Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Oleamide in Ipomoea and Dillenia Species and Inflammatory Activity Investigated through Ion Channel Inhibition

Author(s): Unchaleeporn Ameamsri, Arunrat Chaveerach, Runglawan Sudmoon, Tawatchai Tanee*, Steve Peigneur and Jan Tytgat

Volume 22, Issue 2, 2021

Published on: 07 June, 2020

Page: [254 - 261] Pages: 8

DOI: 10.2174/1389201021666200607185250

Price: $65

Abstract

Background: Oleamide is an essential substance for human health. So, the plants with high oleamide content are great sources for health care products.

Objective: This study is conducted to investigate the quality of oleamide in plants and test the bioactivity in the selected two studied species.

Methods: The three Ipomoea and five Dillenia species including Ipomoea alba, Ipomoea aquatica and Ipomoea pes-caprae, and Dillenia indica, Dillenia obovata, Dillenia ovata, Dillenia parviflora and Dillenia pentagyna were investigated for the quantity of oleamide by high-performance liquid chromatography. The biological activity test was conducted on the powder formulation of the chosen plants, Dillenia ovata and Dillenia parviflora at a ratio of 30:70, for anti-inflammatory activity ex vivo on a panel of molecular targets through ion channel inhibition including voltage-gated sodium channel, voltage-gated potassium channel, and the cardiac ion as human ether-a-go-go related gene.

Results: The results showed that the leaf extracts of I. aquatica and D. ovata gave the highest and subsequent oleamide quantity i.e. 7.52 and 5.17 mg/g, respectively. Out of the Dillenia formulation which contained various compounds, oleamide showed the highest percentages of inhibition at 8.0-20.0%, and 6.2-14.2% in voltage-gated sodium channel, and voltage-gated potassium channel which had slightly lower values than the oleamide standard, and no effect as 0.0% value inhibition in the cardiac ion channel.

Conclusion: The Dillenia formulation exhibits anti-inflammatory activity without affecting the heart. Accordingly, the three studied Ipomoea and three studied Dillenia species may be used for the same activity as a single component or formulation with effective solvent for disease treatments.

Keywords: Dillenia, High-Performance Liquid Chromatography (HPLC), Ipomoea, inflammatory activity, ion channel inhibition, oleamide.

Graphical Abstract

[1]
Sirikhansaeng, P.; Tanee, T.; Sudmoon, R.; Chaveerach, A. Major phytochemical as γ-sitosterol disclosing and toxicity testing in Lagerstroemia species. Evid.-Based Complement. Altern. Med., 2017., , Article ID 7209851..
[http://dx.doi.org/10.1155/2017/7209851]
[2]
Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr., 2014, 112(2), 214-219.
[http://dx.doi.org/10.1017/S0007114514000750] [PMID: 24780090]
[3]
Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics, 2016, 3(36), 1-24.
[http://dx.doi.org/10.3390/cosmetics3040036]
[4]
Noikotr, K.; Chaveerach, A.; Sudmoon, R.; Tanee, T.; Patarapadungkit, N. Phytochemicals, cytotoxicity and genotoxicity of three Artocarpus species firstly reveal arbutin in A. lacucha. Sci. Asia, 2018, 44, 170-178.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2018.44.170]
[5]
Martínez-González, D.; Bonilla-Jaime, H.; Morales-Otal, A.; Henriksen, S.J.; Velázquez-Moctezuma, J.; Prospéro-García, O. Oleamide and anandamide effects on food intake and sexual behavior of rats. Neurosci. Lett., 2004, 364(1), 1-6.
[http://dx.doi.org/10.1016/j.neulet.2004.03.080] [PMID: 15193744]
[6]
Hachisu, M.; Konishi, K.; Hosoi, M.; Tani, M.; Tomioka, H.; Inamoto, A.; Minami, S.; Izuno, T.; Umezawa, K.; Horiuchi, K.; Hori, K. Beyond the hypothesis of serum anticholinergic activity in Alzheimer’s disease: Acetylcholine neuronal activity modulates brain-derived neurotrophic factor production and inflammation in the brain. Neurodegener. Dis., 2015, 15(3), 182-187.
[http://dx.doi.org/10.1159/000381531] [PMID: 26138497]
[7]
Thooptianrat, T.; Chaveerach, A.; Sudmoon, R.; Tanee, T.; Liehr, T.; Babayan, N. Screening of phytochemicals and toxicity of medicinal plants, Dillenia species, reveals potential natural product resources. J. Food Biochem., 2016, 41(3), e12363.
[http://dx.doi.org/10.1111/jfbc.12363]
[8]
Oh, Y.T.; Lee, J.Y.; Lee, J.; Lee, J.H.; Kim, J.E.; Ha, J.; Kang, I. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells. Neurosci. Lett., 2010, 474(3), 148-153.
[http://dx.doi.org/10.1016/j.neulet.2010.03.026] [PMID: 20298753]
[9]
Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol., 2018, 56, 179-185.
[http://dx.doi.org/10.1016/j.intimp.2018.01.032] [PMID: 29414648]
[10]
Kita, M.; Ano, Y.; Inoue, A.; Aoki, J. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells. Sci. Rep., 2019, 9(1), 3135.
[http://dx.doi.org/10.1038/s41598-019-40008-8] [PMID: 30816271]
[11]
Meira, M.; Pereira da Silva, E.; David, J.M. David, J.P. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Brazilian J. Pharmacog., 2012, 22(3), 682-713.
[http://dx.doi.org/10.1590/S0102-695X2012005000025]
[12]
Garcia, M.L.; Kaczorowski, G.J. Ion channels find a pathway for therapeutic success. Proc. Natl. Acad. Sci. USA, 2016, 113(20), 5472-5474.
[http://dx.doi.org/10.1073/pnas.1605669113] [PMID: 27147602]
[13]
Habib, A.M.; Wood, J.N.; Cox, J.J. Sodium Channels and Pain. In: Springer; Schaible, H.G., Ed.; Handbook of Experimental Pharmacology, Berlin, Heidelberg; , 2015; 227, pp. 39-56.
[14]
Mohamed, I.; Shuid, A.; Fozi, N. The application of phytomedicine in modern drug development. Internet J. Herbal Plant Med., 2012, 1(2), 1-9.
[15]
Waszkielewicz, A.M.; Gunia, A.; Szkaradek, N.; Słoczyńska, K.; Krupińska, S.; Marona, H. Ion channels as drug targets in central nervous system disorders. Curr. Med. Chem., 2013, 20(10), 1241-1285.
[http://dx.doi.org/10.2174/0929867311320100005] [PMID: 23409712]
[16]
Glasscock, E. Kv1.1 channel subunits in the control of neurocardiac function. Channels (Austin), 2019, 13(1), 299-307.
[http://dx.doi.org/10.1080/19336950.2019.1635864] [PMID: 31250689]
[17]
Cázares-Ordoñez, V.; Pardo, L.A. Kv10.1 potassium channel: From the brain to the tumors. Biochem. Cell Biol., 2017, 95(5), 531-536.
[http://dx.doi.org/10.1139/bcb-2017-0062] [PMID: 28708947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy