Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Data Analysis-Driven Precise Asthmatic Treatment by Targeting Mast Cells

Author(s): Yupin Tan, Lili Zou, Na Li, Li Huang, Meiji Chen, Xuexiang Li, Xue Zheng, Wenkai Li, Yun Li* and Chun-Tao Yang*

Volume 21, Issue 2, 2021

Published on: 10 June, 2020

Page: [315 - 323] Pages: 9

DOI: 10.2174/1871530320666200610152922

Price: $65

Abstract

Background: Although the importance of mast cells in asthma has been studied, mast cellsinduced global changes in lungs are largely unknown. Data-driven identification contributes to discovering significant biomarkers or therapeutic targets, which are the basis of effective clinical medications.

Objective: This study aims to explore the effects of mast cells on gene expression in asthmatic lungs, and to assess the curative effects of inhaled budesonide (BUD).

Methods: Pulmonary gene expression in KitWsh mice with or without mast cell engraftment was analyzed with R software. Functional enrichment of Gene Ontology and KEGG was carried out through the DAVID online tool. Hub genes were identified with String and Cytoscape software.

Results: The array analyses showed that the mast cell engraftment enhanced inflammation/immune response, cytokine/chemokine signal, and monocyte/neutrophil/lymphocyte chemotaxis. Interleukin (IL)-6 was identified to be a significant hub gene with the highest interaction degree. Based on this, the effects of BUD were investigated on the aspects of anti-inflammation. BUD’s treatment was found to reduce serum IL-6 content and pulmonary inflammation in ovalbumin-induced asthma rats. The treatment also downregulated beta-tryptase expression both in lung tissues and serum. Morphologically, the accumulation and degranulation of mast cells were significantly suppressed. Notably, the effects of BUD on inflammation and degranulation were comparable with Tranilast (a classic mast cell inhibitor), while a remarkable synergy was not observed.

Conclusion: This study presented a unique pulmonary gene profile induced by mast cell engraftment, which could be reversed through blockage of mast cells or inhaled BUD.

Keywords: Asthma, bioinformatics, budesonide, immune disorders, mast cells, gene expression.

Graphical Abstract

[1]
Rai, S.P.; Patil, A.P.; Vardhan, V.; Marwah, V.; Pethe, M.; Pandey, I.M. Best treatment guidelines for bronchial asthma. Med. J. Armed Forces India, 2007, 63(3), 264-268.
[http://dx.doi.org/10.1016/S0377-1237(07)80151-1] [PMID: 27408013]
[2]
Stubbs, M.A.; Clark, V.L.; McDonald, V.M. Living well with severe asthma. Breathe (Sheff.), 2019, 15(2), e40-e49.
[http://dx.doi.org/10.1183/20734735.0165-2019] [PMID: 31777564]
[3]
Chapman, D.G.; Irvin, C.G. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin. Exp. Allergy, 2015, 45(4), 706-719.
[http://dx.doi.org/10.1111/cea.12506] [PMID: 25651937]
[4]
Akinbami, L.J.; Rossen, L.M.; Fakhouri, T.H.I.; Fryar, C.D. Asthma prevalence trends by weight status among US children aged 2-19 years, 1988-2014. Pediatr. Obes., 2018, 13(6), 393-396.
[http://dx.doi.org/10.1111/ijpo.12246] [PMID: 29130640]
[5]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)30258-7] [PMID: 30496104]
[6]
Tomioka, M.; Ida, S.; Shindoh, Y.; Ishihara, T.; Takishima, T. Mast cells in bronchoalveolar lumen of patients with bronchial asthma. Am. Rev. Respir. Dis., 1984, 129(6), 1000-1005.
[PMID: 6203444]
[7]
Bradley, B.L.; Azzawi, M.; Jacobson, M.; Assoufi, B.; Collins, J.V.; Irani, A.M.; Schwartz, L.B.; Durham, S.R.; Jeffery, P.K.; Kay, A.B. Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J. Allergy Clin. Immunol., 1991, 88(4), 661-674.
[http://dx.doi.org/10.1016/0091-6749(91)90160-P] [PMID: 1918731]
[8]
Williams, C.M.; Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med., 2000, 192(3), 455-462.
[http://dx.doi.org/10.1084/jem.192.3.455] [PMID: 10934234]
[9]
Amin, K. The role of mast cells in allergic inflammation. Respir. Med., 2012, 106(1), 9-14.
[http://dx.doi.org/10.1016/j.rmed.2011.09.007] [PMID: 22112783]
[10]
Zhou, X.; Wei, T.; Cox, C.W.; Jiang, Y.; Roche, W.R.; Walls, A.F. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy, 2019, 74(7), 1266-1276.
[PMID: 30428129]
[11]
Carroll, N.G.; Mutavdzic, S.; James, A.L. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur. Respir. J., 2002, 19(5), 879-885.
[http://dx.doi.org/10.1183/09031936.02.00275802] [PMID: 12030728]
[12]
Lundblad, L.K.A.; Gülec, N.; Poynter, M.E.; DeVault, V.L.; Dienz, O.; Boyson, J.E.; Daphtary, N.; Aliyeva, M.; Ather, J.L.; Scheuplein, F.; Schaub, R. The role of iNKT cells on the phenotypes of allergic airways in a mouse model. Pulm. Pharmacol. Ther., 2017, 45, 80-89.
[http://dx.doi.org/10.1016/j.pupt.2017.05.003] [PMID: 28483562]
[13]
Verheijden, K.A.T.; Braber, S.; Leusink-Muis, T.; Jeurink, P.V.; Thijssen, S.; Kraneveld, A.D.; Garssen, J.; Folkerts, G.; Willemsen, L.E.M. The combination therapy of dietary galacto-oligosaccharides with Budesonide reduces pulmonary Th2 driving mediators and mast cell degranulation in a murine model of house dust mite induced asthma. Front. Immunol., 2018, 9, 2419.
[http://dx.doi.org/10.3389/fimmu.2018.02419] [PMID: 30405619]
[14]
Hart, P.H. Regulation of the inflammatory response in asthma by mast cell products. Immunol. Cell Biol., 2001, 79(2), 149-153.
[http://dx.doi.org/10.1046/j.1440-1711.2001.00983.x] [PMID: 11264709]
[15]
Zhao, J.V.; Schooling, C.M. The role of linoleic acid in asthma and inflammatory markers: a Mendelian randomization study. Am. J. Clin. Nutr., 2019, 110(3), 685-690.
[http://dx.doi.org/10.1093/ajcn/nqz130] [PMID: 31287141]
[16]
McGeachie, M.J.; Sordillo, J.E.; Dahlin, A.; Wang, A.L.; Lutz, S.M.; Tantisira, K.G.; Panganiban, R.; Lu, Q.; Sajuthi, S.; Urbanek, C.; Kelly, R.; Saef, B.; Eng, C.; Oh, S.S.; Kho, A.T.; Croteau-Chonka, D.C.; Weiss, S.T.; Raby, B.A.; Mak, A.C.Y.; Rodriguez-Santana, J.R.; Burchard, E.G.; Seibold, M.A.; Wu, A.C. Expression of SMARCD1 interacts with age in association with asthma control on inhaled corticosteroid therapy. Respir. Res., 2020, 21(1), 31.
[http://dx.doi.org/10.1186/s12931-020-1295-4] [PMID: 31992292]
[17]
O’Byrne, P.M.; FitzGerald, J.M.; Zhong, N.; Bateman, E.; Barnes, P.J.; Keen, C.; Almqvist, G.; Pemberton, K.; Jorup, C.; Ivanov, S.; Reddel, H.K. The SYGMA programme of phase 3 trials to evaluate the efficacy and safety of budesonide/formoterol given ‘as needed’ in mild asthma: study protocols for two randomised controlled trials. Trials, 2017, 18(1), 12.
[http://dx.doi.org/10.1186/s13063-016-1731-4] [PMID: 28069068]
[18]
Beasley, R.; Holliday, M.; Reddel, H.K.; Braithwaite, I.; Ebmeier, S.; Hancox, R.J.; Harrison, T.; Houghton, C.; Oldfield, K.; Papi, A.; Pavord, I.D.; Williams, M.; Weatherall, M.; Novel, S.S.T. Novel START study team. Controlled trial of Budesonide-formoterol as needed for mild asthma. N. Engl. J. Med., 2019, 380(21), 2020-2030.
[http://dx.doi.org/10.1056/NEJMoa1901963] [PMID: 31112386]
[19]
Pelaia, G.; Vatrella, A.; Busceti, M.T.; Fabiano, F.; Terracciano, R.; Matera, M.G.; Maselli, R. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma. Pulm. Pharmacol. Ther., 2016, 40, 15-21.
[http://dx.doi.org/10.1016/j.pupt.2016.07.001] [PMID: 27381656]
[20]
Chu, H.Q.; Li, J.; Huang, H.P.; Hao, W.D.; Duan, L.P.; Wei, X.T. Protective effects of tranilast on oxazolone-induced rat colitis through a mast cell-dependent pathway. Dig. Liver Dis., 2016, 48(2), 162-171.
[http://dx.doi.org/10.1016/j.dld.2015.09.002] [PMID: 26455295]
[21]
Nie, X.; Wei, J.; Hao, Y.; Tao, J.; Li, Y.; Liu, M.; Xu, B.; Li, B. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology Approach. Int. J. Mol. Sci., 2019, 20(16), 20.
[http://dx.doi.org/10.3390/ijms20164037] [PMID: 31430856]
[22]
Yang, C.T.; Chen, L.; Chen, W.L.; Li, N.; Chen, M.J.; Li, X.; Zheng, X.; Zhao, Y.Z.; Wu, Y.X.; Xian, M.; Liu, J. Hydrogen sulfide primes diabetic wound to close through inhibition of NETosis. Mol. Cell. Endocrinol., 2019, 480, 74-82.
[http://dx.doi.org/10.1016/j.mce.2018.10.013] [PMID: 30339820]
[23]
Yang, C.T.; Meng, F.H.; Chen, L.; Li, X.; Cen, L.J.; Wen, Y.H.; Li, C.C.; Zhang, H. Inhibition of methylglyoxal-induced AGEs/RAGE expression contributes to dermal protection by N-acetyl-L-cysteine. Cell. Physiol. Biochem., 2017, 41(2), 742-754.
[http://dx.doi.org/10.1159/000458734] [PMID: 28214842]
[24]
Kamal, R.; Dahiya, P.; Palaskar, S.; Shetty, V. Comparative analysis of mast cell count in normal oral mucosa and oral pyogenic granuloma. J. Clin. Exp. Dent., 2011, 3, 1-4.
[http://dx.doi.org/10.4317/jced.3.e1]
[25]
Nakagome, K.; Nagata, M. Involvement and possible role of eosinophils in asthma exacerbation. Front. Immunol., 2018, 9, 2220.
[http://dx.doi.org/10.3389/fimmu.2018.02220] [PMID: 30323811]
[26]
Singh, D.; Ravi, A.; Southworth, T. CRTH2 antagonists in asthma: current perspectives. Clin. Pharmacol., 2017, 9, 165-173.
[http://dx.doi.org/10.2147/CPAA.S119295] [PMID: 29276415]
[27]
Cayrol, C.; Girard, J.P. Innate lymphoid cells in asthmatic patients. J. Allergy Clin. Immunol., 2019, 143(5), 1739-1741.
[http://dx.doi.org/10.1016/j.jaci.2019.03.011] [PMID: 30926530]
[28]
Wenzel, S.E.; Fowler, A.A., III; Schwartz, L.B. Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma. Am. Rev. Respir. Dis., 1988, 137(5), 1002-1008.
[http://dx.doi.org/10.1164/ajrccm/137.5.1002] [PMID: 2461667]
[29]
Poynter, M.E.; Irvin, C.G. Interleukin-6 as a biomarker for asthma: hype or is there something else? Eur. Respir. J., 2016, 48(4), 979-981.
[http://dx.doi.org/10.1183/13993003.01597-2016] [PMID: 27694408]
[30]
Jevnikar, Z.; Östling, J.; Ax, E.; Calvén, J.; Thörn, K.; Israelsson, E.; Öberg, L.; Singhania, A.; Lau, L.C.K.; Wilson, S.J.; Ward, J.A.; Chauhan, A.; Sousa, A.R.; De Meulder, B.; Loza, M.J.; Baribaud, F.; Sterk, P.J.; Chung, K.F.; Sun, K.; Guo, Y.; Adcock, I.M.; Payne, D.; Dahlen, B.; Chanez, P.; Shaw, D.E.; Krug, N.; Hohlfeld, J.M.; Sandström, T.; Djukanovic, R.; James, A.; Hinks, T.S.C.; Howarth, P.H.; Vaarala, O.; van Geest, M.; Olsson, H. Unbiased biomarkers in prediction of respiratory disease outcomes study group. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J. Allergy Clin. Immunol., 2019, 143(2), 577-590.
[http://dx.doi.org/10.1016/j.jaci.2018.05.026] [PMID: 29902480]
[31]
Rincon, M.; Irvin, C.G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci., 2012, 8(9), 1281-1290.
[http://dx.doi.org/10.7150/ijbs.4874] [PMID: 23136556]
[32]
Diehl, S.; Rincón, M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol., 2002, 39(9), 531-536.
[http://dx.doi.org/10.1016/S0161-5890(02)00210-9] [PMID: 12431386]
[33]
Kimura, A.; Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol., 2010, 40(7), 1830-1835.
[http://dx.doi.org/10.1002/eji.201040391] [PMID: 20583029]
[34]
Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: more than just T(H)2 cells. Nat. Rev. Immunol., 2010, 10(12), 838-848.
[http://dx.doi.org/10.1038/nri2870] [PMID: 21060320]
[35]
Sahiner, U.M.; Buyuktiryaki, B.; Gungor, H.E.; Sahiner, N.; Turasan, A.; Torun, Y.A.; Sekerel, B.E. Factors that predict disease severity in atopic dermatitis: The role of serum basal tryptase. Allergy Asthma Proc., 2018, 39(5), 371-376.
[http://dx.doi.org/10.2500/aap.2018.39.4158] [PMID: 30153887]
[36]
Wang, G.; Baines, K.J.; Fu, J.J.; Wood, L.G.; Simpson, J.L.; McDonald, V.M.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum mast cell subtypes relate to eosinophilia and corticosteroid response in asthma. Eur. Respir. J., 2016, 47(4), 1123-1133.
[http://dx.doi.org/10.1183/13993003.01098-2015] [PMID: 26699720]
[37]
Wong, G.W.; Foster, P.S.; Yasuda, S.; Qi, J.C.; Mahalingam, S.; Mellor, E.A.; Katsoulotos, G.; Li, L.; Boyce, J.A.; Krilis, S.A.; Stevens, R.L. Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase gamma. TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription (STAT) 6-dependent pathway. J. Biol. Chem., 2002, 277(44), 41906-41915.
[http://dx.doi.org/10.1074/jbc.M205868200] [PMID: 12194977]
[38]
Akin, C.; Soto, D.; Brittain, E.; Chhabra, A.; Schwartz, L.B.; Caughey, G.H.; Metcalfe, D.D. Tryptase haplotype in mastocytosis: relationship to disease variant and diagnostic utility of total tryptase levels. Clin. Immunol., 2007, 123(3), 268-271.
[http://dx.doi.org/10.1016/j.clim.2007.02.007] [PMID: 17449330]
[39]
Sagar, S.; Morgan, M.E.; Chen, S.; Vos, A.P.; Garssen, J.; van Bergenhenegouwen, J.; Boon, L.; Georgiou, N.A.; Kraneveld, A.D.; Folkerts, G. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir. Res., 2014, 15, 46.
[http://dx.doi.org/10.1186/1465-9921-15-46] [PMID: 24735374]
[40]
Takeyama, K.; Kondo, M.; Tagaya, E.; Kirishi, S.; Ishii, M.; Ochiai, K.; Isono, K.; Tamaoki, J. Budesonide/formoterol maintenance and reliever therapy in moderate-to-severe asthma: effects on eosinophilic airway inflammation. Allergy Asthma Proc., 2014, 35(2), 141-147.
[http://dx.doi.org/10.2500/aap.2014.35.3729] [PMID: 24717791]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy