (S) host proteins that are soft targets of newly evolving effector molecules, which ultimately could be exploited to repress the disease development process. Hence, we must understand the pathological, biochemical, and molecular insight of disease development in a nutshell. In the present time, the availability of functional genomics, proteomics, and metabolomics information on host-pathogen interaction in FHB have constructed various networks which helped in understanding the pathogenesis and coherent host response(s). So now translation of this information for designing of host defense in the form of desirable resistant variety/ genotype is the next step. The insights collected and presented in this review will be aiding in the understanding of the disease and apprise a solution to the multi-faceted problems which are related to FHB resistance in wheat and other cereals to ensure global food safety and food security.

Keywords: FHB, FGSC, mycotoxin, host defense, wheat, RNA interference, genome editing.

Graphical Abstract

[1]
Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol., 2012, 13(4), 414-430.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x] [PMID: 22471698]
[2]
Valverde-Bogantes, E.; Bianchini, A.; Herr, J.R.; Rose, D.J.; Wegulo, S.N.; Hallen-Adams, H.E. Recent population changes of Fusarium head blight pathogens: drivers and implications. Can. J. Plant Pathol., 2019, 1-5.
[http://dx.doi.org/10.1080/07060661.2019.1680442]
[3]
Stack, R.W.; Leonard, K.; Bushnell, W. History of Fusarium head blight with emphasis on North America. Fusarium head blight of wheat and barley; Leonard, K.J.; Bushnell, W.R., Eds.; The American Phytopathological Society, 2003, pp. 1-34.
[4]
McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis., 1997, 81(12), 1340-1348.
[http://dx.doi.org/10.1094/PDIS.1997.81.12.1340] [PMID: 30861784]
[5]
Wegulo, S.N.; Bockus, W.W.; Nopsa, J.F.; Peiris, K.H.; Dowell, F.E. Integration of fungicide application and cultivar resistance to manage Fusarium head blight in wheat. Fungicides- Showcases of Integrated Plant Disease Management from Around the World; Nita, M., Ed.; Intech: Rijeka, Croatia, 2013, pp. 35-54.
[6]
Saulescu, N.N. An evaluation of present wheat breeding priorities for Romania. Lucrãri Stiintifice USAB, 1993, 24(1), 39-47.
[7]
Parry, D.W.; Jenkinson, P. McLeod. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol., 1995, 44, 207-238.
[http://dx.doi.org/10.1111/j.1365-3059.1995.tb02773.x]
[8]
Gilbert, J.; Tekauz, A. Recent developments in research on Fusarium head blight of wheat in Canada. Can. J. Plant Pathol., 2000, 22(1), 1-8.
[http://dx.doi.org/10.1080/07060660009501155]
[9]
Russell, C.T.; Luhmann, J.G.; Jian, L.K. How unprecedented a solar minimum? Rev. Geophys., 2010, 48(2), 1-16.
[http://dx.doi.org/10.1029/2009RG000316]
[10]
Kubo, K.; Kawada, N.; Fujita, M. Evaluation of Fusarium head blight resistance in wheat and the development of a new variety by integrating type I and II resistance. Japan Agri. Res. Quarterly: JARQ, 2013, 47(1), 9-19.
[http://dx.doi.org/10.6090/jarq.47.9]
[11]
Magan, N.; Medina, A.; Aldred, D. Possible climate‐change effects on mycotoxin contamination of food crops pre‐and postharvest. Plant Pathol., 2011, 60(1), 150-163.
[http://dx.doi.org/10.1111/j.1365-3059.2010.02412.x]
[12]
Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol., 2004, 5(6), 515-525.
[http://dx.doi.org/10.1111/j.1364-3703.2004.00252.x] [PMID: 20565626]
[13]
Smiley, R.W.; Gourlie, J.A.; Easley, S.A.; Patterson, L.M.; Whittaker, R.G. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis., 2005, 89(6), 595-604.
[http://dx.doi.org/10.1094/PD-89-0595] [PMID: 30795384]
[14]
Windels, C.E. Economic and social impacts of fusarium head blight: changing farms and rural communities in the northern great plains. Phytopathology, 2000, 90(1), 17-21.
[http://dx.doi.org/10.1094/PHYTO.2000.90.1.17] [PMID: 18944567]
[15]
Saharan, M.S.; Kumar, J.; Sharma, A.K.; Nagarajan, S. Fusarium head blight (FHB) or head scab of wheat- a review. Proc. Nat. Acad. Sci. India, 2004, 3, 255-268.
[16]
Bagga, P.S.; Saharan, M.S. Wheat Crop Health Newsletter Directorate of Wheat Research, Karnal, 2005, 10(2)
[17]
Bagga, P. Fusarium head blight (FHB) of wheat: role of host resistance, wheat aphids, insecticide and strobilurin fungicide in disease control in Punjab, India. Cereal Res. Commun., 2008, 36(Suppl. 6), 667-670.
[http://dx.doi.org/10.1556/CRC.36.2008.Suppl.B.57]
[18]
Hornick, S.B. Factors affecting the nutritional quality of crops. Am. J. Altern. Agric., 1992, 7(1-2), 63-68.
[http://dx.doi.org/10.1017/S0889189300004471]
[19]
Schaafsma, A.W.; Ilinic, L.T.; Miller, J.D.; Hooker, D.C. Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol., 2001, 23(3), 279-285.
[http://dx.doi.org/10.1080/07060660109506941]
[20]
Teli, B.; Chattopadhyay, A.; Meena, S.C.; Gangwar, G.P.; Pandey, S.K. Present status of Fusarium head blight of wheat and barley in India.Diseases of wheat and their management; Vaish, S.S., Ed.; Astral International: New Delhi, 2016, pp. 79-92.
[21]
Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet., 2020, 133(5), 1541-1568.
