Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels

Author(s): Neslihan Üstündağ Okur*, Ayşe Pınar Yağcılar and Panoraia I. Siafaka

Volume 17, Issue 8, 2020

Page: [675 - 693] Pages: 19

DOI: 10.2174/1567201817666200608145748

Price: $65

Abstract

Background: At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy.

Objective: in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases.

Methods: This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route.

Results: Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable.

Conclusion: To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.

Keywords: in situ gels, polymers, drug delivery, pharmaceutical applications, local delivery, chitosan.

Graphical Abstract

[1]
Siafaka, P.I.; Zisi, A.P.; Exindari, M.K.; Karantas, I.D.; Bikiaris, D.N. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr. Polym., 2016, 143, 90-99.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.009] [PMID: 27083347]
[2]
Siafaka, P.I.; Titopoulou, A.; Koukaras, E.N.; Kostoglou, M.; Koutris, E.; Karavas, E.; Bikiaris, D.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm., 2015, 495(1), 249-264.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.100] [PMID: 26341322]
[3]
Üstündağ Okur, N.; Hökenek, N.; Okur, M.E.; Ayla, Ş.; Yoltaş, A.; Siafaka, P.I.; Cevher, E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm. J., 2019, 27(5), 738-752.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[4]
Aksu, N.B.; Yozgatlı, V.; Okur, M.E.; Ayla, Ş.; Yoltaş, A.; Üstündağ Okur, N. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J. Drug Deliv. Sci. Technol., 2019, 52, 110-121.
[http://dx.doi.org/10.1016/j.jddst.2019.04.015]
[5]
Üstündağ Okur, N.; Yozgatlı, V.; Okur, M.E.; Yoltaş, A.; Siafaka, P.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol., 2019, 49, 323-333.
[http://dx.doi.org/10.1016/j.jddst.2018.12.005]
[6]
Nanaki, S.; Siafaka, P.I.; Zachariadou, D.; Nerantzaki, M.; Giliopoulos, D.J.; Triantafyllidis, K.S.; Kostoglou, M.; Nikolakaki, E.; Bikiaris, D.N. PLGA/SBA-15 mesoporous silica composite microparticles loaded with paclitaxel for local chemotherapy. Eur. J. Pharm. Sci., 2017, 99, 32-44.
[http://dx.doi.org/10.1016/j.ejps.2016.12.010] [PMID: 27939620]
[7]
Khodaverdi, E.; Golmohammadian, A.; Mohajeri, S.A.; Zohuri, G.; Mirzazadeh Tekie, F.S.; Hadizadeh, F. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hydrogel. ISRN Pharm., 2012, 2012976879
[http://dx.doi.org/10.5402/2012/976879] [PMID: 23227366]
[8]
Gong, C.; Shi, S.; Wu, L.; Gou, M.; Yin, Q.; Guo, Q.; Dong, P.; Zhang, F.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater., 2009, 5(9), 3358-3370.
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[9]
Srivastava, A.; Yadav, T.; Sharma, S.; Nayak, A.; Akanksha Kumari, A.; Mishra, N. Polymers in drug delivery. J. Biosci. Med., 2016, 4(1), 69-84.
[http://dx.doi.org/10.4236/jbm.2016.41009] [PMID: 26605422]
[10]
Siafaka, P.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(12), 275.
[http://dx.doi.org/10.1007/s10856-015-5609-x] [PMID: 26543021]
[11]
Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int. J. Pharm., 2016, 509(1-2), 208-218.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.048] [PMID: 27235556]
[12]
Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G. Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: preparation, characterization and release properties. Int. J. Pharm., 2013, 448(1), 221-230.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.025] [PMID: 23524084]
[13]
Siafaka, P.I.; Üstündağ Okur, N.; Mone, M.; Giannakopoulou, S.; Er, S.; Pavlidou, E.; Karavas, E.; Bikiaris, D.N. Two different approaches for oral administration of voriconazole loaded formulations: electrospun fibers versus β-cyclodextrin complexes. Int. J. Mol. Sci., 2016, 17(3), 282.
[http://dx.doi.org/10.3390/ijms17030282] [PMID: 26927072]
[14]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[15]
Siafaka, P.I.; Barmpalexis, P.; Lazaridou, M.; Papageorgiou, G.Z.; Koutris, E.; Karavas, E.; Kostoglou, M.; Bikiaris, D.N. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: data analysis and modelling. Eur. J. Pharm. Biopharm., 2015, 94, 473-484.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.027] [PMID: 26159838]
[16]
Allam, A.; Fetih, G. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate. Drug Des. Devel. Ther., 2016, 10, 2421-2433.
[http://dx.doi.org/10.2147/DDDT.S113775] [PMID: 27536063]
[17]
Üstündag-Okur, N.; Gökçe, E.H.; Eğrilmez, S.; Özer, Ö.; Ertan, G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Ther., 2014, 30(4), 319-332.
[http://dx.doi.org/10.1089/jop.2013.0114] [PMID: 24367973]
[18]
Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Ertan, G.; Özer, Ö. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert Opin. Drug Deliv., 2015, 12(11), 1791-1807.
[http://dx.doi.org/10.1517/17425247.2015.1059419] [PMID: 26159181]
[19]
Siafaka, P.I.; Barmbalexis, P.; Bikiaris, D.N. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur. J. Pharm. Sci., 2016, 88, 12-25.
[http://dx.doi.org/10.1016/j.ejps.2016.03.021] [PMID: 27039136]
[20]
Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J.A. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci., 2009, 71(3), 242-251.
[http://dx.doi.org/10.4103/0250-474X.56015] [PMID: 20490289]
[21]
Mandal, S.; Thimmasetty, M.K.; Prabhushankar, G.; Geetha, M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int. J. Pharm. Investig., 2012, 2(2), 78-82.
[http://dx.doi.org/10.4103/2230-973X.100042] [PMID: 23119236]
[22]
Wang, Y.; Gong, X. Superhydrophobic coatings with periodic ring structured patterns for self-cleaning and oil-water separation. Adv. Mater. Interfaces, 2017, 4(16)1700190
[http://dx.doi.org/10.1002/admi.201700190]
[23]
Gong, X.; Zhang, J.; Jiang, S. Ionic liquid-induced nanoporous structures of polymer films. Chem. Commun. (Camb.), 2020, 56(20), 3054-3057.
[http://dx.doi.org/10.1039/C9CC08768K] [PMID: 32048643]
[24]
Li, Z.; Zhao, X.; Huang, C.; Gong, X. Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(40), 12373-12387.
[http://dx.doi.org/10.1039/C9TC03520F]
[25]
Zhong, L.; Gong, X. Phase separation-induced superhydrophobic polylactic acid films. Soft Matter, 2019, 15(46), 9500-9506.
[http://dx.doi.org/10.1039/C9SM01624D] [PMID: 31702749]
[26]
Peng, J.; Zhao, X.; Wang, W.; Gong, X. Durable self-cleaning surfaces with superhydrophobic and highly oleophobic properties. Langmuir, 2019, 35(25), 8404-8412.
[http://dx.doi.org/10.1021/acs.langmuir.9b01507] [PMID: 31192609]
[27]
Liang, J.; Huang, C.; Gong, X. Silicon nanocrystals and their composites: syntheses, fluorescence mechanisms, and biological applications. ACS Sustain. Chem.& Eng., 2019, 7(22), 18213-18227.
[http://dx.doi.org/10.1021/acssuschemeng.9b04359]
[28]
Yang, B.; Wei, C.; Qian, F.; Li, S. Surface wettability modulated by surfactant and its effects on the drug release and absorption of fenofibrate solid dispersions. AAPS PharmSciTech, 2019, 20(6), 234.
[http://dx.doi.org/10.1208/s12249-019-1446-4] [PMID: 31236817]
[29]
Zhang, P.; Zhao, C.; Zhao, T.; Liu, M.; Jiang, L. Recent advances in bioinspired gel surfaces with superwettability and special adhesion. Adv. Sci. (Weinh.), 2019, 6(18)1900996
[http://dx.doi.org/10.1002/advs.201900996] [PMID: 31572647]
[30]
Ma, S.W.; Gan, Y.; Gan, L.; Zhu, C.L.; Zhu, J.B. Preparation and in vitro corneal retention behavior of novel cationic microemulsion/in situ gel system. Yao Xue Xue Bao, 2008, 43(7), 749-755.
[PMID: 18819481]
[31]
Üstündaǧ-Okur, N.; Yoltas, A.; Yozgatli, V. Development and characterization of voriconazole loaded in situ gel formulations for ophthalmic application. Turkish J. Pharm. Sci., 2016, 13(3), 311-317.
[http://dx.doi.org/10.4274/tjps.2016.05]
[32]
Irimia, T.; Dinu-Pîrvu, C-E.; Ghica, M.V.; Lupuleasa, D.; Muntean, D.L.; Udeanu, D.I.; Popa, L. Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar. Drugs, 2018, 16(10), 373.
[http://dx.doi.org/10.3390/md16100373] [PMID: 30304825]
[33]
Belhadji, L. HadjSadok, A.; Moulai-Mostefa, N. Design and characterization of calcium-free in-situ gel formulation based on sodium alginate and chitosan. Drug Dev. Ind. Pharm., 2018, 44(4), 662-669.
[http://dx.doi.org/10.1080/03639045.2017.1408640] [PMID: 29172753]
[34]
Liu, Y.; Liu, J.; Zhang, X.; Zhang, R.; Huang, Y.; Wu, C. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech, 2010, 11(2), 610-620.
[http://dx.doi.org/10.1208/s12249-010-9413-0] [PMID: 20354916]
[35]
Lu, K.Y.; Lin, Y.C.; Lu, H.T.; Ho, Y.C.; Weng, S.C.; Tsai, M.L.; Mi, F.L. A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr. Polym., 2019, 206, 664-673.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.050] [PMID: 30553371]
[36]
Narita, T.; Yunoki, S.; Ohyabu, Y.; Yahagi, N.; Uraoka, T. In situ gelation properties of a collagen-genipin sol with a potential for the treatment of gastrointestinal ulcers. Med. Devices (Auckl.), 2016, 9, 429-439.
[http://dx.doi.org/10.2147/MDER.S116633] [PMID: 28008290]
[37]
Mao, H.; Pan, P.; Shan, G.; Bao, Y. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers. J. Phys. Chem. B, 2015, 119(21), 6471-6480.
[http://dx.doi.org/10.1021/acs.jpcb.5b03610] [PMID: 25932653]
[38]
Lanzalaco, S.; Armelin, E. Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels, 2017, 3(4), 36.
[http://dx.doi.org/10.3390/gels3040036] [PMID: 30920531]
[39]
Nguyen, H.H.; Payré, B.; Fitremann, J.; Lauth-de Viguerie, N.; Marty, J.D. Thermoresponsive properties of PNIPAM-based hydrogels: effect of molecular architecture and embedded gold nanoparticles. Langmuir, 2015, 31(16), 4761-4768.
[http://dx.doi.org/10.1021/acs.langmuir.5b00008] [PMID: 25828438]
[40]
Hosny, K.M.; Rizg, W.Y. Quality by design approach to optimize the formulation variables influencing the characteristics of biodegradable intramuscular in-situ gel loaded with alendronate sodium for osteoporosis. PLoS One, 2018, 13(6) e0197540
[http://dx.doi.org/10.1371/journal.pone.0197540] [PMID: 29856752]
[41]
Ajazuddin,; Alexander, A.; Khan, J.; Giri, T.K.; Tripathi, D.K.; Saraf, S.; Saraf, S. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin. Drug Deliv., 2012, 9(12), 1573-1592.
[http://dx.doi.org/10.1517/17425247.2013.734806] [PMID: 23075325]
[42]
Sarada, K.; Firoz, S.; Padmini, K. In-situ gelling system: a review. Int. J. Curr. Pharm. Rev. Res., 2015, 5(4), 76-90.
[http://dx.doi.org/10.22270/jddt.v4i4.918]
[43]
Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov. Today, 2019, 24(8), 1575-1586.
[http://dx.doi.org/10.1016/j.drudis.2019.05.036] [PMID: 31175956]
[44]
Petrulyte, S.; Petrulis, D. Modern textiles and biomaterials for healthcare. Handbook of Medical Textiles; Elsevier, 2011, pp. 1-35.
[http://dx.doi.org/10.1533/9780857093691.1.3]
[45]
Üstündağ Okur, N.; Filippousi, M.; Okur, M.E.; Ayla, Ş.; Çağlar, E.Ş.; Yoltaş, A.; Siafaka, P.I. A novel approach for skin infections: controlled release topical mats of poly(lactic acid)/poly(ethylene succinate). Blends containing Voriconazole. J. Drug Deliv. Sci. Technol., 2018, 46, 74-86.
[http://dx.doi.org/10.1016/j.jddst.2018.05.005]
[46]
Vázquez, N.; Sánchez-Arévalo, F.; Maciel-Cerda, A.; Garnica-Palafox, I.; Ontiveros-Tlachi, R.; Chaires-Rosas, C.; Piñón-Zarate, G.; Herrera-Enríquez, M.; Hautefeuille, M.; Vera-Graziano, R.; Castell-Rodríguez, A. Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. Biomed. Mater., 2019, 14(4) 045006
[http://dx.doi.org/10.1088/1748-605X/ab1741] [PMID: 30959495]
[47]
Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G. Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(29), 5991-6000.
[http://dx.doi.org/10.1039/C5TB00827A] [PMID: 32262655]
[48]
Siafaka, P.I.; Mone, M.; Koliakou, I.G.; Kyzas, G.Z.; Bikiaris, D.N. Synthesis and physicochemical properties of a new biocompatible chitosan grafted with 5-hydroxymethylfurfural. J. Mol. Liq., 2016, 222, 268-271.
[http://dx.doi.org/10.1016/j.molliq.2016.07.027]
[49]
Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J., 2015, 259, 438-448.
[http://dx.doi.org/10.1016/j.cej.2014.08.019]
[50]
Vijaya, C.; Goud, K.S. Ion-activated in situ gelling ophthalmic delivery systems of azithromycin. Indian J. Pharm. Sci., 2011, 73(6), 615-620.
[http://dx.doi.org/10.4103/0250-474X.100234] [PMID: 23112394]
[51]
Chu, K.; Chen, L.; Xu, W.; Li, H.; Zhang, Y.; Xie, W.; Zheng, J. Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. Int. J. Mol. Sci., 2013, 14(3), 6499-6515.
[http://dx.doi.org/10.3390/ijms14036499] [PMID: 23525047]
[52]
Zhu, L.; Ao, J.; Li, P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation. Drug Des. Devel. Ther., 2015, 9, 3943-3949.
[http://dx.doi.org/10.2147/DDDT.S87368] [PMID: 26251573]
[53]
Sharma, M.; Deohra, A.; Reddy, K.R.; Sadhu, V. Biocompatible in-situ gelling polymer hydrogels for treating ocular infection. Methods Microbiol., 2019, 46, 93-114.
[http://dx.doi.org/10.1016/bs.mim.2019.01.001]]
[54]
Johal, H.S.; Garg, T.; Rath, G.; Goyal, A.K. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv., 2016, 23(2), 550-563.
[http://dx.doi.org/10.3109/10717544.2014.928760] [PMID: 24959937]
[55]
Wu, W.; Chen, H.; Shan, F.; Zhou, J.; Sun, X.; Zhang, L.; Gong, T. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol. Pharm., 2014, 11(10), 3378-3385.
[http://dx.doi.org/10.1021/mp500019p] [PMID: 24735404]
[56]
Jeng, B.H. Recent updates in inflammatory ocular diseases. US Ophthalmic Rev., 2018, 11(1), 19-20.
[http://dx.doi.org/10.17925/USOR.2018.11.1.19]
[57]
Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm., 2010, 36(10), 1131-1138.
[http://dx.doi.org/10.3109/03639041003680826] [PMID: 20334543]
[58]
Wen, Y.; Ban, J.; Mo, Z.; Zhang, Y.; An, P.; Liu, L.; Xie, Q.; Du, Y.; Xie, B.; Zhan, X.; Tan, L.; Chen, Y.; Lu, Z. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. Nanotechnology, 2018, 29(42) 425101
[http://dx.doi.org/10.1088/1361-6528/aad7da] [PMID: 30074486]
[59]
Shelley, H.; Rodriguez-Galarza, R.M.; Duran, S.H.; Abarca, E.M.; Babu, R.J. In situ gel formulation for enhanced ocular delivery of nepafenac. J. Pharm. Sci., 2018, 107(12), 3089-3097.
[http://dx.doi.org/10.1016/j.xphs.2018.08.013] [PMID: 30170009]
[60]
Paulsamy, M.; Ponnusamy, C.; Palanisami, M.; Nackeeran, G.; Paramasivam, S.; Sugumaran, A.; Kandasamy, R.; Natesan, S.; Palanichamy, R. Nepafenac loaded silica nanoparticles dispersed in-situ gel systems: development and characterization. Int. J. Biol. Macromol., 2018, 110, 336-345.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.123] [PMID: 29408555]
[61]
Horvát, G.; Gyarmati, B.; Berkó, S.; Szabó-Révész, P.; Szilágyi, B.Á.; Szilágyi, A.; Soós, J.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Caramella, C.; Csányi, E.; Budai-Szűcs, M. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur. J. Pharm. Sci., 2015, 67, 1-11.
[http://dx.doi.org/10.1016/j.ejps.2014.10.013] [PMID: 25445832]
[62]
Gonzalez-Pizarro, R.; Carvajal-Vidal, P.; Halbault Bellowa, L.; Calpena, A.C.; Espina, M.; García, M.L. In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions. Colloids Surf. B Biointerfaces, 2019, 175, 365-374.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.065] [PMID: 30554015]
[63]
Aligeti, S.K.; Jampala, R.K.; Vinaya, J. Formulation and evaluation of flurbiprofen ocular in-situ gel. Int. J. Pharm. Sci. Res., 2018, 9(5), 1851-1856.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(5).1851-56]
[64]
Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int. J. Pharm., 2016, 506(1-2), 57-67.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.021] [PMID: 27091293]
[65]
Destruel, P-L.; Zeng, N.; Seguin, J.; Douat, S.; Rosa, F.; Brignole-Baudouin, F.; Dufaÿ, S.; Dufaÿ-Wojcicki, A.; Maury, M.; Mignet, N. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int. J. Pharm., 2019, 574 118734
[http://dx.doi.org/10.1016/j.ijpharm.2019.118734] [PMID: 31705970]
[66]
Lai, J-Y.; Hsieh, A.C.A. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials, 2012, 33(7), 2372-2387.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.085] [PMID: 22182746]
[67]
Cao, Y.; Zhang, C.; Shen, W.; Cheng, Z.; Yu, L.L.; Ping, Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release, 2007, 120(3), 186-194.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.009] [PMID: 17582643]
[68]
Zeng, Y.; Chen, J.; Li, Y.; Huang, J.; Huang, Z.; Huang, Y.; Pan, X.; Wu, C. Thermo-sensitive gel in glaucoma therapy for enhanced bioavailability: in vitro characterization, in vivo pharmacokinetics and pharmacodynamics study. Life Sci., 2018, 212, 80-86.
[http://dx.doi.org/10.1016/j.lfs.2018.09.050] [PMID: 30268857]
[69]
Acharya, A.; Goudanavar, P.; Chitti, R.; Dinnimath, B.M. Preparation of gellan gum and chitosan based in-situ gel of timolol maleate for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Mar. Drugs, 2019, 3(2), 68-78.
[70]
Shi, H.; Wang, Y.; Bao, Z.; Lin, D.; Liu, H.; Yu, A.; Lei, L.; Li, X.; Xu, X. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int. J. Pharm., 2019, 570, 118688
[http://dx.doi.org/10.1016/j.ijpharm.2019.118688] [PMID: 31513870]
[71]
Cho, I.S.; Park, C.G.; Huh, B.K.; Cho, M.O.; Khatun, Z.; Li, Z.; Kang, S.W.; Choy, Y.B.; Huh, K.M. Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomater., 2016, 39, 124-132.
[http://dx.doi.org/10.1016/j.actbio.2016.05.011] [PMID: 27163401]
[72]
Li, J.; Liu, H.; Liu, L.L.; Cai, C.N.; Xin, H.X.; Liu, W. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem. Pharm. Bull. (Tokyo), 2014, 62(10), 1000-1008.
[http://dx.doi.org/10.1248/cpb.c14-00451] [PMID: 25099146]
[73]
Sun, J.; Zhou, Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 383-389.
[http://dx.doi.org/10.2147/DDDT.S153405] [PMID: 29503531]
[74]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[75]
Khattab, A.; Marzok, S.; Ibrahim, M. Development of optimized mucoadhesive Thermosensitive pluronic based in situ gel for controlled delivery of latanoprost: antiglaucoma efficacy and stability approaches. J. Drug Deliv. Sci. Technol., 2019, 53, 101134
[http://dx.doi.org/10.1016/j.jddst.2019.101134]
[76]
Prasannan, A.; Tsai, H.C.; Hsiue, G-H. Formulation and evaluation of epinephrine-loaded poly(acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React. Funct. Polym., 2018, 124, 40-47.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.01.001]
[77]
Zhang, C.; Xu, T.; Zhang, D.; He, W.; Wang, S.; Jiang, T. Disulfiram thermosensitive in-situ gel based on solid dispersion for cataract. Asian J. Pharm. Sci., 2018, 13(6), 527-535.
[http://dx.doi.org/10.1016/j.ajps.2018.02.010] [PMID: 32104427]
[78]
Zhu, M.; Wang, J.; Li, N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1282-1287.
[http://dx.doi.org/10.1080/21691401.2017.1368024] [PMID: 28826241]
[79]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[80]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma. Sci., 2015, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[81]
Wu, H.; Liu, Z.; Peng, J.; Li, L.; Li, N.; Li, J.; Pan, H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm., 2011, 410(1-2), 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.007] [PMID: 21397671]
[82]
Cheng, Y.H.; Chang, Y.F.; Ko, Y.C.; Liu, C.J. Sustained release of levofloxacin from thermosensitive chitosan-based hydrogel for the treatment of postoperative endophthalmitis. J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(1), 8-13.
[http://dx.doi.org/10.1002/jbm.b.34359] [PMID: 30897300]
[83]
Upadhayay, P.; Kumar, M.; Pathak, K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity. Iran. J. Pharm. Res., 2016, 15(1), 3-22.
[PMID: 27610144]
[84]
Sheikh, A.; Sheikh, S.; Adman, S. Development and characterization of novel in situ gel of moxifloxacin hydrochloride. Asian J. Pharm., 2017, 11, S616-S624.
[85]
Liu, Z.; Yang, X.G.; Li, X.; Pan, W.; Li, J. Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev. Ind. Pharm., 2007, 33(12), 1327-1331.
[http://dx.doi.org/10.1080/03639040701397241] [PMID: 18097806]
[86]
Dhaval, M.; Devani, J.; Parmar, R.; Soniwala, M.M.; Chavda, J. Formulation, and optimization of microemulsion based sparfloxacin in-situ gel for ocular delivery: in vitro and ex vivo characterization.J. Drug Deliv. Sci. Technol; , 2019, p. 101373.
[87]
Mohammed, S.; Chouhan, G.; Anuforom, O.; Cooke, M.; Walsh, A.; Morgan-Warren, P.; Jenkins, M.; de Cogan, F. Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing. Mater. Sci. Eng. C, 2017, 78, 203-209.
[http://dx.doi.org/10.1016/j.msec.2017.04.065] [PMID: 28575976]
[88]
Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol., 2019, 55, 101400
[http://dx.doi.org/10.1016/j.jddst.2019.101400]
[89]
Ranch, K.; Patel, H.; Chavda, L.; Koli, A.; Maulvi, F.; Parikh, R.K. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: a viable alternative to conventional eye drops. J. Appl. Pharm. Sci., 2017, 7(3), 101-108.
[http://dx.doi.org/10.7324/JAPS.2017.70316]
[90]
Mandal, U.K.; Chatterjee, B.; Senjoti, F.G. Gastro-retentive drug delivery systems and their in vivo success: a recent update. Asian J. Pharm. Sci., 2016, 11(5), 575-584.
[http://dx.doi.org/10.1016/j.ajps.2016.04.007]
[91]
Patel, J.K.; Chavda, J.R.; Modasiya, M.K. Floating in situ gel based on alginate as carrier for stomach-specific drug delivery of famotidine. Int. J. Pharm. Sci. Nanotechnol., 2010, 3(3), 1092-1104.
[92]
Singhavi, D.J.; Pundkar, R.S.; Khan, S. Famotidine microspheres reconstituted with floating in situ gel for stomach-specific delivery: preparation and characterization. J. Drug Deliv. Sci. Technol., 2017, 41, 251-259.
[http://dx.doi.org/10.1016/j.jddst.2017.07.017]
[93]
Xu, H.; Shi, M.; Liu, Y.; Jiang, J.; Ma, T. A novel in situ gel formulation of ranitidine for oral sustained delivery. Biomol. Ther. (Seoul), 2014, 22(2), 161-165.
[http://dx.doi.org/10.4062/biomolther.2013.109] [PMID: 24753823]
[94]
Jafar, M.; Salahuddin, M.; Bolla, S.R. Gastric floating in-situ gel as a strategy for improving anti-inflammatory activity of meloxicam. J. Appl. Pharm. Sci., 2018, 8(11), 95-102.
[http://dx.doi.org/10.7324/JAPS.2018.81114]
[95]
Rajinikanth, P.S.; Mishra, B. Floating in situ gelling system for stomach site-specific delivery of clarithromycin to eradicate H. pylori. J. Control Release, 2008, 125(1), 33-41.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.011] [PMID: 18006101]
[96]
Sharma, A.; Sharma, J.; Kaur, R.; Saini, V. Development and characterization of in situ oral gel of spiramycin. BioMed Res. Int., 2014, 20148 76182.
[http://dx.doi.org/10.1155/2014/876182] [PMID: 25050376]
[97]
Sharma, S.; Sarkar, G.; Srestha, B.; Chattopadhyay, D.; Bhowmik, M. In-situ fast gelling formulation for oral sustained drug delivery of paracetamol to dysphagic patients. Int. J. Biol. Macromol., 2019, 134, 864-868.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.092] [PMID: 31102679]
[98]
Mahmoud, D.B.; Shukr, M.H.; ElMeshad, A.N. Gastroretentive cosolvent-based in situ gel as a promising approach for simultaneous extended delivery and enhanced bioavailability of mitiglinide calcium. J. Pharm. Sci., 2019, 108(2), 897-906.
[http://dx.doi.org/10.1016/j.xphs.2018.09.020] [PMID: 30267785]
[99]
Karemore, M.N.; Avari, J.G. In-situ gel of nifedipine for preeclampsia: optimization, in-vitro and in-vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 50, 78-89.
[http://dx.doi.org/10.1016/j.jddst.2019.01.025]
[100]
Bashir, R.; Raza, S.N.; Kawoosa, S.; Wani, T.U.; Khan, N.A. Formulation and evaluation of floating oral in-situ gelling system of losartan potassium. Int. J. Pharm. Sci. Res., 2019, 10(4), 2045-2053.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).2045-53]
[101]
Harish, N.M.; Prabhu, P.; Charyulu, R.N.; Gulzar, M.A.; Subrahmanyam, E.V.S. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J. Pharm. Sci., 2009, 71(4), 421-427.
[http://dx.doi.org/10.4103/0250-474X.57291] [PMID: 20502548]
[102]
Jayaraj, K.K.; Jayachandran, E.; Srinivas, G.M.; Giridhar, B.; Rahul, N.; Jayakandan, M. Formulation of thermoresponsive and buccal adhesive in situ gel for treatment of oral thrush containing itraconazole. J. Pharm. Sci. Res., 2010, 2(2), 116-122.
[103]
Vigani, B.; Faccendini, A.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Gentile, M.; Ferrari, F. Development of a mucoadhesive and in situ gelling formulation based on κ-carrageenan for application on oral mucosa and esophagus walls. I. A functional in vitro characterization. Mar. Drugs, 2019, 17(2) E112.
[http://dx.doi.org/10.3390/md17020112] [PMID: 30759831]
[104]
Phaechamud, T.; Setthajindalert, O. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur. J. Pharm. Sci., 2017, 99, 258-265.
[http://dx.doi.org/10.1016/j.ejps.2016.12.023] [PMID: 28027940]
[105]
Bansal, M.; Mittal, N.; Yadav, S.K.; Khan, G.; Mishra, B.; Nath, G. Clinical evaluation of thermoresponsive and mucoadhesive chitosan in situ gel containing levofloxacin and metronidazole in the treatment of periodontal pockets – a split-mouth, clinical study. J. Pierre Fauchard Acad. India Sect., 2016, 30(1), 6-14.
[http://dx.doi.org/10.1016/j.jpfa.2016.10.003]
[106]
Phaechamud, T.; Mahadlek, J.; Chuenbarn, T. In situ forming gel comprising bleached shellac loaded with antimicrobial drugs for periodontitis treatment. Mater. Des., 2016, 89, 294-303.
[http://dx.doi.org/10.1016/j.matdes.2015.09.138]
[107]
Bansal, M.; Mittal, N.; Yadav, S.K.; Khan, G.; Gupta, P.; Mishra, B.; Nath, G. Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: preparation, in-vitro characterization and antimicrobial study. J. Oral Biol. Craniofac. Res., 2018, 8(2), 126-133.
[http://dx.doi.org/10.1016/j.jobcr.2017.12.005] [PMID: 29892535]
[108]
Swain, G.P.; Patel, S.; Gandhi, J.; Shah, P. Development of moxifloxacin hydrochloride loaded in-situ gel for the treatment of periodontitis: in-vitro drug release study and antibacterial activity. J. Oral Biol. Craniofac. Res., 2019, 9(3), 190-200.
[http://dx.doi.org/10.1016/j.jobcr.2019.04.001] [PMID: 31080718]
[109]
Ahmed, T.A.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Aldawsari, H. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J. Drug Deliv. Sci. Technol., 2018, 48, 499-508.
[http://dx.doi.org/10.1016/j.jddst.2018.10.027]
[110]
Singh, R.M.; Kumar, A.; Pathak, K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin. Drug Deliv., 2013, 10(1), 115-130.
[http://dx.doi.org/10.1517/17425247.2013.746659] [PMID: 23199072]
[111]
Hao, J.; Zhao, J.; Zhang, S.; Tong, T.; Zhuang, Q.; Jin, K.; Chen, W.; Tang, H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf. B Biointerfaces, 2016, 147, 376-386.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.011] [PMID: 27566226]
[112]
Rajput, A.P.; Butani, S.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J. Drug Deliv. Sci. Technol., 2019, 51, 214-223.
[http://dx.doi.org/10.1016/j.jddst.2019.01.040]
[113]
Nižić, L.; Ugrina, I.; Špoljarić, D.; Saršon, V.; Kučuk, M.S.; Pepić, I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: development and optimization of nasal deposition. Int. J. Pharm., 2019, 563(563), 445-456.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.015] [PMID: 30965121]
[114]
Qian, S.; Wong, Y.C.; Zuo, Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int. J. Pharm., 2014, 468(1-2), 272-282.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.015] [PMID: 24709220]
[115]
Pandey, P.; Pandey, S.; Cabot, P.J.; Wallwork, B.; Panizza, B.J.; Parekh, H.S. Toxicity evaluation and nasal mucosal tissue deposition of dexamethasone-infused mucoadhesive in situ nasal gelling systems. Saudi Pharm. J., 2019, 27(7), 914-919.
[http://dx.doi.org/10.1016/j.jsps.2019.06.005] [PMID: 31997897]
[116]
Pandey, P.; Cabot, P.J.; Wallwork, B.; Panizza, B.J.; Parekh, H.S. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue. Eur. J. Pharm. Sci., 2017, 96, 499-507.
[http://dx.doi.org/10.1016/j.ejps.2016.10.017] [PMID: 27771516]
[117]
Salunke, S.R.; Patil, S.B. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int. J. Biol. Macromol., 2016, 87, 41-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.044] [PMID: 26899173]
[118]
Wang, Q.; Wong, C.H.; Chan, H.Y.E.; Lee, W.Y.; Zuo, Z. Statistical Design of Experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int. J. Pharm., 2018, 539(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.032] [PMID: 29366939]
[119]
Hosny, K.M.; Hassan, A.H. Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: preparation, characterization, and in vivo evaluation. Int. J. Pharm., 2014, 475(1-2), 191-197.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.064] [PMID: 25178831]
[120]
Aksoy, F.; Dogan, R.; Ozturan, O.; Altuntas, E.; Yener, F.G.; Topcu, G.; Guler, B. Effect of a combination of mometasone furoate, levofloxacin, and retinyl palmitate with an in situ gel-forming nasal delivery system on nasal mucosa damage repair in an experimental rabbit model. Biomed. Pharmacother., 2017, 96, 603-611.
[http://dx.doi.org/10.1016/j.biopha.2017.10.023] [PMID: 29035825]
[121]
Sousa, J.; Alves, G.; Oliveira, P.; Fortuna, A.; Falcão, A. Intranasal delivery of ciprofloxacin to rats: a topical approach using a thermoreversible in situ gel. Eur. J. Pharm. Sci., 2017, 97, 30-37.
[http://dx.doi.org/10.1016/j.ejps.2016.10.033] [PMID: 27810560]
[122]
Abbas, H.; Refai, H.; El Sayed, N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J. Pharm. Sci., 2018, 107(8), 2119-2127.
[http://dx.doi.org/10.1016/j.xphs.2018.04.007] [PMID: 29665379]
[123]
Shah, V.; Sharma, M.; Pandya, R.; Parikh, R.K.; Bharatiya, B.; Shukla, A.; Tsai, H.C. Quality by design approach for an in situ gelling microemulsion of lorazepam via intranasal route. Mater. Sci. Eng. C, 2017, 75, 1231-1241.
[http://dx.doi.org/10.1016/j.msec.2017.03.002] [PMID: 28415411]
[124]
Patel, S.; Koradia, H.; Parikh, R. Design and development of intranasal in situ gelling system of midazolam hydrochloride using 32 full factorial design. J. Drug Deliv. Sci. Technol., 2015, 30, 154-162.
[http://dx.doi.org/10.1016/j.jddst.2015.10.010]
[125]
Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit. Rev. Microbiol., 2016, 42(6), 905-927.
[http://dx.doi.org/10.3109/1040841X.2015.1091805] [PMID: 26690853]
[126]
Kim, J-M.; Park, Y.J. Probiotics in the prevention and treatment of postmenopausal vaginal infections: review article. J. Menopausal Med., 2017, 23(3), 139-145.
[http://dx.doi.org/10.6118/jmm.2017.23.3.139] [PMID: 29354612]
[127]
Nayak, A.K.; Bera, H. In situ polysaccharide-based gels for topical drug delivery applications; Elsevier Ltd., 2019.
[128]
Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev., 2015, 92, 39-52.
[http://dx.doi.org/10.1016/j.addr.2015.02.001] [PMID: 25683694]
[129]
Arun Karthick, R.; Ramya Devi, D.; Vedha Hari, B.N. Investigation of sustained release mucoadhesive in-situ gel system of secnidazole for the persistent treatment of vaginal infections. J. Drug Deliv. Sci. Technol., 2017, 2018(43), 362-368.
[http://dx.doi.org/10.1016/j.jddst.2017.11.001]
[130]
Ibrahim, S.A.; Ismail, S.; Fetih, G.; Shaaban, O.; Hassanein, K.; Abdellah, N.H. Development and characterization of thermosensitive pluronic-based metronidazole in situ gelling formulations for vaginal application. Acta Pharm., 2012, 62(1), 59-70.
[http://dx.doi.org/10.2478/v10007-012-0009-y] [PMID: 22472449]
[131]
Shaaban, O.M.; Fetih, G.N.; Abdellah, N.H.; Ismail, S.; Ibrahim, M.A.; Ibrahim, S.A. Pilot randomized trial for treatment of bacterial vaginosis using in situ forming metronidazole vaginal gel. J. Obstet. Gynaecol. Res., 2011, 37(7), 874-881.
[http://dx.doi.org/10.1111/j.1447-0756.2010.01457.x] [PMID: 21410839]
[132]
Malli, S.; Bories, C.; Pradines, B.; Loiseau, P.M.; Ponchel, G.; Bouchemal, K. In situ forming Pluronic® F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur. J. Pharm. Biopharm., 2017, 112, 143-147.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.024] [PMID: 27890510]
[133]
Gupta, H.; Sharma, A. Ion activated bioadhesive in situ gel of clindamycin for vaginal application. Int. J. Drug Deliv., 2011, 1(1), 32-40.
[http://dx.doi.org/10.5138/ijdd.2009.0975.0215.01004]
[134]
Patel, P.; Patel, P. Formulation and evaluation of clindamycin HCL in situ gel for vaginal application. Int. J. Pharm. Investig., 2015, 5(1), 50-56.
[http://dx.doi.org/10.4103/2230-973X.147233] [PMID: 25599033]
[135]
Karavana, S.Y.; Rençbe, S.; Şenyiğit, Z.A.; Baloğlu, E. A new in-situ gel formulation of itraconazole for vaginal administration. Pharmacol. Pharm., 2012, 3(4), 417-426.
[http://dx.doi.org/10.4236/pp.2012.34056]
[136]
Deshkar, S.S.; Palve, V.K. Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J. Drug Deliv. Sci. Technol., 2018, 2019(49), 277-285.
[http://dx.doi.org/10.1016/j.jddst.2018.11.023]
[137]
Patel, V.P.; Damasiya, H.M.; Kapupara, P.; Ashara, K.C. Temperature-dependent in situ gel of clotrimazole: an experimental study. Folia Med. (Plovdiv), 2019, 61(2), 266-276.
[http://dx.doi.org/10.2478/folmed-2018-0073] [PMID: 31301667]
[138]
Vigani, B.; Faccendini, A.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Grisoli, P.; Ferrari, F. Development of a mucoadhesive in situ gelling formulation for the delivery of lactobacillus gasseri into vaginal cavity. Pharmaceutics, 2019, 11(10), 511.
[http://dx.doi.org/10.3390/pharmaceutics11100511]
[139]
Ramyadevi, D.; Rajan, K.S.; Vedhahari, B.N.; Ruckmani, K.; Subramanian, N. Heterogeneous polymer composite nanoparticles loaded in situ gel for controlled release intra-vaginal therapy of genital herpes. Colloids Surf. B Biointerfaces, 2016, 146, 260-270.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.022] [PMID: 27351137]
[140]
Date, A.A.; Shibata, A.; Goede, M.; Sanford, B.; La Bruzzo, K.; Belshan, M.; Destache, C.J. Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res., 2012, 96(3), 430-436.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.015] [PMID: 23041201]
[141]
Aka-Any-Grah, A.; Bouchemal, K.; Koffi, A.; Agnely, F.; Zhang, M.; Djabourov, M.; Ponchel, G. Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur. J. Pharm. Biopharm., 2010, 76(2), 296-303.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.004] [PMID: 20656027]
[142]
Chang, J.Y.; Oh, Y.K.; Choi, H.G.; Kim, Y.B.; Kim, C.K. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm., 2002, 241(1), 155-163.
[http://dx.doi.org/10.1016/S0378-5173(02)00232-6] [PMID: 12086731]
[143]
Bilensoy, E.; Rouf, M.A.; Vural, I.; Šen, M.; Hincal, A.A. Mucoadhesive, thermosensitive, prolonged-release vaginal gel for clotrimazole: β-cyclodextrin complex. AAPS PharmSciTech, 2006, 7(2) E38.
[http://dx.doi.org/10.1208/pt070238] [PMID: 16796356]
[144]
Jankowski, A.; Dyja, R.; Sarecka-Hujar, B. Dermal and transdermal delivery of active substances from semisolid bases. Indian J. Pharm. Sci., 2017, 79(4), 488-500.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000255]
[145]
Wang, P.; Huang, S.; Hu, Z.; Yang, W.; Lan, Y.; Zhu, J.; Hancharou, A.; Guo, R.; Tang, B. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater., 2019, 100, 191-201.
[http://dx.doi.org/10.1016/j.actbio.2019.10.004] [PMID: 31586729]
[146]
Basha, M.; AbouSamra, M.M.; Awad, G.A.; Mansy, S.S. A potential antibacterial wound dressing of cefadroxil chitosan nanoparticles in situ gel: fabrication, in vitro optimization and in vivo evaluation. Int. J. Pharm., 2018, 544(1), 129-140.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.021] [PMID: 29655798]
[147]
Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A Physicochem. Eng. Asp., 2016, 506, 356-362.
[http://dx.doi.org/10.1016/j.colsurfa.2016.06.054]
[148]
Moen, I.; Ugland, H.; Strömberg, N.; Sjöström, E.; Karlson, A.; Ringstad, L.; Bysell, H.; Amiry-Moghaddam, M.; Haglerød, C. Development of a novel in situ gelling skin dressing: delivering high levels of dissolved oxygen at pH 5.5. Health Sci. Rep., 2018, 1(7) e57.
[http://dx.doi.org/10.1002/hsr2.57] [PMID: 30623087]
[149]
Ying, H.; Zhou, J.; Wang, M.; Su, D.; Ma, Q.; Lv, G.; Chen, J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C, 2019, 101, 487-498.
[http://dx.doi.org/10.1016/j.msec.2019.03.093] [PMID: 31029343]
[150]
Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr. Polym., 2019, 223, 115023.
[http://dx.doi.org/10.1016/j.carbpol.2019.115023] [PMID: 31427021]
[151]
Pham, L.; Dang, L.H.; Truong, M.D.; Nguyen, T.H.; Le, L.; Le, V.T.; Nam, N.D.; Bach, L.G.; Nguyen, V.T.; Tran, N.Q. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on chitosan-P123 in wound healing application. Biomed. Pharmacother., 2019, 117, 109183.
[http://dx.doi.org/10.1016/j.biopha.2019.109183] [PMID: 31261029]
[152]
Kim, M.; Ahn, Y.; Lee, K.; Jung, W.; Cha, C. In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Carbohydr. Polym., 2019, 229, 115538.
[http://dx.doi.org/10.1016/j.carbpol.2019.115538] [PMID: 31826503]
[153]
Nguyen, N.T-P.; Nguyen, L.V.H.; Tran, N.M.P.; Nguyen, D.T.; Nguyen, T.N.T.; Tran, H.A.; Dang, N.N.T.; Vo, T.V.; Nguyen, T.H. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C, 2019, 103, 109670.
[http://dx.doi.org/10.1016/j.msec.2019.04.049] [PMID: 31349450]
[154]
Del Gaudio, P.; Amante, C.; Civale, R.; Bizzarro, V.; Petrella, A.; Pepe, G.; Campiglia, P.; Russo, P.; Aquino, R.P. In situ gelling alginate-pectin blend particles loaded with Ac2-26: a new weapon to improve wound care armamentarium. Carbohydr. Polym., 2020, 227(1) 115305.
[155]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[156]
Lee, J.Y.; Kim, K.S.; Kang, Y.M.; Kim, E.S.; Hwang, S.J.; Lee, H.B.; Min, B.H.; Kim, J.H.; Kim, M.S. In vivo efficacy of paclitaxel-loaded injectable in situ-forming gel against subcutaneous tumor growth. Int. J. Pharm., 2010, 392(1-2), 51-56.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.033] [PMID: 20298770]
[157]
Lo, Y.W.; Sheu, M.T.; Chiang, W.H.; Chiu, Y.L.; Tu, C.M.; Wang, W.Y.; Wu, M.H.; Wang, Y.C.; Lu, M.; Ho, H.O. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer. Acta Biomater., 2019, 86, 280-290.
[http://dx.doi.org/10.1016/j.actbio.2019.01.003] [PMID: 30616077]
[158]
Radivojša, M.; Grabnar, I.; Ahlin Grabnar, P. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation. Eur. J. Pharm. Sci., 2013, 50(1), 93-101.
[http://dx.doi.org/10.1016/j.ejps.2013.03.002] [PMID: 23524253]
[159]
Fang, G.; Zhou, J.; Qian, Y.; Gou, J.; Yang, X.; Tang, B. Development and evaluation of thermo-sensitive hydrogel system with nanocomplexes for prolonged subcutaneous delivery of enoxaparin. J. Drug Deliv. Sci. Technol., 2018, 48, 118-124.
[http://dx.doi.org/10.1016/j.jddst.2018.09.004]
[160]
Das, T.; Venkatesh, M.P.; Pramod Kumar, T.M.; Koland, M. SLN based alendronate in situ gel as an implantable drug delivery system – a full factorial design approach. J. Drug Deliv. Sci. Technol., 2019, 55, 101415.
[http://dx.doi.org/10.1016/j.jddst.2019.101415]
[161]
Hemelryck, S.V.; Dewulf, J.; Niekus, H.; van Heerden, M.; Ingelse, B.; Holm, R.; Mannaert, E.; Langguth, P. In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats. Int. J. Pharm. X, 2019, 1, 100016.
[http://dx.doi.org/10.1016/j.ijpx.2019.100016] [PMID: 31517281]
[162]
Dispenza, C.; Todaro, S.; Bulone, D.; Sabatino, M.A.; Ghersi, G.; San Biagio, P.L.; Lo Presti, C. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction. Mater. Sci. Eng. C, 2017, 70(Pt 1), 745-752.
[http://dx.doi.org/10.1016/j.msec.2016.09.045] [PMID: 27770950]
[163]
Geng, Z.; Luo, X.; Zhang, Z.; Li, H.; Tian, J.; Yu, Z. Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo. Int. J. Biol. Macromol., 2016, 85, 271-276.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.028] [PMID: 26708436]
[164]
Xin, C.; Lihong, W.; Qiuyuan, L.; Hongzhuo, L. Injectable long-term control-released in situ gels of hydrochloric thiothixene for the treatment of schizophrenia: preparation, in vitro and in vivo evaluation. Int. J. Pharm., 2014, 469(1), 23-30.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.044] [PMID: 24751344]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy