Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

An Emerging Therapeutic Approach by Targeting Myoferlin (MYOF) for Malignant Tumors

Author(s): Haijun Gu, Yangrui Peng and Yihua Chen*

Volume 20, Issue 17, 2020

Page: [1509 - 1515] Pages: 7

DOI: 10.2174/1568026620666200618123436

Abstract

Myoferlin (MYOF), as a member of the ferlin family, is a type II transmembrane protein with a single transmembrane domain at the carbon terminus. Studies have shown that MYOF is involved in pivotal physiological functions related to numerous cell membranes, such as extracellular secretion, endocytosis cycle, vesicle trafficking, membrane repair, membrane receptor recycling, and secreted protein efflux. Recently, the studies have also revealed that MYOF is overexpressed in a variety of cancers such as colorectal cancer, pancreatic cancer, breast cancer, melanoma, gastric cancer, and non-small-cell lung cancer. High expression of MYOF is associated with the high invasion of tumors and poor clinical prognosis. MYOF medicates the expression, secretion, and distribution of proteins, which were closely related to cancers, as well as the energy utilization of cancer cells, lipid metabolism and other physiological activities by regulating the physiological processes of membrane transport. In this short article, we briefly summarize the latest progress related to MYOF, indicating that small molecule inhibitors targeting the MYOF-C2D domain can selectively inhibit the proliferation and migration of cancer cells, and MYOF may be a promising target for the treatment of malignant tumors.

Keywords: MYOF, Tumor proliferation, Tumor migration, Vesicle trafficking, Small molecular MYOF inhibitors, Cancer.

[1]
Lynch, H.T.; de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med., 2003, 348(10), 919-932.
[http://dx.doi.org/10.1056/NEJMra012242] [PMID: 12621137]
[2]
Galiatsatos, P.; Foulkes, W.D. Familial adenomatous polyposis. Am. J. Gastroenterol., 2006, 101(2), 385-398.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00375.x] [PMID: 16454848]
[3]
Aaltonen, L.A.; Salovaara, R.; Kristo, P.; Canzian, F.; Hemminki, A.; Peltomäki, P.; Chadwick, R.B.; Kääriäinen, H.; Eskelinen, M.; Järvinen, H.; Mecklin, J.P.; de la Chapelle, A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med., 1998, 338(21), 1481-1487.
[http://dx.doi.org/10.1056/NEJM199805213382101] [PMID: 9593786]
[4]
Halasi, M.; Gartel, A.L. Targeting FOXM1 in cancer. Biochem. Pharmacol., 2013, 85(5), 644-652.
[http://dx.doi.org/10.1016/j.bcp.2012.10.013] [PMID: 23103567]
[5]
Washington, N.L.; Ward, S. FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J. Cell Sci., 2006, 119(Pt 12), 2552-2562.
[http://dx.doi.org/10.1242/jcs.02980] [PMID: 16735442]
[6]
Bashir, R.; Britton, S.; Strachan, T.; Keers, S.; Vafiadaki, E.; Lako, M.; Richard, I.; Marchand, S.; Bourg, N.; Argov, Z.; Sadeh, M.; Mahjneh, I.; Marconi, G.; Passos-Bueno, M.R.; Moreira, Ede.S.; Zatz, M.; Beckmann, J.S.; Bushby, K. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet., 1998, 20(1), 37-42.
[http://dx.doi.org/10.1038/1689] [PMID: 9731527]
[7]
Liu, J.; Aoki, M.; Illa, I.; Wu, C.; Fardeau, M.; Angelini, C.; Serrano, C.; Urtizberea, J.A.; Hentati, F.; Hamida, M.B.; Bohlega, S.; Culper, E.J.; Amato, A.A.; Bossie, K.; Oeltjen, J.; Bejaoui, K.; McKenna-Yasek, D.; Hosler, B.A.; Schurr, E.; Arahata, K.; de Jong, P.J.; Brown, R.H. Jr Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet., 1998, 20(1), 31-36.
[http://dx.doi.org/10.1038/1682] [PMID: 9731526]
[8]
Smith, M.K.; Wakimoto, B.T. Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene. BMC Dev. Biol., 2007, 7, 21.
[http://dx.doi.org/10.1186/1471-213X-7-21] [PMID: 17386097]
[9]
Jiménez, J.L.; Bashir, R. In silico functional and structural characterisation of ferlin proteins by mapping disease-causing mutations and evolutionary information onto three-dimensional models of their C2 domains. J. Neurol. Sci., 2007, 260(1-2), 114-123.
[http://dx.doi.org/10.1016/j.jns.2007.04.016] [PMID: 17512949]
[10]
Yasunaga, S.; Grati, M.; Cohen-Salmon, M.; El-Amraoui, A.; Mustapha, M.; Salem, N.; El-Zir, E.; Loiselet, J.; Petit, C. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat. Genet., 1999, 21(4), 363-369.
[http://dx.doi.org/10.1038/7693] [PMID: 10192385]
[11]
Britton, S.; Freeman, T.; Vafiadaki, E.; Keers, S.; Harrison, R.; Bushby, K.; Bashir, R. The third human FER-1-like protein is highly similar to dysferlin. Genomics, 2000, 68(3), 313-321.
[http://dx.doi.org/10.1006/geno.2000.6290] [PMID: 10995573]
[12]
Doherty, K.R.; Demonbreun, A.R.; Wallace, G.Q.; Cave, A.; Posey, A.D.; Heretis, K.; Pytel, P.; McNally, E.M. The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J. Biol. Chem., 2008, 283(29), 20252-20260.
[http://dx.doi.org/10.1074/jbc.M802306200] [PMID: 18502764]
[13]
Achanzar, W.E.; Ward, S. A nematode gene required for sperm vesicle fusion. J. Cell Sci., 1997, 110(Pt 9), 1073-1081.
[PMID: 9175703]
[14]
Posey, A.D., Jr; Demonbreun, A.; McNally, E.M. Ferlin proteins in myoblast fusion and muscle growth. Curr. Top. Dev. Biol., 2011, 96, 203-230.
[http://dx.doi.org/10.1016/B978-0-12-385940-2.00008-5] [PMID: 21621072]
[15]
Davis, D.B.; Delmonte, A.J.; Ly, C.T.; McNally, E.M. Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum. Mol. Genet., 2000, 9(2), 217-226.
[http://dx.doi.org/10.1093/hmg/9.2.217] [PMID: 10607832]
[16]
Doherty, K.R.; Cave, A.; Davis, D.B.; Delmonte, A.J.; Posey, A.; Earley, J.U.; Hadhazy, M.; McNally, E.M. Normal myoblast fusion requires myoferlin. Development, 2005, 132(24), 5565-5575.
[http://dx.doi.org/10.1242/dev.02155] [PMID: 16280346]
[17]
Demonbreun, A.R.; Lapidos, K.A.; Heretis, K.; Levin, S.; Dale, R.; Pytel, P.; Svensson, E.C.; McNally, E.M. Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J. Cell Sci., 2010, 123(Pt 14), 2413-2422.
[http://dx.doi.org/10.1242/jcs.065375] [PMID: 20571050]
[18]
Haslett, J.N.; Sanoudou, D.; Kho, A.T.; Bennett, R.R.; Greenberg, S.A.; Kohane, I.S.; Beggs, A.H.; Kunkel, L.M. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc. Natl. Acad. Sci. USA, 2002, 99(23), 15000-15005.
[http://dx.doi.org/10.1073/pnas.192571199] [PMID: 12415109]
[19]
Doherty, K.R.; McNally, E.M. Repairing the tears: dysferlin in muscle membrane repair. Trends Mol. Med., 2003, 9(8), 327-330.
[http://dx.doi.org/10.1016/S1471-4914(03)00136-9] [PMID: 12928033]
[20]
Davis, D.B.; Doherty, K.R.; Delmonte, A.J.; McNally, E.M. Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J. Biol. Chem., 2002, 277(25), 22883-22888.
[http://dx.doi.org/10.1074/jbc.M201858200] [PMID: 11959863]
[21]
The Human Protien Atlas. Available from: https://www.proteinatlas.org/
[22]
Amatschek, S.; Koenig, U.; Auer, H.; Steinlein, P.; Pacher, M.; Gruenfelder, A.; Dekan, G.; Vogl, S.; Kubista, E.; Heider, K.H.; Stratowa, C.; Schreiber, M.; Sommergruber, W. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res., 2004, 64(3), 844-856.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2361] [PMID: 14871811]
[23]
Eisenberg, M.C.; Kim, Y.; Li, R.; Ackerman, W.E.; Kniss, D.A.; Friedman, A. Mechanistic modeling of the effects of myoferlin on tumor cell invasion. Proc. Natl. Acad. Sci. USA, 2011, 108(50), 20078-20083.
[http://dx.doi.org/10.1073/pnas.1116327108] [PMID: 22135466]
[24]
Yadav, A.; Kumar, B.; Lang, J.C.; Teknos, T.N.; Kumar, P. A muscle-specific protein ‘myoferlin’ modulates IL-6/STAT3 signaling by chaperoning activated STAT3 to nucleus. Oncogene, 2017, 36(46), 6374-6382.
[http://dx.doi.org/10.1038/onc.2017.245] [PMID: 28745314]
[25]
Blomme, A.; Costanza, B.; de Tullio, P.; Thiry, M.; Van Simaeys, G.; Boutry, S.; Doumont, G.; Di Valentin, E.; Hirano, T.; Yokobori, T.; Gofflot, S.; Peulen, O.; Bellahcène, A.; Sherer, F.; Le Goff, C.; Cavalier, E.; Mouithys-Mickalad, A.; Jouret, F.; Cusumano, P.G.; Lifrange, E.; Muller, R.N.; Goldman, S.; Delvenne, P.; De Pauw, E.; Nishiyama, M.; Castronovo, V.; Turtoi, A. Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer. Oncogene, 2017, 36(15), 2116-2130.
[http://dx.doi.org/10.1038/onc.2016.369] [PMID: 27775075]
[26]
Li, R.; Ackerman, W.E., IV; Mihai, C.; Volakis, L.I.; Ghadiali, S.; Kniss, D.A. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion. PLoS One, 2012, 7(6)e39766
[http://dx.doi.org/10.1371/journal.pone.0039766] [PMID: 22761893]
[27]
Demonbreun, A.R.; Posey, A.D.; Heretis, K.; Swaggart, K.A.; Earley, J.U.; Pytel, P.; McNally, E.M. Myoferlin is required for insulin-like growth factor response and muscle growth. FASEB J., 2010, 24(4), 1284-1295.
[http://dx.doi.org/10.1096/fj.09-136309] [PMID: 20008164]
[28]
Turtoi, A.; Blomme, A.; Bellahcène, A.; Gilles, C.; Hennequière, V.; Peixoto, P.; Bianchi, E.; Noel, A.; De Pauw, E.; Lifrange, E.; Delvenne, P.; Castronovo, V. Myoferlin is a key regulator of EGFR activity in breast cancer. Cancer Res., 2013, 73(17), 5438-5448.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1142] [PMID: 23864327]
[29]
Blackstone, B.N.; Li, R.; Ackerman, W.E., IV; Ghadiali, S.N.; Powell, H.M.; Kniss, D.A. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells. Am. J. Physiol. Cell Physiol., 2015, 308(8), C642-C649.
[http://dx.doi.org/10.1152/ajpcell.00276.2014] [PMID: 25631868]
[30]
Goldenring, J.R. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer, 2013, 13(11), 813-820.
[http://dx.doi.org/10.1038/nrc3601] [PMID: 24108097]
[31]
Wright, P.K. Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Patents Anticancer Drug Discov., 2008, 3(2), 137-147.
[http://dx.doi.org/10.2174/157489208784638730] [PMID: 18537756]
[32]
Rademaker, G.; Hennequière, V.; Brohée, L.; Nokin, M.J.; Lovinfosse, P.; Durieux, F.; Gofflot, S.; Bellier, J.; Costanza, B.; Herfs, M.; Peiffer, R.; Bettendorff, L.; Deroanne, C.; Thiry, M.; Delvenne, P.; Hustinx, R.; Bellahcène, A.; Castronovo, V.; Peulen, O. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene, 2018, 37(32), 4398-4412.
[http://dx.doi.org/10.1038/s41388-018-0287-z] [PMID: 29720728]
[33]
Zhang, T.; Li, J.; He, Y.; Yang, F.; Hao, Y.; Jin, W.; Wu, J.; Sun, Z.; Li, Y.; Chen, Y.; Yi, Z.; Liu, M. A small molecule targeting myoferlin exerts promising anti-tumor effects on breast cancer. Nat. Commun., 2018, 9(1), 3726.
[http://dx.doi.org/10.1038/s41467-018-06179-0] [PMID: 30213946]
[34]
Wu, J.; Yu, L.; Yang, F.; Li, J.; Wang, P.; Zhou, W.; Qin, L.; Li, Y.; Luo, J.; Yi, Z.; Liu, M.; Chen, Y. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur. J. Med. Chem., 2014, 80, 340-351.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.068] [PMID: 24794770]
[35]
Li, Y.; He, Y.; Shao, T.; Pei, H.; Guo, W.; Mi, D.; Krimm, I.; Zhang, Y.; Wang, P.; Wang, X.; Liu, M.; Yi, Z.; Chen, Y. Modification and biological evaluation of a series of 1,5-Diaryl-1,2,4-triazole compounds as novel agents against pancreatic cancer metastasis through targeting myoferlin. J. Med. Chem., 2019, 62(10), 4949-4966.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00059] [PMID: 31026162]
[36]
Han, R.; Campbell, K.P. Dysferlin and muscle membrane repair. Curr. Opin. Cell Biol., 2007, 19(4), 409-416.
[http://dx.doi.org/10.1016/j.ceb.2007.07.001] [PMID: 17662592]
[37]
Hui, E.; Bai, J.; Chapman, E.R. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J., 2006, 91(5), 1767-1777.
[http://dx.doi.org/10.1529/biophysj.105.080325] [PMID: 16782782]
[38]
Helfmann, S.; Neumann, P.; Tittmann, K.; Moser, T.; Ficner, R.; Reisinger, E. The crystal structure of the C2A domain of otoferlin reveals an unconventional top loop region. J. Mol. Biol., 2011, 406(3), 479-490.
[http://dx.doi.org/10.1016/j.jmb.2010.12.031] [PMID: 21216247]
[39]
Grant, B.D.; Caplan, S. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic, 2008, 9(12), 2043-2052.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00834.x] [PMID: 18801062]
[40]
Grounds, M.D.; Shavlakadze, T. Growing muscle has different sarcolemmal properties from adult muscle: a proposal with scientific and clinical implications: reasons to reassess skeletal muscle molecular dynamics, cellular responses and suitability of experimental models of muscle disorders. BioEssays, 2011, 33(6), 458-468.
[http://dx.doi.org/10.1002/bies.201000136] [PMID: 21500235]
[41]
Posey, A.D., Jr; Swanson, K.E.; Alvarez, M.G.; Krishnan, S.; Earley, J.U.; Band, H.; Pytel, P.; McNally, E.M.; Demonbreun, A.R. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development. Dev. Biol., 2014, 387(2), 179-190.
[http://dx.doi.org/10.1016/j.ydbio.2014.01.004] [PMID: 24440153]
[42]
Naslavsky, N.; Caplan, S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol., 2011, 21(2), 122-131.
[http://dx.doi.org/10.1016/j.tcb.2010.10.003] [PMID: 21067929]
[43]
Rommel, C.; Bodine, S.C.; Clarke, B.A.; Rossman, R.; Nunez, L.; Stitt, T.N.; Yancopoulos, G.D.; Glass, D.J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol., 2001, 3(11), 1009-1013.
[http://dx.doi.org/10.1038/ncb1101-1009] [PMID: 11715022]
[44]
Musarò, A.; McCullagh, K.; Paul, A.; Houghton, L.; Dobrowolny, G.; Molinaro, M.; Barton, E.R.; Sweeney, H.L.; Rosenthal, N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet., 2001, 27(2), 195-200.
[http://dx.doi.org/10.1038/84839] [PMID: 11175789]
[45]
Yang, S.Y.; Goldspink, G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett., 2002, 522(1-3), 156-160.
[http://dx.doi.org/10.1016/S0014-5793(02)02918-6] [PMID: 12095637]
[46]
Bernatchez, P.N.; Acevedo, L.; Fernandez-Hernando, C.; Murata, T.; Chalouni, C.; Kim, J.; Erdjument-Bromage, H.; Shah, V.; Gratton, J.P.; McNally, E.M.; Tempst, P.; Sessa, W.C. Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function. J. Biol. Chem., 2007, 282(42), 30745-30753.
[http://dx.doi.org/10.1074/jbc.M704798200] [PMID: 17702744]
[47]
Cipta, S.; Patel, H.H. Molecular bandages: inside-out, outside-in repair of cellular membranes. Focus on “Myoferlin is critical for endocytosis in endothelial cells”. Am. J. Physiol. Cell Physiol., 2009, 297(3), C481-C483.
[http://dx.doi.org/10.1152/ajpcell.00288.2009] [PMID: 19587215]
[48]
Futerman, A.H.; Hirschberg, K.; Meivar-Levy, I.; Rapaport, E.; Schwarz, A.; Sofer, A.; Zisling, R. Vesicle transport during cell growth and in the maintenance of cell polarity. Biochem. Soc. Trans., 1995, 23(3), 530-534.
[http://dx.doi.org/10.1042/bst0230530] [PMID: 8566408]
[49]
Roizen, M.F. Hallmarks of Cancer: The Next Generation. Cell Biochem. Funct., 2012, 144(5), 646-674.
[50]
Gai, C.; Carpanetto, A.; Deregibus, M.C.; Camussi, G. Extracellular vesicle-mediated modulation of angiogenesis. Histol. Histopathol., 2016, 31(4), 379-391.
[PMID: 26662176]
[51]
Stec, J.; Wang, J.; Coombes, K.; Ayers, M.; Hoersch, S.; Gold, D.L.; Ross, J.S.; Hess, K.R.; Tirrell, S.; Linette, G.; Hortobagyi, G.N.; Fraser Symmans, W.; Pusztai, L. Comparison of the predictive accuracy of DNA array-based multigene classifiers across cDNA arrays and Affymetrix GeneChips. J. Mol. Diagn., 2005, 7(3), 357-367.
[http://dx.doi.org/10.1016/S1525-1578(10)60565-X] [PMID: 16049308]
[52]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[53]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[54]
Bailey, C.E.; Hu, C.Y.; You, Y.N.; Bednarski, B.K.; Rodriguez-Bigas, M.A.; Skibber, J.M.; Cantor, S.B.; Chang, G.J. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg., 2015, 150(1), 17-22.
[http://dx.doi.org/10.1001/jamasurg.2014.1756] [PMID: 25372703]
[55]
Ciombor, K.K.; Wu, C.; Goldberg, R.M. Recent therapeutic advances in the treatment of colorectal cancer. Annu. Rev. Med., 2015, 66, 83-95.
[http://dx.doi.org/10.1146/annurev-med-051513-102539] [PMID: 25341011]
[56]
Yu, C.; Sharma, A.; Trane, A.; Utokaparch, S.; Leung, C.; Bernatchez, P. Myoferlin gene silencing decreases Tie-2 expression in vitro and angiogenesis in vivo. Vascul. Pharmacol., 2011, 55(1-3), 26-33.
[http://dx.doi.org/10.1016/j.vph.2011.04.001] [PMID: 21586340]
[57]
Volakis, L.I.; Li, R.; Ackerman, W.E., IV; Mihai, C.; Bechel, M.; Summerfield, T.L.; Ahn, C.S.; Powell, H.M.; Zielinski, R.; Rosol, T.J.; Ghadiali, S.N.; Kniss, D.A. Loss of myoferlin redirects breast cancer cell motility towards collective migration. PLoS One, 2014, 9(2)e86110
[http://dx.doi.org/10.1371/journal.pone.0086110] [PMID: 24586247]
[58]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[59]
Turtoi, A.; Musmeci, D.; Wang, Y.; Dumont, B.; Somja, J.; Bevilacqua, G.; De Pauw, E.; Delvenne, P.; Castronovo, V. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J. Proteome Res., 2011, 10(9), 4302-4313.
[http://dx.doi.org/10.1021/pr200527z] [PMID: 21755970]
[60]
Wang, W.S.; Liu, X.H.; Liu, L.X.; Lou, W.H.; Jin, D.Y.; Yang, P.Y.; Wang, X.L. iTRAQ-based quantitative proteomics reveals myoferlin as a novel prognostic predictor in pancreatic adenocarcinoma. J. Proteomics, 2013, 91, 453-465.
[http://dx.doi.org/10.1016/j.jprot.2013.06.032] [PMID: 23851313]
[61]
Fahmy, K.; Gonzalez, A.; Arafa, M.; Peixoto, P.; Bellahcène, A.; Turtoi, A.; Delvenne, P.; Thiry, M.; Castronovo, V.; Peulen, O. Myoferlin plays a key role in VEGFA secretion and impacts tumor-associated angiogenesis in human pancreas cancer. Int. J. Cancer, 2016, 138(3), 652-663.
[http://dx.doi.org/10.1002/ijc.29820] [PMID: 26311411]
[62]
Viale, A.; Pettazzoni, P.; Lyssiotis, C.A.; Ying, H.; Sánchez, N.; Marchesini, M.; Carugo, A.; Green, T.; Seth, S.; Giuliani, V.; Kost-Alimova, M.; Muller, F.; Colla, S.; Nezi, L.; Genovese, G.; Deem, A.K.; Kapoor, A.; Yao, W.; Brunetto, E.; Kang, Y.; Yuan, M.; Asara, J.M.; Wang, Y.A.; Heffernan, T.P.; Kimmelman, A.C.; Wang, H.; Fleming, J.B.; Cantley, L.C.; DePinho, R.A.; Draetta, G.F. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514(7524), 628-632.
[http://dx.doi.org/10.1038/nature13611] [PMID: 25119024]
[63]
Daemen, A.; Peterson, D.; Sahu, N.; McCord, R.; Du, X.; Liu, B.; Kowanetz, K.; Hong, R.; Moffat, J.; Gao, M.; Boudreau, A.; Mroue, R.; Corson, L.; O’Brien, T.; Qing, J.; Sampath, D.; Merchant, M.; Yauch, R.; Manning, G.; Settleman, J.; Hatzivassiliou, G.; Evangelista, M. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl. Acad. Sci. USA, 2015, 112(32), E4410-E4417.
[http://dx.doi.org/10.1073/pnas.1501605112] [PMID: 26216984]
[64]
Boudreau, A.; Purkey, H.E.; Hitz, A.; Robarge, K.; Peterson, D.; Labadie, S.; Kwong, M.; Hong, R.; Gao, M.; Del Nagro, C.; Pusapati, R.; Ma, S.; Salphati, L.; Pang, J.; Zhou, A.; Lai, T.; Li, Y.; Chen, Z.; Wei, B.; Yen, I.; Sideris, S.; McCleland, M.; Firestein, R.; Corson, L.; Vanderbilt, A.; Williams, S.; Daemen, A.; Belvin, M.; Eigenbrot, C.; Jackson, P.K.; Malek, S.; Hatzivassiliou, G.; Sampath, D.; Evangelista, M.; O’Brien, T. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat. Chem. Biol., 2016, 12(10), 779-786.
[http://dx.doi.org/10.1038/nchembio.2143] [PMID: 27479743]
[65]
Halbrook, C.J.; Lyssiotis, C.A. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer cancer cell, 2020, 31(1), 5-19.

© 2025 Bentham Science Publishers | Privacy Policy