[http://dx.doi.org/10.1007/s00122-019-03525-8] [PMID: 31900498]
[22]
Martinez-Espinoza, A.D.; Youmans, J.; Vermeer, C.B.; Buck, J.W. Evaluation of fungicides for control of stripe rust and Fusarium head blight of winter wheat in southwest Georgia, 2015. Plant Disease Management Reports PDMR., 2016, 10, CF034.
[23]
Singh, D.P. Wheat blast—a new challenge to wheat production in South Asia. Indian Phytopathol., 2017, 70(2), 169-177.
[http://dx.doi.org/10.24838/ip.2017.v70.i2.70609]
[24]
Del Ponte, E.M.; Valent, B.; Bergstrom, G.C. A special issue on Fusarium head blight and wheat blast. Trop. Plant Pathol., 2017, 42(3), 143-145.
[http://dx.doi.org/10.1007/s40858-017-0166-0]
[25]
Bushnell, W.R.; Hazen, B.E.; Pritsch, C.; Leonard, K. Histologyand physiology of Fusarium head blight. Leonard, K.J.; Bushnell, W.R.; Fusarium Head Blight of Wheat and Barley (eds); Phytopathology, St Paul Minnesota, , 2003.
[26]
Walter, S.; Nicholson, P.; Doohan, F.M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol., 2010, 185(1), 54-66.
[http://dx.doi.org/10.1111/j.1469-8137.2009.03041.x] [PMID: 19807873]
[27]
Wise, K.; Woloshuk, C.; Freije, A. Fusarium Head Blight (Head Scab). Diseases of Wheat. C. Woloshunk; Purdue Extension: West Layfayette, Indiana, 2015.
[28]
Freije, A.N.; Wise, K.A. Impact of Fusarium graminearum inoculum availability and fungicide application timing on Fusarium head blight in wheat. Crop Prot., 2015, 77, 139-147.
[http://dx.doi.org/10.1016/j.cropro.2015.07.016]
[29]
Islam, M.T.; Croll, D.; Gladieux, P.; Soanes, D.M.; Persoons, A.; Bhattacharjee, P.; Hossain, M.S.; Gupta, D.R.; Rahman, M.M.; Mahboob, M.G.; Cook, N.; Salam, M.U.; Surovy, M.Z.; Sancho, V.B.; Maciel, J.L. NhaniJúnior, A.; Castroagudín, V.L.; Reges, J.T.; Ceresini, P.C.; Ravel, S.; Kellner, R.; Fournier, E.; Tharreau, D.; Lebrun, M.H.; McDonald, B.A.; Stitt, T.; Swan, D.; Talbot, N.J.; Saunders, D.G.; Win, J.; Kamoun, S. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol., 2016, 14(1), 84.
[http://dx.doi.org/10.1186/s12915-016-0309-7] [PMID: 27716181]
[30]
Gupta, D.R.; Avila, C.S.R.; Win, J.; Soanes, D.M.; Ryder, L.S.; Croll, D.; Bhattacharjee, P.; Hossain, M.S.; Mahmud, N.U.; Mehebub, M.S.; Surovy, M.Z.; Rahman, M.M.; Talbot, N.J.; Kamoun, S.; Islam, M.T. Cautionary notes on use of the MoT3 diagnostic assay for Magnaporthe oryzae wheat and rice blast isolates. Phytopathology, 2019, 109(4), 504-508.
[http://dx.doi.org/10.1094/PHYTO-06-18-0199-LE] [PMID: 30253117]
[31]
Loughman, R.; Thomas, G.; Wright, D. Fusarium head blight ofcereals and stalk rot of maize, millet and sorghum and their identification. Farmnote 78/2004, 2004.
[32]
Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Mycotoxins in plant disease; Springer: Dordrecht, 2002, pp. 611-624.
[http://dx.doi.org/10.1007/978-94-010-0001-7_2]
[33]
Boutigny, A.L.; Ward, T.J.; Van Coller, G.J.; Flett, B.; Lamprecht, S.C.; O’Donnell, K.; Viljoen, A. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet. Biol., 2011, 48(9), 914-920.
[http://dx.doi.org/10.1016/j.fgb.2011.05.005] [PMID: 21601644]
[34]
Xu, X.M.; Parry, D.W.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Edwards, S.G.; Cooke, B.M.; Doohan, F.M.; Brennan, J.M.; Moretti, A.; Tocco, G. Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol., 2005, 112(2), 143-154.
[http://dx.doi.org/10.1007/s10658-005-2446-7]
[35]
Wiese, M.V. Compendium of wheat diseases; American Phytopathological Society, 1987.
[36]
Roy, A.K. Ear blight and scab of wheat in Arunachal Pradesh. Curr. Sci., 1973.
[37]
Brahma, R.N.; Singh, S.D. Occurrence of scab of wheat in the Nilgiri hills. Curr. Sci., 1985, 54(22), 1184-1185.
[38]
Singh, P.J.; Aujla, S.S. Effect of lodging on the development of head scab of wheat. Indian Phytopathol., 1994, 47(3), 256-257.
[39]
Mann, S.K.; Nanda, G.S. A new leaf spot disease of wheat from India. Indian Phytopathol., 1999, 52(4), 425-426.
[40]
Kaur, S.; Chahal, S.S.; Singh, N. Effect of temperature on the development of the pathogen and head blight disease in wheat. Plant Dis. Res., 1999, 14(2), 191-194.
[41]
Dev, U.; Agarwal, P.C.; Baleshwar, S. Fungi of quarantine significancein cereals. Potential Quarantine Pests for India: Cereals (Eds Dev, U.; Khetarpal, R.K.; Agarwal, P.C.; Aijun Lal; Manju Lata, K.; Kavita, G.; Parakh, D.B.), NBPGR, New Delhi, India; , 2005.
[42]
Khetarpal, R.K.; Gupta, K. Plant biosecurity in India-Preparedness. Indian J. Plant Prot., 2007, 35(2), 168-178.
[43]
Saharan, M.S.; Saharan, M.S. Current status of resistant source to Fusarium head blight disease of wheat: a review. Indian Phytopathol., 2019, 73, 3-9.
[44]
Gale, L.R.; Harrison, S.A.; Ward, T.J.; O’Donnell, K.; Milus, E.A.; Gale, S.W.; Kistler, H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology, 2011, 101(1), 124-134.
[http://dx.doi.org/10.1094/PHYTO-03-10-0067] [PMID: 20822434]
[45]
Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol., 2007, 44(11), 1191-1204.
[http://dx.doi.org/10.1016/j.fgb.2007.03.001] [PMID: 17451976]
[46]
Siou, D.; Gélisse, S.; Laval, V.; Suffert, F.; Lannou, C. Mutual exclusion between fungal species of the Fusarium head blight complex in a wheat spike. Appl. Environ. Microbiol., 2015, 81(14), 4682-4689.
[http://dx.doi.org/10.1128/AEM.00525-15] [PMID: 25934622]
[47]
Xu, X.M.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Cooke, B.M.; Doohan, F.M.; Brennan, J.; Monaghan, S.; Moretti, A.; Mule, G.; Hornok, L.; Beki, E.; Tatnell, J.; Ritieni, A.; Edwards, S.G. Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology, 2008, 98(1), 69-78.
[http://dx.doi.org/10.1094/PHYTO-98-1-0069] [PMID: 18943240]
[48]
Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology, 1999, 89(11), 1028-1037.
[http://dx.doi.org/10.1094/PHYTO.1999.89.11.1028] [PMID: 18944658]
[49]
Picot, A.; Hourcade‐Marcolla, D.; Barreau, C.; Pinson‐Gadais, L.; Caron, D.; Richard‐Forget, F.; Lannou, C. Interactions between Fusarium verticillioides and Fusarium graminearum in maize ears and consequences for fungal development and mycotoxin accumulation. Plant Pathol., 2012, 61(1), 140-151.
[http://dx.doi.org/10.1111/j.1365-3059.2011.02503.x]
[50]
Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2012, 29(10), 1543-1555.
[http://dx.doi.org/10.1080/19440049.2012.680613] [PMID: 22554046]
[51]
Sutton, J.C. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can. J. Plant Pathol., 1982, 4(2), 195-209.
[http://dx.doi.org/10.1080/07060668209501326]
[52]
Wegulo, S.; Jackson, T.A.; Baenziger, P.S.; Carlson, M.P.; Nopsa, J.H. Fusarium head blight of wheat., 2008.
[53]
Trail, F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol., 2009, 149(1), 103-110.
[http://dx.doi.org/10.1104/pp.108.129684] [PMID: 19126701]
[54]
Gilbert, J.; Haber, S. Overview of some recent research developments in Fusarium head blight of wheat. Can. J. Plant Pathol., 2013, 35(2), 149-174.
[http://dx.doi.org/10.1080/07060661.2013.772921]
[55]
Booth, C. The genus Fusarium., 1971.
[56]
Pugh, G.W.; Johann, H.; Dickson, J.G. Factors affecting infection of Wheat heads by Gibberella saubiuetii. J. Agric. Res., 1933, 46(9), 771-797.
[57]
Strange, R.N.; Smith, H. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum. Physiol. Plant Pathol., 1971, 1(2), 141-150.
[http://dx.doi.org/10.1016/0048-4059(71)90023-3]
[58]
Boenisch, M.J.; Schäfer, W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol., 2011, 11(1), 110.
[http://dx.doi.org/10.1186/1471-2229-11-110] [PMID: 21798058]
[59]
Sarlin, T.; Vilpola, A.; Kotaviita, E.; Olkku, J.; Haikara, A. Fungal hydrophobins in the barley‐to‐beer chain. J. Inst. Brew., 2007, 113(2), 147-153.
[http://dx.doi.org/10.1002/j.2050-0416.2007.tb00271.x]
[60]
Brown, N.A.; Urban, M.; van de Meene, A.M.; Hammond-Kosack, K.E. The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol., 2010, 114(7), 555-571.
[http://dx.doi.org/10.1016/j.funbio.2010.04.006] [PMID: 20943167]
[61]
Kang, Z.; Buchenauer, H. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol. Mol. Plant Pathol., 2000, 57(6), 255-268.
[http://dx.doi.org/10.1006/pmpp.2000.0305]
[62]
Pritsch, C.; Muehlbauer, G.J.; Bushnell, W.R.; Somers, D.A.; Vance, C.P. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol. Plant Microbe Interact., 2000, 13(2), 159-169.
[http://dx.doi.org/10.1094/MPMI.2000.13.2.159] [PMID: 10659706]
[63]
Boddu, J.; Cho, S.; Kruger, W.M.; Muehlbauer, G.J. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant Microbe Interact., 2006, 19(4), 407-417.
[http://dx.doi.org/10.1094/MPMI-19-0407] [PMID: 16610744]
[64]
Kikot, G.E.; Hours, R.A.; Alconada, T.M. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J. Basic Microbiol., 2009, 49(3), 231-241.
[http://dx.doi.org/10.1002/jobm.200800231] [PMID: 19025875]
[65]
Wanjiru, W.M.; Zhensheng, K.; Buchenauer, H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur. J. Plant Pathol., 2002, 108(8), 803-810.
[http://dx.doi.org/10.1023/A:1020847216155]
[66]
Cuomo, C.A.; Güldener, U.; Xu, J.R.; Trail, F.; Turgeon, B.G.; Di Pietro, A.; Walton, J.D.; Ma, L.J.; Baker, S.E.; Rep, M.; Adam, G.; Antoniw, J.; Baldwin, T.; Calvo, S.; Chang, Y.L.; Decaprio, D.; Gale, L.R.; Gnerre, S.; Goswami, R.S.; Hammond-Kosack, K.; Harris, L.J.; Hilburn, K.; Kennell, J.C.; Kroken, S.; Magnuson, J.K.; Mannhaupt, G.; Mauceli, E.; Mewes, H.W.; Mitterbauer, R.; Muehlbauer, G.; Münsterkötter, M.; Nelson, D.; O’donnell, K.; Ouellet, T.; Qi, W.; Quesneville, H.; Roncero, M.I.; Seong, K.Y.; Tetko, I.V.; Urban, M.; Waalwijk, C.; Ward, T.J.; Yao, J.; Birren, B.W.; Kistler, H.C. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 2007, 317(5843), 1400-1402.
[http://dx.doi.org/10.1126/science.1143708] [PMID: 17823352]
[67]
Mendgen, K.; Hahn, M.; Deising, H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol., 1996, 34(1), 367-386.
[http://dx.doi.org/10.1146/annurev.phyto.34.1.367] [PMID: 15012548]
[68]
Bluhm, B.H.; Zhao, X.; Flaherty, J.E.; Xu, J.R.; Dunkle, L.D. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact., 2007, 20(6), 627-636.
[http://dx.doi.org/10.1094/MPMI-20-6-0627] [PMID: 17555271]
[69]
Rittenour, W.R.; Harris, S.D. An in vitro method for the analysis of infection-related morphogenesis in Fusarium graminearum. Mol. Plant Pathol., 2010, 11(3), 361-369.
[http://dx.doi.org/10.1111/j.1364-3703.2010.00609.x] [PMID: 20447284]
[70]
Kang, Z.; Buchenauer, H. Studies on the infection process of Fusarium culmorum in wheat spikes: degradation of host cell wall components and localization of trichothecene toxins in infected tissue. Eur. J. Plant Pathol., 2002, 108(7), 653-660.
[http://dx.doi.org/10.1023/A:1020627013154]
[71]
Schroeder, H.W.; Christensen, J.J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53(71), 831-838.
[72]
Miller, S.S.; Chabot, D.M.; Ouellet, T.; Harris, L.J.; Fedak, G. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can. J. Plant Pathol., 2004, 26(4), 453-463.
[http://dx.doi.org/10.1080/07060660409507165]
[73]
Jansen, C.; von Wettstein, D.; Schäfer, W.; Kogel, K.H.; Felk, A.; Maier, F.J. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc. Natl. Acad. Sci. USA, 2005, 102(46), 16892-16897.
[http://dx.doi.org/10.1073/pnas.0508467102] [PMID: 16263921]
[74]
Ribichich, K.F.; Lopez, S.E.; Vegetti, A.C. Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis., 2000, 84(7), 794-802.
[http://dx.doi.org/10.1094/PDIS.2000.84.7.794] [PMID: 30832111]
[75]
Guenther, J.C.; Trail, F. The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia, 2005, 97(1), 229-237.
[http://dx.doi.org/10.1080/15572536.2006.11832856] [PMID: 16389974]
[76]
Phalip, V.; Delalande, F.; Carapito, C.; Goubet, F.; Hatsch, D.; Leize-Wagner, E.; Dupree, P.; Dorsselaer, A.V.; Jeltsch, J.M. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr. Genet., 2005, 48(6), 366-379.
[http://dx.doi.org/10.1007/s00294-005-0040-3] [PMID: 16283313]
[77]
Wanyoike, M.W.; Walker, F.; Buchenauer, H. Relationshipbetween virulence, fungal biomass and mycotoxin production by Fusarium graminearum in winter wheat head blight Zeitschriftfür- Pflanzenkrankheiten und Pflanzenschutz, 2002, 109(6), 589-600.
[78]
Proctor, R.H.; Hohn, T.M.; McCormick, S.P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant Microbe Interact., 1995, 8(4), 593-601.
[79]
Ochiai, N.; Tokai, T.; Nishiuchi, T.; Takahashi-Ando, N.; Fujimura, M.; Kimura, M. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem. Biophys. Res. Commun., 2007, 363(3), 639-644.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.027] [PMID: 17897620]
[80]
Ponts, N.; Couedelo, L.; Pinson-Gadais, L.; Verdal-Bonnin, M.N.; Barreau, C.; Richard-Forget, F. Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol. Lett., 2009, 293(2), 255-262.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01521.x] [PMID: 19239497]
[81]
Jiao, F.; Kawakami, A.; Nakajima, T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol. Lett., 2008, 285(2), 212-219.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01235.x] [PMID: 18564338]
[82]
Gardiner, D.M.; Kazan, K.; Praud, S.; Torney, F.J.; Rusu, A.; Manners, J.M. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol., 2010, 10(1), 289.
[http://dx.doi.org/10.1186/1471-2229-10-289] [PMID: 21192794]
[83]
Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins (Basel), 2012, 4(11), 1157-1180.
[http://dx.doi.org/10.3390/toxins4111157] [PMID: 23202310]
[84]
Ding, L.; Xu, H.; Yi, H.; Yang, L.; Kong, Z.; Zhang, L.; Xue, S.; Jia, H.; Ma, Z. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 2011, 6(4), e19008.
[http://dx.doi.org/10.1371/journal.pone.0019008] [PMID: 21533105]
[85]
Theis, T.; Stahl, U. Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci., 2004, 61(4), 437-455.
[http://dx.doi.org/10.1007/s00018-003-3231-4] [PMID: 14999404]
[86]
Chaturvedi, R.; Shah, J. Salicylic acid in plant disease resistance. Salicylic acid: A Plant Hormone; Springer: Dordrecht, 2007, pp. 335-370.
[http://dx.doi.org/10.1007/1-4020-5184-0_12]
[87]
Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol., 2004, 42, 185-209.
[http://dx.doi.org/10.1146/annurev.phyto.42.040803.140421] [PMID: 15283665]
[88]
Makandar, R.; Nalam, V.; Chaturvedi, R.; Jeannotte, R.; Sparks, A.A.; Shah, J. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol. Plant Microbe Interact., 2010, 23(7), 861-870.
[http://dx.doi.org/10.1094/MPMI-23-7-0861] [PMID: 20521949]
[89]
Mika, A.; Boenisch, M.J.; Hopff, D.; Lüthje, S. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. J. Exp. Bot., 2010, 61(3), 831-841.
[http://dx.doi.org/10.1093/jxb/erp353] [PMID: 20032108]
[90]
Mesterhazy, A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed., 1995, 114(5), 377-386.
[http://dx.doi.org/10.1111/j.1439-0523.1995.tb00816.x]
[91]
Champeil, A.; Doré, T.; Fourbet, J.F. Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci., 2004, 166(6), 1389-1415.
[http://dx.doi.org/10.1016/j.plantsci.2004.02.004]
[92]
Xiao, J.; Jin, X.; Jia, X.; Wang, H.; Cao, A.; Zhao, W.; Pei, H.; Xue, Z.; He, L.; Chen, Q.; Wang, X. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 2013, 14(1), 197.
[http://dx.doi.org/10.1186/1471-2164-14-197] [PMID: 23514540]
[93]
Hollins, T.W.; Ruckenbauer, P.; De Jong, H. Progress towards wheat varieties with resistance to Fusarium head blight. Food Control, 2003, 14(4), 239-244.
[http://dx.doi.org/10.1016/S0956-7135(03)00013-6]
[94]
Ruckenbauer, P.; Buerstmayr, H.; Lemmens, M. Present strategies in resistance breeding against scab (Fusarium spp.). Euphytica, 2001, 119(1-2), 123-129.
[http://dx.doi.org/10.1023/A:1017598523085]
[95]
Hart, L.P.; Pestka, J.J.; Liu, M.T. Effect of kernel development and wet periods on production of deoxynivalenol in wheat infected with Gibberella zeae. Phytopathology, 1984, 74(12), 1415-1418.
[http://dx.doi.org/10.1094/Phyto-74-1415]
[96]
Andersen, A.L. The development of Gibberella zeae head blight of wheat. Phytopathology, 1948, 38, 595-611.
[97]
Klepacka, J.; Fornal, Ł. Ferulic acid and its position among the phenolic compounds of wheat. Crit. Rev. Food Sci. Nutr., 2006, 46(8), 639-647.
[http://dx.doi.org/10.1080/10408390500511821] [PMID: 17092829]
[98]
Blanchette, R.A. Delignification by wood-decay fungi. Annu. Rev. Phytopathol., 1991, 29(1), 381-403.
[http://dx.doi.org/10.1146/annurev.py.29.090191.002121]
[99]
Mohammadi, M.; Kazemi, H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci., 2002, 162(4), 491-498.
[http://dx.doi.org/10.1016/S0168-9452(01)00538-6]
[100]
Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS One, 2019, 14(9), e0220562.
[http://dx.doi.org/10.1371/journal.pone.0220562] [PMID: 31509543]
[101]
Siranidou, E.; Kang, Z.; Buchenauer, H. Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium head blight. J. Phytopathol., 2002, 150(4‐5), 200-208.
[http://dx.doi.org/10.1046/j.1439-0434.2002.00738.x]
[102]
Kang, Z.; Buchenauer, H. Immunocytochemical localization of cell wall‐bound thionins and hydroxyproline‐rich glycoproteins in Fusarium culmorum‐infected wheat spikes. J. Phytopathol., 2003, 151(3), 120-129.
[http://dx.doi.org/10.1046/j.1439-0434.2003.00693.x]
[103]
Cruz, A.F.; Hamel, C.; Yang, C.; Matsubara, T.; Gan, Y.; Singh, A.K.; Kuwada, K.; Ishii, T. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation. Phytochemistry, 2012, 78, 72-80.
[http://dx.doi.org/10.1016/j.phytochem.2012.03.003] [PMID: 22520499]
[104]
McKeehen, J.D.; Busch, R.H.; Fulcher, R.G. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J. Agric. Food Chem., 1999, 47(4), 1476-1482.
[http://dx.doi.org/10.1021/jf980896f] [PMID: 10564002]
[105]
Soltoft, M.; Jørgensen, L.N.; Svensmark, B.; Fomsgaard, I.S. Benzoxazinoid concentrations show correlation with Fusarium head blight resistance in Danish wheat varieties. Biochem. Syst. Ecol., 2008, 36, 245-259.
[http://dx.doi.org/10.1016/j.bse.2007.10.008]
[106]
Coleman, J.; Blake-Kalff, M.; Davies, E. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci., 1997, 2(4), 144-151.
[http://dx.doi.org/10.1016/S1360-1385(97)01019-4]
[107]
Berthiller, F.; Dall’Asta, C.; Schuhmacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 2005, 53(9), 3421-3425.
[http://dx.doi.org/10.1021/jf047798g] [PMID: 15853382]
[108]
Miller, D.J.; Arnison, P.G. Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can. J. Plant Pathol., 1986, 8(2), 147-150.
[http://dx.doi.org/10.1080/07060668609501818]
[109]
Bollina, V.; Kumaraswamy, G.K.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S.; Faubert, D.; Hamzehzarghani, H. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol. Plant Pathol., 2010, 11(6), 769-782.
[http://dx.doi.org/10.1111/j.1364-3703.2010.00643.x] [PMID: 21029322]
[110]
Kumaraswamy, G.K.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Differential metabolic response of barley genotypes, varying in resistance, to trichothecene‐producing and‐nonproducing (tri5-) isolates of Fusarium graminearum. Plant Pathol., 2012, 61(3), 509-521.
[http://dx.doi.org/10.1111/j.1365-3059.2011.02528.x]
[111]
Yang, F.; Jacobsen, S.; Jørgensen, H.J.; Collinge, D.B.; Svensson, B.; Finnie, C. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era. Front. Plant Sci., 2013, 4, 37.
[http://dx.doi.org/10.3389/fpls.2013.00037] [PMID: 23450732]
[112]
Bai, G.; Shaner, G. Management and resistance in wheat and barley to fusarium head blight. Annu. Rev. Phytopathol., 2004, 42, 135-161.
[http://dx.doi.org/10.1146/annurev.phyto.42.040803.140340] [PMID: 15283663]
[113]
Chen, P.; Liu, D.; Sun, W. New countermeasures of breeding wheatfor scab resistance. Fusarium Head Scab: Global status and future prospects, 1997, 59-65.
[114]
Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL mapping and marker‐assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed., 2009, 128(1), 1-26.
[http://dx.doi.org/10.1111/j.1439-0523.2008.01550.x]
[115]
Miedaner, T.; Wilde, F.; Korzun, V.; Ebmeyer, E.; Schmolke, M.; Hartl, L.; Schön, C.C. Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica, 2009, 166(2), 219-227.
[http://dx.doi.org/10.1007/s10681-008-9832-0]
[116]
Allender, C. The second report on the state of the world’s plant genetic resources for food and agriculture. Rome In: Rome: Food and Agriculture Organization of the United Nations 2010;, 2010, p. 370.
[117]
Tiwari, K.K.; Singh, A.; Pattnaik, S.; Sandhu, M.; Kaur, S.; Jain, S.; Tiwari, S.; Mehrotra, S.; Anumalla, M.; Samal, R.; Bhardwaj, J. Identification of a diverse mini‐core panel of Indian rice germplasm based on genotyping using microsatellite markers. Plant Breed., 2015, 134(2), 164-171.
[http://dx.doi.org/10.1111/pbr.12252]
[118]
Jiang, P.; Zhang, X.; Wu, L.; He, Y.; Zhuang, W.; Cheng, X.; Ge, W.; Ma, H.; Kong, L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol., 2020, 69, 249-258.
[http://dx.doi.org/10.1111/ppa.13130]
[119]
Snijders, C.H. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol. Lett., 2004, 153(1), 37-46.
[http://dx.doi.org/10.1016/j.toxlet.2004.04.044] [PMID: 15342079]
[120]
Bai, G.; Su, Z.; Cai, J. Wheat resistance to Fusarium head blight.Can. J. Plant Pathol., 2018, 40(3), 336-346.
[http://dx.doi.org/10.1080/07060661.2018.1476411]
[121]
Hao, Y.; Rasheed, A.; Zhu, Z.; Wulff, B.B.H.; He, Z. Harnessing wheat Fhb1 for Fusarium resistance. Trends Plant Sci., 2020, 25(1), 1-3.
[http://dx.doi.org/10.1016/j.tplants.2019.10.006] [PMID: 31679993]
[122]
Zhang, X.; Pan, H.; Bai, G. Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theor. Appl. Genet., 2012, 125(3), 495-502.
[http://dx.doi.org/10.1007/s00122-012-1848-0] [PMID: 22454145]
[123]
Steiner, B.; Buerstmayr, M.; Michel, S.; Schweiger, W.; Lemmens, M.; Buerstmayr, H. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol., 2017, 42(3), 165-174.
[http://dx.doi.org/10.1007/s40858-017-0127-7]
[124]
Eckard, J.T.; Gonzalez-Hernandez, J.L.; Caffe, M.; Berzonsky, W.; Bockus, W.W.; Marais, G.F.; Baenziger, P.S. Native Fusarium head blight resistance from winter wheat cultivars ‘Lyman,’ ‘Overland,’ ‘Ernie,’ and ‘Freedom’ mapped and pyramided onto ‘Wesley’-Fhb1 backgrounds. Mol. Breed., 2015, 35(1), 6.
[http://dx.doi.org/10.1007/s11032-015-0200-1]
[125]
Rawat, N.; Pumphrey, M.O.; Liu, S.; Zhang, X.; Tiwari, V.K.; Ando, K.; Trick, H.N.; Bockus, W.W.; Akhunov, E.; Anderson, J.A.; Gill, B.S. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet., 2016, 48(12), 1576-1580.
[http://dx.doi.org/10.1038/ng.3706] [PMID: 27776114]
[126]
Gadaleta, A.; Colasuonno, P.; Giove, S.L.; Blanco, A.; Giancaspro, A. Map-based cloning of QFhb.mgb-2A identifies a WAK2 gene responsible for Fusarium Head Blight resistance in wheat. Sci. Rep., 2019, 9(1), 6929.
[http://dx.doi.org/10.1038/s41598-019-43334-z] [PMID: 31061411]
[127]
Pumphrey, M.O.; Bernardo, R.; Anderson, J.A. Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci., 2007, 47(1), 200-206.
[http://dx.doi.org/10.2135/cropsci2006.03.0206]
[128]
Dahleen, L.S.; Okubara, P.A.; Blechl, A.E. Transgenic approaches to combat Fusarium head blight in wheat and barley. Crop Sci., 2001, 41(3), 628-637.
[http://dx.doi.org/10.2135/cropsci2001.413628x]
[129]
Chen, D.; Ma, H.; Hong, H.; Koh, S.S.; Huang, S.M.; Schurter, B.T.; Aswad, D.W.; Stallcup, M.R. Regulation of transcription by a protein methyltransferase. Science, 1999, 284(5423), 2174-2177.
[http://dx.doi.org/10.1126/science.284.5423.2174] [PMID: 10381882]
[130]
Anand, A.; Zhou, T.; Trick, H.N.; Gill, B.S.; Bockus, W.W.; Muthukrishnan, S. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J. Exp. Bot., 2003, 54(384), 1101-1111.
[http://dx.doi.org/10.1093/jxb/erg110] [PMID: 12598580]
[131]
Mackintosh, C.A.; Lewis, J.; Radmer, L.E.; Shin, S.; Heinen, S.J.; Smith, L.A.; Wyckoff, M.N.; Dill-Macky, R.; Evans, C.K.; Kravchenko, S.; Baldridge, G.D.; Zeyen, R.J.; Muehlbauer, G.J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep., 2007, 26(4), 479-488.
[http://dx.doi.org/10.1007/s00299-006-0265-8] [PMID: 17103001]
[132]
Han, J.; Lakshman, D.K.; Galvez, L.C.; Mitra, S.; Baenziger, P.S.; Mitra, A. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol., 2012, 12(1), 33.
[http://dx.doi.org/10.1186/1471-2229-12-33] [PMID: 22405032]
[133]
Stuiver, M.H.; Custers, J.H. Engineering disease resistance in plants. Nature, 2001, 411(6839), 865-868.
[http://dx.doi.org/10.1038/35081200] [PMID: 11459071]
[134]
Makandar, R.; Essig, J.S.; Schapaugh, M.A.; Trick, H.N.; Shah, J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant Microbe Interact., 2006, 19(2), 123-129.
[http://dx.doi.org/10.1094/MPMI-19-0123] [PMID: 16529374]
[135]
Makandar, R.; Nalam, V.J.; Lee, H.; Trick, H.N.; Dong, Y.; Shah, J. Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Mol. Plant Microbe Interact., 2012, 25(3), 431-439.
[http://dx.doi.org/10.1094/MPMI-09-11-0232] [PMID: 22112217]
[136]
Li, H.P.; Zhang, J.B.; Shi, R.P.; Huang, T.; Fischer, R.; Liao, Y.C. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol. Plant Microbe Interact., 2008, 21(9), 1242-1248.
[http://dx.doi.org/10.1094/MPMI-21-9-1242] [PMID: 18700828]
[137]
He, F.; Zhang, R.; Zhao, J.; Qi, T.; Kang, Z.; Guo, J. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Front. Plant Sci., 2019, 10, 1362.
[http://dx.doi.org/10.3389/fpls.2019.01362] [PMID: 31737001]
[138]
Chattopadhyay, A.; Purohit, J.; Tiwari, K.K.; Deshmukh, R. Targeting transcription factors for plant disease resistance: shifting paradigm. Curr. Sci., 2019, 117(10), 1598.
[http://dx.doi.org/10.18520/cs/v117/i10/1598-1607]
[139]
Cagliari, D.; Dias, N.P.; Galdeano, D.M.; Dos Santos, E.Á.; Smagghe, G.; Zotti, M.J. Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci., 2019, 10, 1319.
[http://dx.doi.org/10.3389/fpls.2019.01319] [PMID: 31708946]
[140]
Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19324-19329.
[http://dx.doi.org/10.1073/pnas.1306373110] [PMID: 24218613]
[141]
Chen, Y.; Gao, Q.; Huang, M.; Liu, Y.; Liu, Z.; Liu, X.; Ma, Z. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Sci. Rep., 2015, 5, 12500.
[http://dx.doi.org/10.1038/srep12500] [PMID: 26212591]
[142]
Baldwin, T.; Islamovic, E.; Klos, K.; Schwartz, P.; Gillespie, J.; Hunter, S.; Bregitzer, P. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production. PLoS One, 2018, 13(8), e0202798.
[http://dx.doi.org/10.1371/journal.pone.0202798] [PMID: 30161200]
[143]
Cheng, W.; Song, X.S.; Li, H.P.; Cao, L.H.; Sun, K.; Qiu, X.L.; Xu, Y.B.; Yang, P.; Huang, T.; Zhang, J.B.; Qu, B.; Liao, Y.C. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol. J., 2015, 13(9), 1335-1345.
[http://dx.doi.org/10.1111/pbi.12352] [PMID: 25735638]
[144]
Chen, W.; Kastner, C.; Nowara, D.; Oliveira-Garcia, E.; Rutten, T.; Zhao, Y.; Deising, H.B.; Kumlehn, J.; Schweizer, P. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J. Exp. Bot., 2016, 67(17), 4979-4991.
[http://dx.doi.org/10.1093/jxb/erw263] [PMID: 27540093]
[145]
Werner, B.; Gaffar, F.Y.; Biedenkopf, D.; Koch, A. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Front. Plant Sci., 2020, 11, 476.
[146]
Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; Cardoza, V.; McMillan, J.; Mentzel, T.; Kogel, K.H. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog., 2016, 12(10), e1005901.
[http://dx.doi.org/10.1371/journal.ppat.1005901] [PMID: 27737019]
[147]
Höfle, L.; Biedenkopf, D.; Werner, B.T.; Shrestha, A.; Jelonek, L.; Koch, A. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol., 2020, 17(4), 463-473.
[148]
Malfatti, L. Use of CRISPR cas9 for the genome editing of Fusarium graminearum, one of the main causal agents of Fusarium head blight. ETD System: Electronic Theses and Dissertations 2018.
[149]
Chaudhary, K.; Chattopadhyay, A.; Pratap, D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol. Lett., 2018, 40(3), 465-477.
[http://dx.doi.org/10.1007/s10529-018-2506-7] [PMID: 29344851]
[150]
Wang, X.; Pan, C.; Gong, J.; Liu, X.; Li, H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model., 2016, 56(6), 1175-1183.
[http://dx.doi.org/10.1021/acs.jcim.5b00690] [PMID: 27187084]
[151]
Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 2013, 6(6), 1975-1983.
[http://dx.doi.org/10.1093/mp/sst119] [PMID: 23956122]
[152]
Ma, H.X.; Bai, G.H.; Zhang, X.; Lu, W.Z. Main effects, epistasis, and environmental interactions of quantitative trait Loci for fusari um head blight resistance in a recombinant inbred population. Phytopathology, 2006, 96(5), 534-541.
[http://dx.doi.org/10.1094/PHYTO-96-0534] [PMID: 18944314]
[153]
Wang, N. The Citrus Huanglongbing Crisis and Potential Solutions. Mol. Plant, 2019, 12(5), 607-609.
[http://dx.doi.org/10.1016/j.molp.2019.03.008] [PMID: 30947021]
[154]
Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.S.; Li, C.; Nguyen, H.; Liu, B.; Auguy, F.; Sciallano, C.; Luu, V.T.; Dossa, G.S.; Cunnac, S.; Schmidt, S.M.; Slamet-Loedin, I.H.; Vera Cruz, C.; Szurek, B.; Frommer, W.B.; White, F.F.; Yang, B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol., 2019, 37(11), 1344-1350.
[http://dx.doi.org/10.1038/s41587-019-0267-z] [PMID: 31659337]
[155]
Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 2014, 32(9), 947-951.
[http://dx.doi.org/10.1038/nbt.2969] [PMID: 25038773]
[156]
Wenderoth, M.; Pinecker, C.; Voß, B.; Fischer, R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet. Biol., 2017, 101, 55-60.
[http://dx.doi.org/10.1016/j.fgb.2017.03.001] [PMID: 28286319]
[157]
Li, J.; Zhang, Y.; Zhang, Y.; Yu, P.L.; Pan, H.; Rollins, J.A. Introduction of large sequence inserts by CRISPR-Cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. MBio, 2018, 9(3), e00567-e18.
[http://dx.doi.org/10.1128/mBio.00567-18] [PMID: 29946044]
[158]
Wang, W.; Pan, Q.; He, F.; Akhunova, A.; Chao, S.; Trick, H.; Akhunov, E. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J., 2018, 1(1), 65-74.
[http://dx.doi.org/10.1089/crispr.2017.0010] [PMID: 30627700]
[159]
Nakamura, M.; Okamura, Y.; Iwai, H. Plasmid-based and-free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae. Sci. Rep., 2019, 9(1), 1.
[http://dx.doi.org/10.1038/s41598-019-55302-8] [PMID: 30626917]
[160]
Nalam, V.J.; Alam, S.; Keereetaweep, J.; Venables, B.; Burdan, D.; Lee, H.; Trick, H.N.; Sarowar, S.; Makandar, R.; Shah, J. Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol. Plant Microbe Interact., 2015, 28(10), 1142-1152.
[http://dx.doi.org/10.1094/MPMI-04-15-0096-R] [PMID: 26075826]
[161]
Ravensdale, M.; Rocheleau, H.; Wang, L.; Nasmith, C.; Ouellet, T.; Subramaniam, R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Mol. Plant Pathol., 2014, 15(9), 948-956.
[http://dx.doi.org/10.1111/mpp.12145] [PMID: 24751103]
[162]
Urban, M.; Mott, E.; Farley, T.; Hammond-Kosack, K. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol. Plant Pathol., 2003, 4(5), 347-359.
[http://dx.doi.org/10.1046/j.1364-3703.2003.00183.x] [PMID: 20569395]
[163]
Su, Z.; Bernardo, A.; Tian, B.; Chen, H.; Wang, S.; Ma, H.; Cai, S.; Liu, D.; Zhang, D.; Li, T.; Trick, H.; St Amand, P.; Yu, J.; Zhang, Z.; Bai, G. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet., 2019, 51(7), 1099-1105.
[http://dx.doi.org/10.1038/s41588-019-0425-8] [PMID: 31182809]
[164]
van Schie, C.C.; Takken, F.L. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol., 2014, 52, 551-581.
[http://dx.doi.org/10.1146/annurev-phyto-102313-045854] [PMID: 25001453]
[165]
Low, Y.C. Applications of biotechnology for crop enhancement in disease resistance and nutrition, (Doctoral dissertation, Rutgers University-School of Graduate Studies).
[166]
Gardiner, D.M.; Kazan, K. Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biol., 2018, 122(2-3), 131-137.
[http://dx.doi.org/10.1016/j.funbio.2017.11.006] [PMID: 29458716]
[167]
Ferrara, M.; Haidukowski, M.; Logrieco, A.F.; Leslie, J.F.; Mulè, G. CRISPR-Cas9 system for genome editing of Fusarium proliferatum. Sci. Rep., 2019, 9(1), 19836.
[http://dx.doi.org/10.1038/s41598-019-56270-9] [PMID: 31882627]
[168]
Cui, X.; Balcerzak, M.; Schernthaner, J.; Babic, V.; Datla, R.; Brauer, E.K.; Labbé, N.; Subramaniam, R.; Ouellet, T. An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods, 2019, 15(1), 1-2.
[http://dx.doi.org/10.1186/s13007-019-0500-2]
[169]
Shan, Q.; Wang, Y.; Li, J.; Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc., 2014, 9(10), 2395-2410.
[http://dx.doi.org/10.1038/nprot.2014.157] [PMID: 25232936]
[170]
Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.L.; Gao, C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun., 2016, 7(1), 12617.
[http://dx.doi.org/10.1038/ncomms12617] [PMID: 27558837]
[171]
Di, R. CRISPR-Gene Editing Barley to Improve Fusarium HeadBlight Resistance (FY18-DI-015). Mycotoxins-biosecurity, food safety and biofuels byproducts (NC129, NC1025). Rutgers University,The State University of New Jersey, New Brunswick, Projectreport, Available from: https://portal.nifa.usda.gov/web/crisprojectpages/1007598-mycotoxins-biosecurity-food-safety-and-biofuelsbyproducts- nc129F-nc1025.html

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy